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BLOWING-UP SOLUTIONS AND GLOBAL SOLUTIONS
TO A FRACTIONAL DIFFERENTIAL EQUATION

HNAIEN DORSAF, KELLIL FERDAOUS AND LASSOUED RAFIKA

Abstract. In this paper, we give a positive answer to a problem posed by Nakagawa, Sakamoto
and Yamamoto concerning a nonlinear equation with a fractional derivative.

1. Introduction

In their overview paper concerning the mathematical analysis of fractional equa-
tions, Nakagawa, Sakamoto and Yamamoto [7] posed the problem concerning global
solutions and blowing-up in a finite time of solutions to the equation

{CD&u(t) —u(t)(1—u(t)), t>0,
u(0) = ug,

(D

where D is the Caputo derivative defined for g € C'[0,T] by

l t
Cno -/
Dygtt)y==——— /[ (t—7 T)dt
§.8) = Frgy [, 0~ O H (@,
forO0<a<l1.
Let us recall, in the case o = 1, the results concerning solutions of (1):
e For 0 < u(0) < 1, the solution exists globally. Moreover,

1
lu(r)] < (1 —u)

e For u(0) > 1, the solution can not exist globally.
Here, we show that the same conclusions are valid for equation (1). Moreover we
analyse:

— 0, ast — oo,

1. The large time behavior of the global solution.
2. The blow-up time and profile of the blowing-up solutions.
Note that if we set w=u— 1, then (1) reads
“DE w(t) = w(t)(1+w(1)),

which describes the evolution of a certain species; the reaction term w(1+w) describes
the law of increase of the species.
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2. Preliminaries

In this section, we present some definitions and results concerning fractional cal-
culus that will be used in the sequel. For more information see [1].

The Riemann-Liouville fractional integral of order 0 < o < 1 of the integrable
function f:RT — R is

1 1
JE ft ::—/ t—1)% ' f(r)dt, >0,
0+f() F((X) 0( ) f()
where I'(¢) is the Euler Gamma function.
The Riemann-Liouville fractional derivative of an absolutely continous function
f(t) oforder 0 < o < 1 is

D.10) = g a5 | = A0y

The Caputo fractional derivative of an absolutely continous function f(r) of order
0 < o <1 is defined by

CD&f() JO+ A(r) = ﬁ/o’(,—r)*af/(r)df

Both derivatives present a drawback:
e The Riemann-Liouville derivative of a constant is different from zero,

D§ C#0,

while the Caputo derivative require f’(z) to calculate CD8‘+ f@),for0<a<1l.

e We know that the Riemann-Liouville derivative of the Weierstrass function ex-
ists forany 0 < o < 1, butnot for ¢ = 1.

But for regular function with f(0) = 0, both definitions coincide.

Next, we recall a lemma that will be used hereafter.

LEMMA 2.1. (see [3]) Let a, b, K, y be non-negative continuous functions on
the interval [ = (0,T), (0<T < o), let ®:(0,00) — R be a continuous, non-negative
and non-decreasing function with ®(0) =0 and o(u) > 0 for u >0, and let A(t) =
maxo<s<; a(s) and B(t) = maxo<y<; b(s). Assume that

y(t) t)+b(t / K(s )ds, tel.
Then .
w(e) <H ! [H(A@) +B() /0 K(s)ds), 1€ (0,1),
where H(v) = f"o G (v=vo>0), H™! is the inverse of H and Ty > 0 is such that
H(A(1)) +B(t) JoK(s)ds € D(H ") forall 1 € (0,Ty).
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Here, we consider the problem

{CD86+M(I) = —u(t)(1—u(1)),

u(0) = ug, 2)

for 0 < o<1 and uy > 0.

3. Main results

The local existence of solutions to (2) is assured by the
THEOREM 3.1. (see [1]) We consider the fractional differential equation of Ca-
puto’s type given by

u(0) = up. ®)

ForO<oa<1,uyeR, b>0and T > 0 assume that

{CD&u(t) = f(t,u(t)), t >0,

1. f € C(Ro,R) where Ry = {(t,u), 0<t<T, lu—uo| <b} and |f(t,u)] <M
on Ry;

2. |f(t,u)— f(t,v)| < Llu—v|, L>0, (¢t,u) € Ry.
Then there exists a unique solution u € C([0,h]) for (3), where

p—min {7, (2D,

THEOREM 3.2. Let u be the solution of problem (2). We have:
o If 0 <ugy <1, the solution is global and it satisfies 0 <u < 1. Moreover, u is
given by

!
u(t) = Eo(—1%)ug +/ (0 — )% Ega(—(t —5)%) u?(s)ds,
0
and for some constants ¢ > 0 and c; > 0, we have

1

L — C_ltOC
(&0 o

R_I=

0<u(r) < , 0<t<T0::< ¢ )

Cci1Cug
In addition, we have for 0 < € < 1

u(t) < ¢

< 130
1+e(l—g)@

o If ug > 1, the solution blows-up in a finite time T*: lim u(r) = +oo.

t—T*

Moreover, we have the bilateral estimate:

wt)+1<ut) <w(t)+1,
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and
Tlo+1)\ & . Tlo4+1)\ &
(M) g (Tloh)i
where { T
W(t)+§~ r(((;x))(T —1)7% as t — Ty,
w(z)wrr((zo‘;‘))(r )% as (T

Here, T is the blow-up time of w, which satisfies
1 1
(F(a—i—{))a <T. < (F(OH—II))D:,
4(up— 5) U — 3
and Ty is the blow-up time of W, which satisfies

Gan)” <= ()"

Proof of Theorem 3.2.
Part 1. 1f 0 < uy < 1, then the solution is global. The solution to (2) is given by

1) = Eal =10+ [ (1=9)" Eaial— (1 —5)%) i(5)ds. @

Where the Mittag-Leffler functions Eq(—t%) and Egy o (—t%) are defined by:

oo 1)re
g‘ T(oj+1)

bt = 5 U
o S T(aj+a)
If up > 0, then u(t) >0 as Eq(—1%) >0 and Eq o(—t%) > 0.
Now, we set the function u(r) =1, ¢ > 0.
As 0 < up < 1, then uy < #(0). In addition, we have

CD0+ﬁ(t) =0=—u(r)(1—u(r)).

Hence # is an upper solution of the equation (2), and we have u(r) <u(r) =1, (see
[6], Thm. 2.4.3, p. 32).

Now, we examine the large time behavior of the global solution 0 < u < 1.

For, let us recall the estimates (see [5]):

e For 0 < x < 1 and p > 0, there exists a constant ¢ > 0 such that,

0<Eq(—put*) < ¢, t>0. (5)

<
I+ ut*



BLOWING-UP AND GLOBAL SOLUTIONS TO A FRACTIONAL DIFFERENTIAL EQUATION 49
e For 0 < o < 1, there exists a constant ¢; > 0 such that
0<t* 'Eqaq(—1%) <cit* !, t>0. (6)
From (4) and using the inequalities (5) and (6), we obtain
! 1,2
u(t) < cug —|—c1/ (t—5)""u(s)ds. (7
0

We apply Lemma 2.1 to (7) with (x) =x%, K(s) = (t —s)*~ !, A(t) = cuo, B(t) =cy.
For 0 <t < Ty, we have

1 1
whereH(v):%—; and H'(z) = T z;é%.

So we obtain,

Therefore

u(t) < , 0<t <Ty.

1 C_ltOC
CU() o

Let 0 < € < 1, we observe that for the function u(t) := Eq, 1 (—€(1 —€)t*) we have

{CD8‘+E(I) = —e(1—e)alt)
a0) = 1> u(0),

from the comparaison principle [6] and inequality (5) it follows that

u(t) < ¢

<——F———, 1 >0.
1+e(l—g)te ”

Part 2. If uy > 1, then the solution blows-up in a finite time.
e We show that u > 1. For, let us define the new unknown function w = u — 1.
The function w satisfies

{ CDg w(r) = wlt)(1+w(r)), (8)

w(0) :=wop = up— 1.
As ug > 1, then wy > 0. Moreover, we have ([1])
t
Ww(t) = Eo(t%)wo + / (1 — )% Eqo((t — $)%) w2 (s)ds.
0

Therefore, w > 0; hence u > 1.
e We prove that # blows-up in a finite time.
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Since we have w(t) = u(t) — 1, it is seen that if u(t) — e as t — T, then
w(t) — oo as t — T* and vice versa. Thatis w and u will have the same blow-up
time.

We now must examine the blow-up properties of w, the solution of problem (8).
These are obtained by comparing w(z) with the solutions of the following problems:

“Dg w(t) =w?(t),
{ 9(0) = wo, ©
e DY (1) = (W) + L2,

{5 o a0

We see by comparaison ([6]) that
w(t) <w(t) <w(r), 0<t<min{TT5}.

Following the paper of Kirk, Olmstead and Roberts [4], we may assert that the solution
w (resp. w) blows-up in a finite time Ti (resp. T ), such that

)

L L
(F(a+1)>a<TW<<F(a+l)>a
4wy wo

and . .

T )\ o T D\ &
Cﬁﬁ%)gmgpggg,

4(wo+3) wo+ 5

So we have the following estimates

T; < T* < Ty

Whereupon
1 1
<l"(a+11)>a<T*<(l"(a+l)>a' 0
4(W0+§) wo

4. Numerical implementation

In this section, we will approximate the solution u given by (4). For, we need
a numerical approximation of the convolution integral; this can be obtained using the
convolution quadrature method.

As it has been explained in [2], a convolution quadrature approximates the contin-
uous convolution

/(:K(t—s)f(s)ds, £ 0,

by a discrete convolution with a step size & > 0. Then

[ K—50)as~ 3 o050,
0 j=0
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where t; = jh, j=0,1,2,...,n and the convolution quadrature weights @; are deter-
mined from their generating power series as

S o0 — R(9)
;)@/CJ—D?{K(I). ; }

Here Z{K(r) : s} is the Laplace transform of K(¢) and 6({) is the generating poly-
nomial for a linear multistep method.

Let u, be the approximation of u(z,) for n > 0. Using the convolution quadrature
method we obtain

n—1
= (1= 0p) " [Ea(—t%)uo+ Y w,,_,-u,-} n=1,273...
=

Now, we introduce the following algorithm which gives the numerical approxima-
tion of solution to equation (2).

ALGORITHM.

Input: Give o, 0 < o < 1 and ug, ug > 1.

Initializations: Discretize the time with a step size & > 0; t; = ih, for all i =
1,2,...,n, u}lm,x =ug, u' = (up)%.

Step 1: Approximate the Mittag-Leffler function GML.

Step 2: Calculate convolution quadrature weights W using the fast Fourier trans-
form (FFT).

Step 3: Calculate u,,,,.

u' = GML * uéppx—i-W* ut.
do u%ppx :l (1 —2W(l))‘1 *ul.

u = (uuppx) .

i=i+1.
until (1, blows up) or (i >n ).
Output: Numerical approximation of u.

EXAMPLE 1. For Figurel, we set o = 0.5; the initial conditions are respectively
u0=5, u0:3 and u0=2.

For Figure2, we take the initial condition uy = 5 and we plot the solutions; the
dotted curve is the solution for oo = 0.3 and the solid curve corresponds to the solution
for ¢ =0.5.

As it has been proved, the solution blows up in a finite time which depends on ug
and o.
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ult)

ult)

Figure 2: Solutions for uy =5 and oo =0.3, 0.5.
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