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BLOWING–UP SOLUTIONS AND GLOBAL SOLUTIONS

TO A FRACTIONAL DIFFERENTIAL EQUATION

HNAIEN DORSAF, KELLIL FERDAOUS AND LASSOUED RAFIKA

Abstract. In this paper, we give a positive answer to a problem posed by Nakagawa, Sakamoto
and Yamamoto concerning a nonlinear equation with a fractional derivative.

1. Introduction

In their overview paper concerning the mathematical analysis of fractional equa-
tions, Nakagawa, Sakamoto and Yamamoto [7] posed the problem concerning global
solutions and blowing-up in a finite time of solutions to the equation{CDα

0+
u(t) = −u(t)(1−u(t)), t > 0,

u(0) = u0,
(1)

where CDα
0+

is the Caputo derivative defined for g ∈C1[0,T ] by

CDα
0+g(t) =

1
Γ(1−α)

∫ t

0
(t− τ)−αg′(τ)dτ,

for 0 < α < 1.
Let us recall, in the case α = 1, the results concerning solutions of (1) :
• For 0 < u(0) < 1, the solution exists globally. Moreover,

|u(t)| � 1
et(1−u0)

−→ 0, as t −→ +∞.

• For u(0) > 1, the solution can not exist globally.
Here, we show that the same conclusions are valid for equation (1) . Moreover we

analyse:

1. The large time behavior of the global solution.

2. The blow-up time and profile of the blowing-up solutions.

Note that if we set w = u−1, then (1) reads

CDα
0+w(t) = w(t)(1+w(t)),

which describes the evolution of a certain species; the reaction term w(1+w) describes
the law of increase of the species.
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2. Preliminaries

In this section, we present some definitions and results concerning fractional cal-
culus that will be used in the sequel. For more information see [1].

The Riemann-Liouville fractional integral of order 0 < α < 1 of the integrable
function f : R

+ −→ R is

Jα
0+ f (t) :=

1
Γ(α)

∫ t

0
(t− τ)α−1 f (τ)dτ, t > 0,

where Γ(α) is the Euler Gamma function.
The Riemann-Liouville fractional derivative of an absolutely continous function

f (t) of order 0 < α < 1 is

Dα
0+ f (t) :=

1
Γ(1−α)

d
dt

∫ t

0
(t − τ)−α f (τ)dτ.

The Caputo fractional derivative of an absolutely continous function f (t) of order
0 < α < 1 is defined by

CDα
0+

f (t) := J1−α
0+

f ′(t) =
1

Γ(1−α)

∫ t

0
(t− τ)−α f ′(τ)dτ.

Both derivatives present a drawback:
• The Riemann-Liouville derivative of a constant is different from zero,

Dα
0+

C �= 0,

while the Caputo derivative require f ′(t) to calculate CDα
0+

f (t) , for 0 < α < 1.
• We know that the Riemann-Liouville derivative of the Weierstrass function ex-

ists for any 0 < α < 1, but not for α = 1.
But for regular function with f (0) = 0, both definitions coincide.
Next, we recall a lemma that will be used hereafter.

LEMMA 2.1. (see [3]) Let a, b , K , ψ be non-negative continuous functions on
the interval I = (0,T ) , (0 <T � ∞) , let ω : (0,∞)−→R be a continuous, non-negative
and non-decreasing function with ω(0) = 0 and ω(u) > 0 for u > 0 , and let A(t) =
max0�s�t a(s) and B(t) = max0�s�t b(s) . Assume that

ψ(t) � a(t)+b(t)
∫ t

0
K(s)ω(ψ(s))ds, t ∈ I.

Then

ψ(t) � H−1
[
H(A(t))+B(t)

∫ t

0
K(s)ds

]
, t ∈ (0,T1),

where H(v) =
∫ v
v0

dτ
ω(τ) (v � v0 > 0) , H−1 is the inverse of H and T1 > 0 is such that

H(A(t))+B(t)
∫ t
0 K(s)ds ∈ D(H−1) for all t ∈ (0,T1) .
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Here, we consider the problem{CDα
0+

u(t) = −u(t)(1−u(t)),
u(0) = u0,

(2)

for 0 < α < 1 and u0 > 0.

3. Main results

The local existence of solutions to (2) is assured by the

THEOREM 3.1. (see [1]) We consider the fractional differential equation of Ca-
puto’s type given by {CDα

0+
u(t) = f (t,u(t)), t > 0,

u(0) = u0.
(3)

For 0 < α < 1 , u0 ∈ R , b > 0 and T > 0 assume that

1. f ∈ C(R0,R) where R0 = {(t,u), 0 � t � T, |u− u0| � b} and | f (t,u)| � M
on R0 ;

2. | f (t,u)− f (t,v)| � L|u− v|, L > 0, (t,u) ∈ R0 .

Then there exists a unique solution u ∈C([0,h]) for (3) , where

h = min
{

T,
(bΓ(α +1)

M

) 1
α
}
.

THEOREM 3.2. Let u be the solution of problem (2) . We have:
• If 0 < u0 < 1 , the solution is global and it satisfies 0 < u < 1 . Moreover, u is

given by

u(t) = Eα(−tα)u0 +
∫ t

0
(t − s)α−1Eα ,α(−(t− s)α) u2(s)ds,

and for some constants c > 0 and c1 > 0 , we have

0 < u(t) � 1
1

cu0
− c1

α tα
, 0 < t < T0 :=

( α
c1cu0

) 1
α
.

In addition, we have for 0 < ε < 1

u(t) � c
1+ ε(1− ε)tα , t > 0

• If u0 > 1 , the solution blows-up in a finite time T ∗ : lim
t−→T ∗ u(t) = +∞ .

Moreover, we have the bilateral estimate:

w(t)+1 � u(t) � w̃(t)+1,



48 H. DORSAF, K. FERDAOUS AND L. RAFIKA

and ( Γ(α +1)
4(u0− 1

2 )

) 1
α � T ∗ �

(Γ(α +1)
u0−1

) 1
α
,

where

w̃(t)+
1
2
∼ Γ(2α)

Γ(α)
(Tw̃ − t)−α , as t −→ Tw̃,

w(t) ∼ Γ(2α)
Γ(α)

(Tw− t)−α , as t −→ Tw.

Here, Tw̃ is the blow-up time of w̃ , which satisfies

( Γ(α +1)
4(u0− 1

2 )

) 1
α � Tw̃ �

(Γ(α +1)
u0− 1

2

) 1
α
,

and Tw is the blow-up time of w, which satisfies

( Γ(α +1)
4(u0−1)

) 1
α � Tw �

(Γ(α +1)
u0−1

) 1
α
.

Proof of Theorem 3.2.
Part 1. If 0 < u0 < 1, then the solution is global. The solution to (2) is given by

u(t) = Eα(−tα)u0 +
∫ t

0
(t − s)α−1Eα ,α(−(t− s)α) u2(s)ds. (4)

Where the Mittag-Leffler functions Eα(−tα) and Eα ,α(−tα) are defined by:

Eα(−tα) =
∞

∑
j=0

(−1) jtα j

Γ(α j +1)
,

Eα ,α(−tα) =
∞

∑
j=0

(−1) jtα j

Γ(α j + α)
.

If u0 > 0, then u(t) > 0 as Eα(−tα) > 0 and Eα ,α(−tα) > 0.
Now, we set the function u(t) = 1, t > 0.
As 0 < u0 < 1, then u0 < u(0). In addition, we have

CDα
0+u(t) = 0 = −u(t)(1−u(t)).

Hence u is an upper solution of the equation (2) , and we have u(t) < u(t) = 1, (see
[6], Thm. 2.4.3, p. 32).

Now, we examine the large time behavior of the global solution 0 < u < 1.
For, let us recall the estimates (see [5]):
• For 0 < α < 1 and μ > 0, there exists a constant c > 0 such that,

0 < Eα(−μ tα) � c
1+ μ tα � c, t > 0. (5)
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• For 0 < α < 1, there exists a constant c1 > 0 such that

0 < tα−1Eα ,α(−tα) � c1t
α−1, t > 0. (6)

From (4) and using the inequalities (5) and (6) , we obtain

u(t) � cu0 + c1

∫ t

0
(t − s)α−1u2(s)ds. (7)

We apply Lemma 2.1 to (7) with ω(x) = x2, K(s) = (t−s)α−1, A(t) = cu0, B(t) = c1.
For 0 < t < T0 , we have

H(cu0)+
c1

α
tα ∈ D(H−1),

where H(v) =
1
v0

− 1
v

and H−1(z) =
1

1
v0
− z

, z �= 1
v0

.

So we obtain,

u(t) � H−1
[
H(cu0)+

c1

α
tα

]
.

Therefore

u(t) � 1
1

cu0
− c1

α tα
, 0 < t < T0.

Let 0 < ε < 1, we observe that for the function u(t) := Eα ,1(−ε(1− ε)tα) we have{
CDα

0+u(t) = −ε(1− ε)u(t)
u(0) = 1 > u(0),

from the comparaison principle [6] and inequality (5) it follows that

u(t) � c
1+ ε(1− ε)tα , t > 0.

Part 2. If u0 > 1, then the solution blows-up in a finite time.
• We show that u > 1. For, let us define the new unknown function w = u− 1.

The function w satisfies { CDα
0+

w(t) = w(t)(1+w(t)),
w(0) := w0 = u0−1.

(8)

As u0 > 1, then w0 > 0. Moreover, we have ([1])

w(t) = Eα(tα)w0 +
∫ t

0
(t − s)α−1Eα ,α((t − s)α) w2(s)ds.

Therefore, w > 0; hence u > 1.
• We prove that u blows-up in a finite time.
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Since we have w(t) = u(t)− 1, it is seen that if u(t) −→ ∞ as t −→ T ∗ , then
w(t) −→ ∞ as t −→ T ∗ and vice versa. That is w and u will have the same blow-up
time.

We now must examine the blow-up properties of w , the solution of problem (8) .
These are obtained by comparing w(t) with the solutions of the following problems:{CDα

0+
w(t) = w 2(t),

w(0) = w0,
(9)

and {
CDα

0+
w̃(t) = (w̃(t)+ 1

2 )2,

w̃(0) = w0.
(10)

We see by comparaison ([6]) that

w(t) � w(t) � w̃(t), 0 � t < min{Tw,Tw̃}.
Following the paper of Kirk, Olmstead and Roberts [4], we may assert that the solution
w (resp. w̃ ) blows-up in a finite time Tw (resp. Tw̃ ), such that

(Γ(α +1)
4w0

) 1
α � Tw �

(Γ(α +1)
w0

) 1
α
,

and ( Γ(α +1)
4(w0 + 1

2 )

) 1
α � Tw̃ �

(Γ(α +1)
w0 + 1

2

) 1
α
.

So we have the following estimates

Tw̃ � T ∗ � Tw.

Whereupon ( Γ(α +1)
4(w0 + 1

2)

) 1
α � T ∗ �

(Γ(α +1)
w0

) 1
α
. �

4. Numerical implementation

In this section, we will approximate the solution u given by (4) . For, we need
a numerical approximation of the convolution integral; this can be obtained using the
convolution quadrature method.

As it has been explained in [2], a convolution quadrature approximates the contin-
uous convolution ∫ t

0
K(t − s) f (s)ds, t > 0,

by a discrete convolution with a step size h > 0. Then

∫ tn

0
K(tn − s) f (s)ds ∼

n

∑
j=0

ωn− j f (t j),
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where t j = jh, j = 0,1,2, ...,n and the convolution quadrature weights ω j are deter-
mined from their generating power series as

∞

∑
j=0

ω jζ j = L
{

K(t) :
δ (ζ )

h

}
.

Here L {K(t) : s} is the Laplace transform of K(t) and δ (ζ ) is the generating poly-
nomial for a linear multistep method.

Let un be the approximation of u(tn) for n � 0. Using the convolution quadrature
method we obtain

un = (1−ω0)−1
[
Eα(−tα)u0 +

n−1

∑
j=0

ωn− ju j

]
, n = 1,2,3....

Now, we introduce the following algorithm which gives the numerical approxima-
tion of solution to equation (2) .

ALGORITHM.

Input: Give α , 0 < α < 1 and u0 , u0 > 1.
Initializations: Discretize the time with a step size h > 0; ti = ih , for all i =

1,2, ...,n , u1
appx = u0 , u1 = (u0)2.

Step 1: Approximate the Mittag-Leffler function GML.
Step 2: Calculate convolution quadrature weights W using the fast Fourier trans-

form (FFT).
Step 3: Calculate ui

appx .

do

ui = GML∗ u1
appx +W∗ ui−1.

ui
appx = (1−W(1))−1 ∗ ui.

ui = (ui
appx)

2.
i = i+1.

until (ui
appx blows up) or ( i > n ).

Output: Numerical approximation of u .

EXAMPLE 1. For Figure1, we set α = 0.5; the initial conditions are respectively
u0 = 5, u0 = 3 and u0 = 2.

For Figure2, we take the initial condition u0 = 5 and we plot the solutions; the
dotted curve is the solution for α = 0.3 and the solid curve corresponds to the solution
for α = 0.5.

As it has been proved, the solution blows up in a finite time which depends on u0

and α .
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Figure 1: Solutions for α = 0.5 and u0 = 5, 3, 2 .

Figure 2: Solutions for u0 = 5 and α = 0.3, 0.5 .
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