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EXISTENCE OF MILD SOLUTIONS FOR NONLOCAL

SEMILINEAR FRACTIONAL EVOLUTION EQUATIONS

JUNFEI CAO

Abstract. In this paper, we investigate a class of semilinear fractional evolution equations with
nonlocal initial conditions given by

(1)

⎧⎨
⎩

dqu(t)
dtq

= Au(t)+(Fu)(t), t ∈ I,

u(0)+g(u) = u0,

where 0 < q< 1 , I is a compact interval. Sufficient conditions for the existence of mild solutions
for the equation (1) are derived. The main tools include Laplace transform, Arzela-Ascoli’s
Theorem, Schauder’s fixed point theorem and Operator theorem.

1. Introduction

In this paper, we are concerned with the existence of mild solutions for the follow-
ing semilinear fractional evolution equations with nonlocal initial conditions⎧⎨

⎩
dqu(t)
dtq

= Au(t)+ (Fu)(t), t ∈ I,

u(0)+g(u) = u0,

(1.1)

where dqu(t)/dtq is the standard Riemann-Liouville fractional derivative, 0 < q < 1,
I = [0,T ] is a compact interval, A : D(A) ⊆ X → X is a closed bounded linear operator
on a Banach space X , g : C(I,X)→ X is a given X -valued function and F :C(I,X) →
Lp(I,X) is a given nonlinear operator.

The fractional derivative is understood in the Riemann-Liouville sense. The origin
of fractional calculus goes back to Newton and Leibnitz in the seventieth century. One
observes that fractional order can be very complex in viewpoint of mathematics and
they have recently proved to be valuable in various fields of science and engineering.
In fact, one can find numerous applications in electrochemistry, electromagnetism, vis-
coelasticity, biology and hydrogeology. For example space-fractional diffusion equa-
tions have been used in groundwater hydrology to model the transport of passive tracers
carried by fluid flow in a porous medium [1, 2] or to model activator-inhibitor dynamics
with anomalous diffusion [3]. For details, see [4–7] and the references therein.
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Differential equations of fractional order have appeared in many branches of phy-
sics and technical sciences [8, 9]. It has seen considerable development in the last
decade, see [3–25] and the references therein. Recently, the existence and unique-
ness problem for various fractional differential equations were considered by Ahmad
[10], Bhaskar [11], Zhou [12–14], Lakshmikantham and Leela [15] et al. The nonlocal
Cauchy problem was considered by Anguraj, Karthikeyan and N’Guèrèkata [16], and
the importance of nonlocal initial conditions in different fields has been discussed in [6,
7] and the references therein.

The equation (1.1) can be viewed as a generalization of the following equation⎧⎨
⎩

dqu(t)
dtq

= Au(t)+ f (t,u(t)), t ∈ I,

u(0)+g(u) = u0,

(1.2)

where f : I×X → X is a given X -valued function. Indeed, under suitable conditions,
the operator (Fu)(t) = f (t,u(t)) maps C(I,X) into Lp(I,X) . Thus the equation (1.2)
reads equation (1.1).

The nonlocal problem (1.2) was motivated by physical problems. Indeed, the non-
local initial condition u(0)+g(u)= u0 can be applied in physics with better effect than
the classical initial condition u(0) = u0 . For this reason, the equation (1.2) has gotten
considerable attention in recent years, see [26, 27, 28] and the references therein. See
also [29, 30, 31] and the references therein for recent generalizations of equation (1.2)
to various kinds of differential equations.

In this paper, we are interested in the case that A generates a compact C0 -semi-
group. In [32] the Leray-Schauder Alternative was used to study the existence of solu-
tions for the equation (1.2) in which q = 1. However, as is shown in [33], the proof of
the main results in [32] does not work because the most important place at t = 0 was ne-
glected when checking the compactness of the solution operator. To fill this gap, some
authors added conditions on the compactness of g , see e.g. [34, 35, 33, 36, 37] and the
references therein. However, in application to physics, these conditions is too strong.
In fact, in many references on nonlocal Cauchy problems (see e.g. [38, 39, 40, 41]), the
mapping g is given by

g(u) =
p

∑
i=1

ciu(ti), (1.3)

where 0 < t1 < t2 < · · · < tp � T , c1,c2, · · · ,cp are given constants. Obviously, com-
pactness condition is not valid for g .

Without assumptions on the compactness of g , Liang, Liu and Xiao [40] devel-
oped a method to deal with the case that f is Lipschitz continuous in the second argu-
ment. The main assumptions in [40] are that the function g depends only on u in the
interval [δ ,T ] for some constant δ > 0. Clearly, these assumptions cover (1.3). The
authors defined a solution operator by different methods. In this way, the point t = 0 is
not needed to be considered. By Schauder’s Fixed Point Theorem, the authors obtained
the existence of mild solutions for the equation (1.2) in which q = 1.

The present paper is motivated by the following facts. Firstly, to the best of our
knowledge, the more general and more valuable fractional differential equations were
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considered seldom in this case. Secondly, the approach used in [40] relies on the as-
sumption that the function f is Lipschitz continuous with respect to the second variable.
Thirdly, as is mentioned in the previous paragraph, the classes of equations covered in
[40] do not include the general case where g(u) depends on u on the whole interval
[0,T ] . For example, the following nonlocal problem⎧⎪⎪⎨

⎪⎪⎩
dqu(t)
dtq

= Au(t)+ f (t,u(t)), t ∈ I,

u(0)+
∫ T

0
h(s,u(s))ds = u0.

(1.4)

Neither the compactness condition nor the assumptions given in [40] are satisfied for
g .

In this work, we continue discussing the existence of mild solutions for the non-
local problem (1.2) under more general hypotheses. We consider the more general
nonlocal Cauchy problem (1.1). Firstly, we prove an existence result for equation (1.1)
under the assumptions that g and F depend only on u in the interval [δ ,T ] for some
constant δ > 0. Subsequently, we construct a family of nonlocal Cauchy problems
{(Qδn) : n ∈ N} such that the above conditions are satisfied. For every n ∈ N , we ob-
tain one mild solution of the problem (Qδn ), say, un by the above result. Finally, a mild
solution of the original equation (1.1) was obtained by a diagonal argument.

2. Some Lemmas

We begin this section by giving some notations. N and R+ stand for the set of
natural and nonnegative numbers, respectively. Denote by X a Banach space with norm
‖ · ‖ . Let A be the infinitesimal generator of an analytic semigroup {T (t)}t�0 on X .
Denote by C(I,X) the Banach space of all continuous functions from I to X with the
norm

‖u‖∞ = max{‖u(t)‖ : t ∈ I},
and by Lp(I,X) the Banach space of all X -valued functions defined on I with the norm

‖u‖p =
(∫

I
‖u(t)‖pdt

) 1
p

.

For any positive number r , let

Br := {x ∈ X : ‖x‖ � r}, Yr := {φ ∈C(I,X) : ‖φ‖∞ � r}.
Following Gelfand and Shilov, define the fractional integral of order q > 0 as

Iq
a f (t) =

1
Γ(q)

∫ t

a
(t − s)q−1 f (s)ds,

also, the Riemann-Liouville fractional derivative of function f of order 0 < q < 1 as

aD
q
t f (t) =

1
Γ(1−q)

d
dt

∫ t

a
(t− s)−q f (s)ds,
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where f is an abstract continuous function on [a,b] and Γ is the Gamma function [42].
According to the definitions of fractional integral and Riemann-Liouville frac-

tional derivative, it is suitable to rewrite the nonlocal Cauchy problem (1.2) in the
equivalent integral equation

u(t) = u0−g(u)+
1

Γ(q)

∫ t

0
(t−σ)q−1[Au(σ)+ f (σ ,u(σ))]dσ , (2.1)

provided that the integral in (2.1) exists.
Before giving the definition of mild solutions of the equation (1.1) and (1.2), we

first give the following lemma.

LEMMA 2.1. ([43]) If (2.1) holds, then one has

u(t) =
∫ ∞

0
φq(θ )T (tqθ )[u0−g(u)]dθ+q

∫ t

0

∫ ∞

0
θ (t−σ)q−1φq(θ )T (tqθ ) f (σ ,u(σ))dθdσ ,

where φq is a probability density function defined on (0,+∞) , that is

φq(θ ) � 0, ∀ θ ∈ (0,+∞) and
∫ ∞

0
φq(θ )dθ = 1.

For any u ∈ X , define operators {Sq(t)}t�0 and {Tq(t)}t�0 by

Sq(t)u =
∫ ∞

0
φq(θ )T (tqθ )udθ , Tq(t)u = q

∫ ∞

0
θφq(θ )T (tqθ )udθ .

Thus due to Lemma 2.1, we give the following definition of the mild solutions of the
equation (1.1) and (1.2).

DEFINITION 2.1. A function u∈C(I,X) is said to be a mild solution of the equa-
tion (1.2) if for every t ∈ I ,

u(t) = Sq(t)(u0−g(u))+
∫ t

0
(t− s)q−1Tq(t− s) f (s,u(s))ds.

By a mild solution of the equation (1.1) we understand a function u ∈ C(I,X) which
satisfies

u(t) = Sq(t)(u0−g(u))+
∫ t

0
(t− s)q−1Tq(t− s)(Fu)(s)ds,

for any t ∈ I.
Let r > 0, we introduce the following assumptions.
(H1) The operator A generates a compact C0 -semigroup {T (t)}t�0 on X , i.e.,

for any t > 0, the operator T (t) is compact.
(H2) The operator F : C(I,X) → Lp(I,X) is continuous. There exists a positive

function α : I → R+ such that for all u ∈Yr and a.e. t ∈ I , ‖(Fu)(t)‖ � α(t) with the
function s → α(s) belongs to Lp(I,R+) ,

γ(t) :=
(∫ t

0
α p(s)ds

) 1
p

� MT < ∞.

(H3) The function g :C(I,X)→ X is continuous, and maps Yr into a bounded set.
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(H4) There exists a constant δ ∈ (0,T ) , such that

F(u) = F(v), g(u) = g(v),

for any u,v ∈ Yr with u(s) = v(s) , s ∈ [δ ,T ] .

(H5) M(‖u0‖+ sup
v∈Yr

‖g(v)‖)+ qMMT
Γ(q+1)

(
p−1
pq−1

) p−1
p

T q− 1
p � r.

It follows from (H1) and [44, Theorem 2.3.2] that {T (t)}t�0 is continuous in the
uniform operator topology for all t > 0, i.e.,

lim
η→0

‖T (t + η)−T(t)‖ = 0, ∀ t > 0.

Furthermore, ‖T (t)‖ is bounded on the interval I , i.e.,

M := sup{‖T (t)‖ : t ∈ I} < ∞. (2.2)

We give the following lemmas relative to operators {Sq(t)}t�0 and {Tq(t)}t�0

before we proceed further.

LEMMA 2.2. ([45]) For any fixed t � 0 , {Sq(t)}t�0 and {Tq(t)}t�0 are linear
and bounded operators, i.e.,

‖Sq(t)u‖ =
∥∥∥∫ ∞

0
φq(θ )T (tqθ )xdθ

∥∥∥ � M‖u‖,

‖Tq(t)u‖ =
∥∥∥q

∫ ∞

0
θφq(θ )T (tqθ )xdθ

∥∥∥ � qM
Γ(1+q)

‖u‖.

LEMMA 2.3. ([45]) The operators {Sq(t)}t�0 and {Tq(t)}t�0 are strongly con-
tinuous, which means that for ∀u ∈ X and 0 < t ′ < t ′′ , one has

‖Sq(t ′′)u−Sq(t ′)u‖→ 0, ‖Tq(t ′′)u−Tq(t ′)u‖→ 0 as t ′ → t ′′.

LEMMA 2.4. ([45]) If T (t) is a compact operator for every t > 0 , then {Sq(t)}t�0

and {Tq(t)}t�0 are also compact operators for every t > 0 .

Now we give other two lemmas.

LEMMA 2.5. Assume that there exists a constant r > 0 such that the conditions
(H1)–(H5) are satisfied. Then the nonlocal problem (1.1) has at least one mild solution
in Yr .

Proof. Set

Yr(δ ) := {u ∈C([δ ,T ],X) : ‖u‖∞ � r,∀ t ∈ [δ ,T ]}.
For any u ∈ Yr(δ ) , one can find a function v ∈ Yr with u(t) = v(t) , t ∈ [δ ,T ] . Let

(F̃u)(t) := (Fv)(t), ∀ t ∈ [0,T ], g̃(u) := g(v).

By conditions (H2)–(H4) , the mappings F̃ : Yr(δ ) → Lp(I,X) and g̃ : Yr(δ ) → X are
well defined and continuous. Moreover,

‖(F̃u)(t)‖ � α(t), a.e. t ∈ I, ∀ u ∈Yr(δ ), (2.3)
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sup
u∈Yr(δ )

‖g̃(u)‖ = sup
v∈Yr

‖g(v)‖ < ∞. (2.4)

Now, define a mapping Ψ on Yr(δ ) as follows

(Ψu)(t) := Sq(t)(u0− g̃(u))+
∫ t

0
(t− s)q−1Tq(t− s)(F̃u)(s)ds, t ∈ [δ ,T ]. (2.5)

It follows from Lemma 2.2, (2.2)–(2.5) and (H5) that Ψ maps Yr(δ ) into itself. Indeed

‖(Ψu)(t)‖ =
∥∥∥∥Sq(t)(u0− g̃(u))+

∫ t

0
(t − s)q−1Tq(t− s)(F̃u)(s)ds

∥∥∥∥
�‖Sq(t)(u0− g̃(u))‖+

∥∥∥∥
∫ t

0
(t − s)q−1Tq(t − s)(F̃u)(s)ds

∥∥∥∥
�M(‖u0‖+‖g̃(u))‖)+

∫ t

0
(t − s)q−1‖T (t− s)(F̃u)(s)‖ds

�M(‖u0‖+‖g̃(u))‖)+
qM

Γ(q+1)

∫ t

0
(t− s)q−1α(s)ds

�M(‖u0‖+‖g̃(u))‖)+
qM

Γ(q+1)

(∫ t

0
(t− s)

(q−1)p
p−1 ds

) p−1
p

(∫ t

0
α p(s)ds

) 1
p

�M(‖u0‖+‖g̃(u))‖)+
qMMT

Γ(q+1)

(
p−1
pq−1

) p−1
p

T q− 1
p � r.

Next we prove Ψ has a fixed point in Yr(δ ) . From the continuity of F̃ and g̃ , one
obtains that Ψ is continuous. Hence, one only needs to prove the set {Ψu : u ∈ Yr(δ )}
is relatively compact in C([δ ,T ],X) . Then the result follows from Schauder’s Fixed
Point Theorem.

It follows from (H1) and Lemma 2.4 that {Sq(t)}t�0 and {Tq(t)}t�0 are compact
for t > 0. Thus, by (2.3) and (2.4), one can further deduce that for any t ∈ [δ ,T ] , the set
{(Ψu)(t) : u ∈ Yr(δ )} is relatively compact in X . The norm continuity of {Sq(t)}t�0

(from Lemma 2.3), together with (2.4), yields that the family of functions on [δ ,T ] ,
{Sq(·)(u0− g̃(u)) : u ∈ Yr(δ )} is equicontinuous.

On the other hand,∥∥∥∥
∫ t+h

0
(t +h− s)q−1Tq(t +h− s)(F̃u)(s)ds−

∫ t

0
(t− s)q−1Tq(t− s)(F̃u)(s)ds

∥∥∥∥
�

∥∥∥∥
∫ t

0

[
(t +h− s)q−1− (t− s)q−1]Tq(t +h− s)(F̃u)(s)ds

∥∥∥∥
+

∥∥∥∥
∫ t+h

t
(t +h− s)q−1Tq(t +h− s)(F̃u)(s)

∥∥∥∥ds (2.6)

+
∥∥∥∥
∫ t

0
(t− s)q−1 [Tq(t +h− s)−Tq(t− s)](F̃u)(s)

∥∥∥∥ds

= I + II + III,
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where

I =
∥∥∥∥
∫ t

0

[
(t +h− s)q−1− (t− s)q−1]Tq(t +h− s)(F̃u)(s)ds

∥∥∥∥ ,

II =
∥∥∥∥
∫ t+h

t
(t +h− s)q−1Tq(t +h− s)(F̃u)(s)

∥∥∥∥ds,

III =
∥∥∥∥
∫ t

0
(t− s)q−1 [Tq(t +h− s)−Tq(t − s)](F̃u)(s)

∥∥∥∥ds.

According to Lemma 2.2, estimating the terms on the right-hand side of (2.6) yields

I =
∥∥∥∥
∫ t

0

[
(t +h− s)q−1− (t− s)q−1]Tq(t +h− s)(F̃u)(s)ds

∥∥∥∥
�

∫ t

0
|(t +h− s)q−1− (t− s)q−1|‖Tq(t− s)(F̃u)(s)‖ds

� qM
Γ(q+1)

∫ t

0
|(t +h− s)q−1− (t− s)q−1|α(s)ds

� qM
Γ(q+1)

[∫ t−ε

0
[(t− s)q−1− (t +h− s)q−1]α(s)ds+

∫ t

t−ε
(t− s)q−1α(s)ds

]
= I′ + II′,

(2.7)

where

I′ =
qM

Γ(q+1)

[∫ t−ε

0
[(t − s)q−1− (t +h− s)q−1]α(s)ds

]
,

II′ =
qM

Γ(q+1)

[∫ t

t−ε
(t − s)q−1α(s)ds

]
.

It follows from the assumption of α(s) that I′ tends to 0 as h → 0.

For II′ , using Hölder inequality, one can see that II′ tends to 0 as ε → 0.

For II , according to Lemma 2.2 again, one has

II =
∥∥∥∥
∫ t+h

t
(t +h− s)q−1Tq(t +h− s)(F̃u)(s)

∥∥∥∥ds

�
∫ t+h

t
(t +h− s)q−1‖Tq(t +h− s)(F̃u)(s)‖ds

� qM
Γ(q+1)

∫ t+h

t
(t +h− s)q−1α(s)ds.

(2.8)

Thus, one can see that II tends to 0 as h → 0.
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As to III , from Lemma 2.2, one gets

III =
∥∥∥∥
∫ t

0
(t− s)q−1 [Tq(t +h− s)−Tq(t − s)](F̃u)(s)

∥∥∥∥ds

�
∥∥∥∥
∫ t−ε

0
(t − s)q−1 [Tq(t +h− s)−Tq(t − s)](F̃u)(s)

∥∥∥∥ds

+
∥∥∥∥
∫ t

t−ε
(t − s)q−1 [Tq(t +h− s)−Tq(t − s)](F̃u)(s)

∥∥∥∥ds

�
∫ t−ε

0
(t − s)q−1

∥∥Tq(t +h− s)−Tq(t − s)(F̃u)(s)
∥∥ds

+
2qM

Γ(q+1)

∫ t

t−ε
(t− s)q−1α(s)ds

�
∫ t−ε

0
(t − s)q−1

∥∥Tq(t +h− s)−Tq(t − s)
∥∥α(s)ds

+
2qM

Γ(q+1)

∫ t

t−ε
(t− s)q−1α(s)ds

= I′′ + II′′,

(2.9)

where

I′′ =
∫ t−ε

0
(t− s)q−1

∥∥Tq(t +h− s)−Tq(t − s)
∥∥α(s)ds,

II′′ =
2qM

Γ(q+1)

∫ t

t−ε
(t− s)q−1α(s)ds.

Since A is a bounded operator, using the compactness of Tq(t) in X again implies
the continuity of t →‖Tq(t)‖ for t ∈ I , integrating with s → α(s) ∈ Lp(I,R+) , we see
that I′′ tends to 0 as h → 0.

For II′′ , from the assumption of α(s) and Hölder inequality, it is easy to see that
II′′ tends to 0 as ε → 0.

Therefore, the family of functions on [δ ,T ] ,{∫ ·

0
Tq(·− s)(F̃u)(s)ds : u ∈ Yr(δ )

}
is equicontinuous and so is {Ψu : u∈ Yr(δ )} . Applying Arzela-Ascoli’s Theorem, one
obtains that {Ψu : u ∈ Yr(δ )} is relatively compact in C([δ ,T ],X) . Thus there is a
function φ ∈Yr(δ ) such that Ψφ = φ , i.e.,

φ(t) = Sq(t)(u0− g̃(φ))+
∫ t

0
(t− s)q−1Tq(t − s)(F̃φ)(s)ds, ∀ t ∈ [δ ,T ].

Set

ψ(t) = Sq(t)(u0− g̃(φ))+
∫ t

0
(t− s)q−1Tq(t− s)(F̃φ)(s)ds, ∀ t ∈ [0,T ].

Then φ(t) = ψ(t), t ∈ [δ ,T ] . By (2.2)–(2.4) and (H5) one has ψ ∈ Yr(δ ) . Therefore,
it follows from the definitions of F̃ and g̃ that

ψ(t) = Sq(t)(u0 −g(ψ))+
∫ t

0
(t− s)q−1Tq(t− s)(Fψ)(s)ds, ∀ t ∈ [0,T ],



MILD SOLUTIONS FOR NONLOCAL SEMILINEAR FRACTIONAL EVOLUTION EQUATIONS 63

i.e., ψ is a mild solution of the equation (1.1). �

In the following, we construct a family of nonlocal Cauchy problems. For each
δ ∈ (0,T ) , define an operator Bδ on C(I,X) as follows: for every u ∈C(I,X) ,

[Bδ u](t) :=

{
u(δ ), 0 � t � δ ,

u(t), δ � t � T.
(2.10)

It is easy to check that Bδ is a bounded linear operator on C(I,X) and ‖Bδ‖ = 1.
Therefore, BδYr ⊂ Yr, ∀ r > 0. Now one can define a function gδ : C(I,X) → X and
an operator Fδ : C(I,X) → Lp(I,X) by

gδ (u) = g(Bδ u), Fδ u = FBδ u, u ∈C(I,X).

Consider the nonlocal Cauchy problem

(Qδ )

⎧⎨
⎩

dqu(t)
dtq

= Au(t)+ (Fδu)(t), t ∈ I,

u(0)+gδ(u) = u0.

One has the following result.

LEMMA 2.6. Suppose that there exists a constant r > 0 such that (H1)–(H3) and
(H5) are satisfied. Then for any δ ∈ (0,T ) , the problem (Qδ ) has at least one mild
solution in Yr .

Proof. For every δ ∈ (0,T ) , by the definitions of Bδ ,Fδ and gδ , one sees that
the conditions of Lemma 2.5 are satisfied with F and g replaced by Fδ and gδ respec-
tively. Applying Lemma 2.5 one obtains the result. �

3. Main results

Since C(I,X) is a subset of Lp(I,X) , one can regard g as a function from Lp(I,X)
to X , although in the hypothesis (H3) the function g is only needed to be defined in
C(I,X) . Indeed, in many practical examples g is also well-defined and continuous in
Lp(I,X) . Thus we introduce the following condition.

(H ′
3) The function g : Lp(I,X) → X is continuous, and maps Yr into a bounded

set.
Now we state and prove our first main result. In this theorem, in order to drop the

condition (H4) , we replace the assumption(H3) by (H ′
3) .

THEOREM 3.1. Suppose that there exists a constant r > 0 such that (H1) , (H2) ,
(H ′

3) and (H5) are satisfied. Then the nonlocal problem (1.1) has at least one mild
solution in Yr .

Proof. The proof is divided into the following four steps.
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Step 1. Let {δn : n ∈ N} be a decreasing sequence in (0,T ) such that lim
n→∞

δn = 0.

Then for any n , by Lemma 2.6, the nonlocal problem (Qδn) has a mild solution un ∈Yr ,
i.e.,

un(t) = Sq(t)(u0 −gδn(un))+
∫ t

0
(t− s)q−1Tq(t− s)(Fδnun)(s)ds, t ∈ I. (3.1)

Define a function vn ∈C(I,X) by

vn(t) =

{
un(δn), 0 � t � δn,

un(t), δn � t � T.
(3.2)

Then vn ∈Yr . By (3.1) and the definitions of gδn and Fδn , one has

un(t) = Sq(t)(u0 −g(vn))+
∫ t

0
(t− s)q−1Tq(t− s)(Fvn)(s)ds, t ∈ I. (3.3)

Let

φn(t) = Sq(t)(u0−g(vn)), ψn(t) =
∫ t

0
(t− s)q−1Tq(t− s)(Fvn)(s)ds, t ∈ I.

Then φn,ψn ∈C(I,X) and un = φn +ψn . In the following two steps we will prove that
the sequence {un} is relatively compact in C(I,X) by showing that both {ψn : n ∈ N}
and {φn : n ∈ N} are relatively compact.

Step 2. Proving that {ψn : n ∈ N} is relatively compact in C(I,X) .
For any n ∈ N , noticing that vn ∈ Yr , by (H2) one has

‖(Fvn)(t)‖ � α(t), t ∈ I.

This, together with the compactness of {Sq(t)}t>0 , implies that for all t ∈ I , the set
{ψn(t) : n ∈ N} is relatively compact in X . This follows from Theorem 2 in [46].

On the other hand, similarly to the proof of Lemma 2.5 (see (2.6)–(2.9)), one
obtains that {ψn : n ∈ N} is equicontinuous. It follows from Arzela-Ascoli’s Theorem
that {ψn : n ∈ N} is relatively compact.

Step 3. Claiming that {φn : n ∈ N} is relatively compact in C(I,X) .
It is sufficient to prove that the sequence {u0−g(vn) : n∈N} is relatively compact

in X . Since the function g : Lp(I,X) → X is continuous, one only needs to prove that
{vn : n ∈ N} is relatively compact in Lp(I,X) . Noticing that un,vn ∈ Yr , by (3.2) one
has

‖un− vn‖p � 21+ 1
p rδ

1
p

n , n ∈ N. (3.4)

We will show that for any subsequence of {un : n ∈ N} denoted by {ũn : n ∈ N} , there
exist a subsequence {zn : n ∈ N} ⊂ {ũn : n ∈ N} and a function z∞ ∈ Lp(I,X) such that

lim
n→∞

‖zn − z∞‖p = 0. (3.5)

Then the claim follows from (3.4).
Let {εn : n ∈ N} be a decreasing sequence in (0,T ) such that lim

n→∞
εn = 0. Define

a family of functions wn : [ε1,T ] → X by wn(t) = ũn(t), t ∈ [ε1,T ] .
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Note that {vn : n ∈ N} ⊂ Yr , by assumption (H5) one has

‖u0−g(vn)‖ � r/M, n ∈ N.

Then it follows from the compactness and norm continuity of {Sq(t)}t>0 that for any
t ∈ [ε1,T ] , the set

{Sq(t)(u0−g(vn)) : n ∈ N}
is relatively compact in X and that the family of functions on [ε1,T ] ,

{Sq(·)(u0−g(vn)) : n ∈ N}
is equicontinuous. Applying Arzela-Ascoli’s Theorem again one obtains that

{Sq(·)(u0−g(vn)) : n ∈ N}
is relatively compact in C([ε1,T ],X) .

On the other hand, as is proved in step 2, {ψn : n ∈ N} is relatively compact in
C(I,X) . Thus {wn : n ∈ N} is relatively compact in C([ε1,T ],X) . Therefore, there
exists a subsequence of {ũn : n ∈ N} denoted by {ũ1

n : n ∈ N} which is a Cauchy
sequence in C([ε1,T ],X) .

Similarly, we can select a subsequence of {ũ1
n : n ∈ N} denoted by {ũ2

n : n ∈ N}
which is a Cauchy sequence in C([ε2,T ],X) . Repeating the above approach and using
a diagonal argument, we get a subsequence of {ũn : n ∈ N} denoted by {zn : n ∈ N} ,
such that for every t ∈ (0,T ] , {zn(t) : n ∈ N} is a Cauchy sequence in X . Define the
function z∞ by

z∞(t) =

{
0, t = 0,

lim
n→∞

zn(t), 0 < t � T.
(3.6)

Then z∞ is strongly measurable and(∫ T

0
‖z∞(t)‖dt

) 1
p

� T
1
p r < ∞.

This shows that z∞ ∈ Lp(I,X) . Now by Lebesgue’s dominated convergence theorem
and (3.6) one gets (3.5).

Step 4. In steps 2 and 3, we proved that both {φn : n ∈ N} and {ψn : n ∈ N} are
relatively compact in C(I,X) . This fact implies the relatively compactness of {un : n ∈
N} in C(I,X) . Therefore, there exist a subsequence of {un : n ∈ N} denoted again by
{un : n ∈ N} and a function u∞ ∈C(I,X) such that

lim
n→∞

‖un(t)−u∞(t)‖∞ = 0. (3.7)

Obviously, u∞ ∈ Yr .
We claim that u∞ is a mild solution of the equation (1.1). In fact, by (3.2) one has

‖vn−u∞‖∞ = max
t∈I

‖vn(t)−u∞(t)‖
� max

t∈[δn,T ]
‖un(t)−u∞(t)‖+ max

t∈[0,δn]
‖un(δn)−u∞(t)‖

� ‖un−u∞‖∞ +‖un(δn)−u∞(δn)‖+ max
t∈[0,δn]

‖u∞(δn)−u∞(t)‖

� 2‖un−u∞‖∞ + max
t∈[0,δn]

‖u∞(δn)−u∞(t)‖.

(3.8)
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Now it follows from (3.7), (3.8) and the uniformly continuity of u∞ on the interval I
that

lim
n→∞

‖vn−u∞‖∞ = 0.

Therefore, taking limits in (3.3) one has

u∞(t) = Sq(t)(u0−g(u∞))+
∫ t

0
(t− s)q−1Tq(t − s)(Fu∞)(s)ds, t ∈ I,

i.e., u∞ is a mild solution of the equation (1.2). �

Next, we consider the case that the function g is defined on C(I,X) rather than
Lp(I,X) . We make the following assumption.

(H6) The following assertion holds uniformly for all φ ∈ Yr :

lim
ε→0

‖g(φ)−g(φε)‖ = 0, (3.9)

where

φε (t) =

{
φ(ε), 0 � t � ε,

φ(t), ε � t � T.

This assumption is reasonable and natural. (3.9) means that the function g depends
mainly on the value of φ on the interval [ε,T ] when ε is small enough. Obviously, it
is satisfied for the function g in (1.3). And under suitable conditions (for example, the
condition (3.18) in Corollary 3.2 below), it holds true for the function g in (1.4). We
also remark that the condition (H ′

3) does not imply (H6) .
The following theorem is our second main result.

THEOREM 3.2. Suppose that there exists a constant r > 0 such that (H1)–(H3) ,
(H5) and (H6) are satisfied. Then the nonlocal problem (1.1) has at least one mild
solution in Yr .

Proof. We divide the proof into 4 steps. Steps 1 and 2 are the same as in the proof
of Theorem 3.1. So we begin with step 3.

Step 3. Proving that {φn : n ∈ N} is relatively compact in C(I,X) .
It suffices to show that the sequence {g(vn) : n ∈ N} is relatively compact in X .
Similarly to step 3 in the proof of Theorem3.1, for any subsequence {ũn : n∈N}⊂

{un : n ∈ N} , there exist a subsequence {zn : n ∈ N} ⊂ {ũn : n ∈ N} and a continuous
function z∞ : (0,T ] → X such that for every εk ,

lim
n→∞

max
t∈[εk,T ]

‖zn(t)− z∞(t)‖ = 0. (3.10)

Now we prove that {g(zn) : n ∈ N} is a Cauchy sequence in X . In fact, by assumption
(H6) , for any ε > 0, there exists a constant δ > 0, such that

‖g(φ)−g(ψ)‖< ε/4, (3.11)

for any φ ,ψ ∈C(I,X) with φ(t) = ψ(t) , δ � t � T. Let

ϕ(t) =

{
z∞(δ ), 0 � t � δ ,

z∞(t), δ < t � T.
(3.12)
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Then ϕ ∈C(I,X) and by (3.10) one has

lim
n→∞

max
t∈[δ ,T ]

‖zn(t)−ϕ(t)‖= 0. (3.13)

This implies that
lim
n→∞

‖Bδ zn −ϕ‖∞ = 0. (3.14)

By assumption (H3) there exists a natural number N such that

‖g(Bδ zn)−g(ϕ)‖ < ε/4, ∀n > N. (3.15)

Therefore, for any m,n > N ,

‖g(zm)−g(zn)‖ �‖g(zm)−g(Bδ zm)‖+‖g(Bδzm)−g(ϕ)‖
+‖g(ϕ)−g(Bδzn)‖+‖g(Bδzn)−g(zn)‖ < ε.

This shows that {g(zn) : n∈N} is a Cauchy sequence in X . Thus the sequence {g(un) :
n ∈ N} is relatively compact in X . On the other hand, by (3.2) and assumption (H6)
one has

lim
n→∞

‖g(un)−g(vn)‖ = 0. (3.16)

Therefore, the sequence {g(vn) : n ∈ N} is relatively compact in X .

Step 4. This step is the same as in the proof of Theorem 3.1. The proof is com-
pleted. �

Now we consider the nonlocal Cauchy problem (1.2). Firstly, we introduce the
following condition.

(H ′
2) The function f : I×X → X satisfies the Carathéodory condition, i.e., f (·,x)

is measurable for each x ∈ X and f (t, ·) is continuous for any t ∈ I . Moreover, there
exists a function α ∈ Lp(I,R+) such that for all x ∈ Br and a.e. t ∈ I .

‖ f (t,x)‖ � α(t).

As a consequence of Theorems 3.1 and 3.2, one has the following result for the equation
(1.2).

COROLLARY 3.1. Assume that there exists a constant r > 0 such that (H1) ,
(H ′

2) , (H3) , (H5) and (H6) hold or (H1) , (H ′
2) , (H ′

3) and (H5) are satisfied. Then
the nonlocal problem (P) has at least one mild solution in Yr .

Proof. Consider the operator

(Fu)(t) = f (t,u(t)).

One sees that condition (H ′
2) implies (H2) . Therefore, by Theorems 3.1 and 3.2 one

obtains the result. �

Corollary 3.1 implies the following corollaries immediately.



68 JUNFEI CAO

COROLLARY 3.2. Consider the nonlocal Cauchy problem (1.4). Assume (H1)
holds. Suppose that the functions f and h satisfy the Carathéodory condition and
there exist a function α ∈ Lp(I,R+) and a nondecreasing function ϒ : R+ → R+ such
that

‖ f (t,u)‖ � α(t)ϒ(‖u‖), a.e. t ∈ I, ∀ x ∈ X , (3.17)

‖h(t,u)‖ � α(t)ϒ(‖u‖), a.e. t ∈ I, ∀ x ∈ X , (3.18)

Ω = lim
r→∞

ϒ(r)
r

<
1

qM
Γ(q+1)

(
p−1
pq−1

) p−1
p

T q− 1
p

(∫ T
0 α p(t)ds

) 1
p

. (3.19)

Then (1.4) has at least one mild solution in C(I,X) .

COROLLARY 3.3. Consider the following nonlocal Cauchy problem⎧⎪⎪⎨
⎪⎪⎩

dqu(t)
dtq

= Au(t)+ f (t,u(t)), t ∈ I,

u(0)+
p

∑
i=1

ciu(ti) = u0,
(3.20)

where 0 < t1 < t2 < · · · < tp � T , c1,c2, · · · ,cp are given constants.
Assume (H1) holds. Suppose that the function f satisfies the Carathéodory condi-

tion and there exist a function α ∈ Lp(I,R+) and a nondecreasing function ϒ : R+ →
R+ such that (3.17) and (3.19) hold. Moreover,

C :=
p

∑
i=1

|ci| < 1/M.

Then (3.20) has at least one mild solution in C(I,X) .

4. Applications

In this section, we give three examples to illustrate the practical usefulness of the
results that we establish in the paper.

Consider the following nonlocal problem of fractional differential equation

∂ q
t u(t,x) = ∂ 2

x u(t,x)+ (Fu)(t), t ∈ [0,1], x ∈ [0,π ],
u(t,0) = u(t,π) = 0, t ∈ [0,1],
u(0,x)+g(u) = u0(x)

(4.1)

where ∂ q
t is a Riemann-Liouville fractional partial derivative of order 0 < q < 1.

Let u(s,x) = ϕ(s,x), ϕ(·,x) ∈ C([0,1],R), ϕ(s, ·) ∈ L2([0,π ],R), s ∈ [0,1], x ∈
[0,π ] . Denote X = L2([0,π ],R) and define A : D(A) ⊂ X → X given by A = ∂ 2

∂x2 with
the domain

D(A) =
{

u(·) ∈ X : u′′ ∈ X ,u′ ∈ X is absolutely continuous on [0,π ],u(0) = u(π) = 0
}
.
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It is well known that A is self-adjoint with compact resolvent and is the infinitesi-
mal generator of an analytic, strongly continuous, compact and self-adjoint semigroup
{T (t)}t�0 satisfying

‖T (t)‖ � e−t , for t � 0.

Furthermore, A has a discrete spectrum with eigenvalues of the form −n2 , n ∈ N . In
fact, let u ∈ D(A) and λ ∈ R , such that Au = −u′′ = λu , that is,

u′′ + λu = 0. (4.2)

Thus one has 〈Au,u〉= 〈λu,u〉 , that is 〈−u′′,u〉= ‖u′‖2
L2([0,π ],R) = λ‖u‖2

L2([0,π ],R) . The
solutions of (4.2) have the form

u(x) = Ccos(
√

λx)+Dsin(
√

λx).

From u(0) = u(π) , it follows that C = 0 and
√

λ = n , n ∈ N . Put λn = n2 , the
solutions of equation (4.2) are

un(x) = Dsin(
√

λnx), n ∈ N.

According to 〈un,um〉 = 0, for n �= m and 〈un,un〉 = 1, one has D =
√

2 and

un(x) =
√

2sin(
√

λnx).

For u ∈ D(A) , there exists a sequence of reals (αn) such that

u(x) = ∑
n∈N

αnun(x),

∑
n∈N

α2
n < +∞, ∑

n∈N

λ 2
n α2

n < +∞.

In addition, {un : n ∈ N} is an orthogonal basis for X ,

T (t)u = Σ∞
n=1e

−n2t〈u,un〉un, for all u ∈ X and every t > 0.

From these expressions it follows that {T (t)}t�0 is uniformly bounded compact semi-
group, so that R(λ ,A) = (λ −A)−1 is compact operator for all λ ∈ ρ(A) .

EXAMPLE 4.1. Let 0 < t1 < t2 < · · · < tn � 1 and c0 , ci (i = 1,2, · · · ,n) be

constants satisfying
n
∑
i=1

|ci| � 1. Define

(Fu)(t) = c0 sin(u(t,x)), and g(u(t,x)) =
n

∑
i=1

ciu(ti,x).

for each t ∈ [0,1] and u ∈C([0,1],R) . Let q = 1
2 , note that (Fu)(t) satisfy (H2) and

(H ′
2) with α(t) = c0 and MT = c0 , g(u) satisfy (H3) , (H ′

3) and (H6) . Let

r =
‖u0‖+ c0√

3π

1−
n
∑
i=1

|ci|
.
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Then from Theorem 3.1 and Theorem 3.2, it follows that Eq. (4.1) has at least one mild
solution in Yr .

EXAMPLE 4.2. Let μ(t) ∈C([0,1],R) satisfying η = max
t∈[0,1]

μ(t) . Define

f (t,u(t,x)) = βe−t sin( 3
√

u(t,x)), and g(u(t,x)) =
∫ 1

0
μ(s) log(1+ 3

√
|u(s,x)|)ds.

for each t ∈ [0,1] and u ∈ C([0,1],R) . Let q = 1
2 , note that f (t,u(t,x)) satisfy the

Carathéodory condition and (3.17), (3.18) and (3.19) with

α(t) = max{β ,γ}, ϒ(‖u‖) = 1+ 3
√
‖u‖.

Then from Corollary 3.2, it follows that Eq. (4.1) with nonlocal initial condition (1.4)
has at least one mild solution in C([0,1],X) .

EXAMPLE 4.3. Let 0 < t1 < t2 < · · · < tn � 1 and ci , i = 1,2, · · · ,n be constants

satisfying
n
∑
i=1

|ci| < 1. Define

f (t,u(t,x)) = βe−t sin( 3
√

u(t,x)), and g(u(t,x)) =
n

∑
i=1

ciu(tti ,x).

for each t ∈ [0,1] and u ∈C([0,1],R) . Let q = 1
2 . Note that f (t,u(t,x)) satisfy (H2)

and (H ′
2) with α(t) = βe−t and MT = β , g(u) satisfy (H3) , (H ′

3) and (H6) . Moreover
f satisfies the Carathéodory condition and (3.17), (3.19) with

α(t) = βe−t , ϒ(‖u‖) = 3
√
‖u‖.

Let

r =
‖u0‖+ β√

3π

1−
n
∑
i=1

|ci|
.

Then from Corollary 3.1, it follows that Eq. (4.1) with nonlocal initial condition (1.3)
has at least one mild solution in Yr , and from Corollary 3.3, it follows that Eq. (4.1)
with nonlocal initial condition (1.3) has at least one mild solution in C([0,1],X) .
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