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POSITIVE SOLUTIONS OF AN INTEGRODIFFERENTIAL MULTI–POINT

INITIAL VALUE PROBLEM WITH FRACTIONAL ORDER

R. ATMANIA

Abstract. The aim of this paper is to obtain existence results for a nonlinear integrodifferential
multi-point initial value problem of fractional order by using fractional calculus and fixed point
theory. Then, we study the positivity of the obtained solution.

1. Introduction

Fractional differential equations play an important role in describing many phe-
nomena and processes with memory and hereditary properties in science and engineer-
ing such as in viscoelasticity, electrochemistry, control. This subject is gaining much
attention caused by development of the theory of fractional calculus itself and its dif-
ferent applications. For more details about this theory, see the books by A. Kilbas et
al. [10] and by Podlubny [12].

Recently, many authors investigated the existence of solutions for fractional differ-
ential problems in Banach spaces involving Riemann-Liouville or Caputo derivatives;
subject to initial, nonlocal or boundary conditions, using fixed point concept sometimes
combined with other concepts such as cone theoretic techniques [9, 11], contraction
mapping principle [1, 2, 14], technique of measures of noncompactness [4, 11]. For
examples and details, see [1]–[14] and the references therein.

This paper is concerned with the following nonlinear integrodifferential equation
of fractional order 1 < α < 2,

cDα
0+x(t) = F

⎛
⎝t,x(t),x′(t),

t∫
0

h
(
t,s,x(s) ,x′ (s)

)
ds

⎞
⎠ , t ∈ [0,T ] ; (1)

subject to multi-point initial conditions:

x(0)+ λx(η) = 0; x′ (0)+ βx′ (η) = 0; (2)

where cDα
0+ denotes the Caputo fractional derivative of order α, t ∈ [0,T ] ; η is fixed

in [0,T ] , λ and β are real constants, F : [0,T ]×R
3 → R and h : Δ×R

2 → R where
Δ = {(t,s) : 0 � s � t � T} .
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In [6], Byszewski initiated the work on nonlocal initial value problems. He proved
the existence and uniqueness of mild, strong and classical solution of first order initial
value problem with nonlocal condition of the following form

x(0)+g(t1, ...,tp,x(.)) = x0. (3)

The symbol g(t1, ...,tp,x(.)) means that in the place of “·” we can substitute only
elements of the set

{
t1, ...,tp

} ⊂ (0,T ] . The nonlocal condition can give better results
than the usual initial condition given alone x(0) = x0 because it has more information
from the beginning of the desired solution. For its importance in different fields we
refer to [6] and the references therein.

Multi-point boundary value problems, initiated by IL’in and Moiseev [8], have
been considered for the fractionnal order in Banach spaces by many authors [1, 3, 13].
Including for example the work of B. Ahmad [1] where he obtained existence results
for the multi-point boundary value problem of nonlinear fractional differential equation

{ cDq
0+x(t) = f (t,x(t)) , 0 < t < 1, 1 < q � 2,

α1x(0)−β1x′ (0) = γ1x(η1) ; α2x(1)+ β2x′ (1) = γ2x(η2) ;

where f : [0,1]×X →X , X is a Banach space. While for the initial value problems, the
researchers [2, 7, 14] used nonlocal condition under a more general form x(0)+g(x) =
x0 where g is a given function. For instance, J. Wu and Y. Liu established in [14]
existence and uniqueness of solutions for fractional integrodifferential problem with
nonlocal condition

⎧⎨
⎩

cDq
0+x(t) = f

(
t,x(t),

t∫
0

k (t,s,x(s))ds

)
, t ∈ [0,1] , 0 < q � 1,

x(0)+g(x) = x0;

where f : [0,1]×X ×X → X , g : C (I,X) → X and k : Δ1 ×X → X such that Δ1 =
{(t,s) : 0 � s � t � 1} , X is a Banach space.

In the present paper, we use a multi-point condition for an initial value problem
of fractional integrodifferential equation which apparently has not yet been addressed
by other authors. The multi-point conditions (2) is a special case of (3). Remark that
if η = T we are concerned by a boundary problem. If moreover, λ = β = −1, the
problem is periodic.

This paper is organized as follows. In Section 2, we present necessary definitions
and notations of fractional calculus with some basic properties. In Section 3, we es-
tablish two existence results for fractional integrodifferential equation (1) subject to
two-point initial conditions (2), respectively based on Banach fixed point theorem and
Krasnoselskii fixed point theorem. Then, we investigate the positivity of the obtained
solutions. Finally, we give an example that illustrates the first result.
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2. Preliminaries

First, we will give necessary definitions and properties from fractional calculus.

DEFINITION 1. [10] The Riemann-Liouville fractional integral operator of order
α > 0 for a given function f on [0,T ] is defined by

Iα
0+ f (t) =

1
Γ(α)

t∫
0

(t− s)α−1 f (s)ds; for t > 0

Γ(α) is the classical Euler’s gamma function.

DEFINITION 2. [10] The Caputo fractional derivative of order α > 0 for a given
function f (t) on [0,T ] is defined by

cDα
0+ f (t) = Dα

0+

[
f (t)−

n−1

∑
k=0

f (k) (0)
k!

tk
]

(4)

where n = [α]+1, [α] means the integer part of α and Dα
0+ is the Riemann-Liouville

fractional derivative operator of order α > 0 defined by

Dα
0+ f (t) =

1
Γ(n−α)

dn

dtn

t∫
0

(t− s)n−1−α f (s)ds = DnIn−α
0+ f (t) , for t > 0.

Note that fractional integrals and derivatives exist provided that the integral parts
in each of their definitions are finite for “sufficiently good” functions. For example
the fractional integral Iα

0+ f (t) exists and is bounded for f (t) ∈ Lp (0,T ) , 1 � p � ∞
or for tγ f (t) ∈ C [0,T ] with 0 � γ < 1. The Caputo fractional derivative cDα

0+ f (t)
exists for f (t) belonging to the space Cn [0,T ] and if f (t) is in the space ACn [0,T ]
of functions which have continuous derivatives up to order (n−1) on [0,T ] such that
f (n−1) ∈ AC [0,T ] , the space of absolutely continuous functions, then cDα

0+ f (t) exists
and can be defined by

cDα
0+ f (t) =

1
Γ(n−α)

t∫
0

(t− s)n−1−α f (n) (s)ds = In−α
0+ Dn f (t) , for t > 0.

More details on fractional calculus can be found in [10, 12].
We derive these useful lemmas directly from results in [10].

LEMMA 3. For f ∈ Cn−1 [0,T ] with a Caputo fractional derivative of order α
that belongs to C [0,T ]

Iαc
0+ Dα

0+ f (t) = f (t)+ c0 + c1t + ....+ cn−1t
n−1; ci ∈ R, i = 0, ...n−1, (5)
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LEMMA 4. Let f ∈ Cn [0,T ] then cDα
0+Iα

0+ f (t) = f (t) . Also, let f ∈ Cn [0,T ] ,
then the Caputo fractional derivatives cDα

0+ f (t) is continuous on [0,T ] .
Moreover, DmIα

0+ f (t)= Iα−m
0+ f (t) with m∈N, cD0

0+ f (t)= f (t) , I0
0+ f (t)= f (t)

and cDn
0+ f (t) = f (n) (t) .

Our results are based on the well known Banach contraction theorem and the
following Krasnoselskii theorem.

THEOREM 5. (Krasnoselskii theorem) Let M be a closed, bounded, convex and
nonempty subset of a Banach space E . Let A,B be operators such that

(i) Ax+By ∈ M whenever x;y ∈ M; (ii) A is compact and continuous; (iii) B is
a contraction mapping.

Then, there exists z ∈ M such that z = Az+Bz.

C1 ([0,T ] ,R) denotes the Banach space of all continuously differentiable func-
tions from [0,T ] into R , endowed with the norm ‖x‖1 = ‖x‖+ ‖x′‖ where ‖x‖ =
sup

t∈[0,T ]
|x(t)| .

Let us give the following definition.

DEFINITION 6. A function x ∈ C1 ([0,T ] ,R) with its α− fractional derivative
existing on [0,T ] for 1 < α < 2, is said to be a solution of (1)–(2) if x satisfies the
equation (1) for t ∈ [0,T ] and the multi-point conditions (2).

3. Main results

We set the following assumptions:
(A1) F : [0,T ]×R

3 → R is continuous for each t ∈ [0,T ] , strongly measurable
for all x,y,z ∈ R .

(A2) There exist constants M1,M2 > 0, such that for each t ∈ [0,T ] and all
xi,yi,zi ∈ R, i = 1,2 we have

|F(t,x1,y1,z1)−F(t,x2,y2,z2)| � M1 [|x1 − x2|+ |y1− y2|+ |z1− z2|] ;

and M2 = sup
t∈[0,T ]

∣∣∣∣F
(

t,0,0,
t∫
0

h(t,s,0,0)ds

)∣∣∣∣ .
(A3) h : Δ×R

2 → R is continuous for (t,s) ∈ Δ and there exists constant L > 0,
such that for each (t,s) ∈ Δ and all xi,yi ∈ R , i = 1,2 we have

|h(t,s,x1,y1)−h(t,s,x2,y2|) � L[|x1− x2|+ |y1− y2|].
Let us define for each t ∈ [0,T ] , x ∈C1 ([0,T ] ,R) the operator F by

F(t,x(t)) = F

⎛
⎝t,x(t) ,x′ (t) ,

t∫
0

h
(
t,s,x(s) ,x′ (s)

)
ds

⎞
⎠

and note that the fractional integrals Iα
0+F(t,x(t)) and Iα−1

0+ F(t,x(t)) exist with 1 <
α < 2.
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LEMMA 7. Let assumptions (A1)–(A3) be satisfied. Then for each t ∈ [0,T ] and
all x1,x2 ∈C1 ([0,T ] ,R) there exists a positive constant Ω such that∣∣ F(t,x1 (t))−F(t,x2 (t))

∣∣ � Ω‖x1− x2‖1 . (6)

Proof. By using (A3) we get for each t ∈ [0,T ] and all x1,x2 ∈C1 ([0,T ] ,R)∣∣∣∣∣∣
t∫

0

[
h
(
t,s,x1 (s) ,x′1 (s)

)−h
(
t,s,x2 (s) ,x′2 (s)

)]
ds

∣∣∣∣∣∣
�

t∫
0

L[|x1 (s)− x2 (s)|+ ∣∣x′1 (s)− x′2 (s)
∣∣]ds

� L

(
sup

t∈[0,T ]
|x1 (t)− x2 (t)|+ sup

t∈[0,T ]

∣∣x′1 (t)− x′2 (t)
∣∣)t

to use in ∣∣F(t,x1 (t))−F(t,x2 (t))
∣∣

� M1
(|x1 (t)− x2 (t)|+ ∣∣x′1 (t)− x′2 (t)

∣∣)
+M1L

(
sup

t∈[0,T ]
|x1 (t)− x2 (t)|+ sup

t∈[0,T ]

∣∣x′1 (t)− x′2 (t)
∣∣) t

� Ω‖x1 − x2‖1 .

where Ω := M1 [1+LT ] . �
Now, we give the integral equation satisfied by the solution of the problem (1)–(2).

LEMMA 8. Assume that (A1) is satisfied and λ �= −1 , β �= −1, 0 < η < T .
Then, x ∈C1 ([0,T ] ,R) is a solution of the problem (1)–(2) if and only if it satisfies the
following integral equation, for each t ∈ [0,T ]

x(t) =
1

Γ(α)

η∫
0

Λλ ,β ,η (t,s)F (s,x(s))ds+
1

Γ(α)

t∫
0

(t− s)α−1 F (s,x(s))ds, (7)

where

Λλ ,β ,η (t,s) =
[ −λ
(λ +1)

(η − s)α−1 +
(

λ
(λ +1)

η − t

)
β (α −1)
(β +1)

(η − s)α−2
]
. (8)

Proof. First we prove the necessity. By applying Iα
0+ to (1) and from (5) we get

for each t ∈ [0,T ]

x(t)+ c0 + c1t = Iα
0+F (t,x(t)) =

1
Γ(α)

t∫
0

(t− s)α−1 F (s,x(s))ds. (9)
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Putting alternately t = 0 and t = η in (9), we obtain from condition (2)

c0 = λx(η) = λ
1

Γ(α)

η∫
0

(η − s)α−1 F (s,x(s))ds−λc0−λc1η . (10)

In addition, the differentiation of (9) gives

x′ (t)+ c1 = Iα−1
0+ F (t,x(t)) =

α −1
Γ(α)

t∫
0

(t− s)α−2 F (s,x(s))ds, (11)

likewise, from (2) we get c1 = βx′ (η) . Also, by putting t = η in (11) we have

x′ (η) =
α −1
Γ(α)

η∫
0

(η − s)α−2 F (s,x(s))ds− c1, (12)

it follows

c1 =
β (α −1)

(β +1)Γ(α)

η∫
0

(η − s)α−2 F (s,x(s))ds. (13)

Substituting (13) in (10) gives

c0 =
λ

(λ +1)Γ(α)

η∫
0

[
(η − s)α−1−η

β (α −1)
(β +1)

(η − s)α−2
]
F (s,x(s))ds. (14)

Consequently, replacing the constant c0 and c1 respectively by (14) and (13) in the
equation (9) we get

x(t) =
1

Γ(α)

η∫
0

[ −λ
λ +1

(η − s)α−1 +
β (α −1)
(β +1)

(
λ

λ +1
η − t

)
(η − s)α−2

]

×F (s,x(s))ds+
1

Γ(α)

t∫
0

(t− s)α−1 F (s,x(s))ds.

According to the notation (8), we remark that x(t) satisfies (7).
For t = 0 we have from (2)

x(0) = −λx(η)

= −λ

⎡
⎣ 1

Γ(α)

η∫
0

Λλ ,β ,η (t,s)F (s,x(s))ds+
1

Γ(α)

η∫
0

(η − s)α−1 F (s,x(s))ds

⎤
⎦
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= −λ
1

Γ(α)

η∫
0

[
(η − s)α−1

(λ +1)
−η

β (α −1)
(λ +1)(β +1)

(η − s)α−2

]
F (s,x(s))ds

=
1

Γ(α)

η∫
0

[ −λ
(λ +1)

(η − s)α−1 +
λ

(λ +1)
η

β (α −1)
(β +1)

(η − s)α−2
]
F (s,x(s))ds

=
1

Γ(α)

η∫
0

Λλ ,β ,η (0,s)F (s,x(s))ds;

which implies that for t = 0 the integral equation (7) is satisfied by solution of problem
(1)–(2) .

On the other sense, remark that x which satisfies (7) belongs to C1 ([0,T ] ,R)
under (A1), in fact

x′ (t) =
−(α −1)

Γ(α)

η∫
0

β
(β +1)

(η − s)α−2 F (s,x(s))ds (15)

+
α −1
Γ(α)

t∫
0

(t− s)α−2 F (s,x(s))ds.

Also, its α -fractional derivative exists on (0,T ] for 1 < α < 2. Indeed, by applying
cDα

0+ to (7) we get

cDα
0+x(t) =

1
Γ(2−α)

t∫
0

(t− s)1−α ∂ 2

∂ s2

⎛
⎝ 1

Γ(α)

η∫
0

Λλ ,β ,η (s,r)F (r,x(r))dr

⎞
⎠ds

+cDα
0+Iα

0+F (t,x(t)) = F (t,x(t))

since
∂ 2

∂ s2

(
1

Γ(α)

η∫
0
Λλ ,β ,η (s,r)F (r,x(r))dr

)
= 0. To check the first initial condition,

we set t = 0 in (7) and obtain

x(0) =
1

Γ(α)

η∫
0

Λλ ,β ,η (0,s)F (s,x(s))ds

=
1

Γ(α)

η∫
0

[ −λ
(λ+1)

(η−s)α−1 +
(

λ
(λ+1)

η
)

β (α−1)
(β+1)

(η−s)α−2
]
F (s,x(s))ds.
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Then we set t = η in (7) and get

x(η) =
1

Γ(α)

η∫
0

[ −λ
λ +1

(η − s)α−1 +
β (α −1)
(β +1)

(
λ

λ +1
η −η

)
(η − s)α−2

]

×F (s,x(s))ds+
1

Γ(α)

η∫
0

(η − s)α−1 F (s,x(s))ds

=
1

Γ(α)

η∫
0

[
1

λ +1
(η − s)α−1 +

β (α −1)
(β +1)

(−η)
λ +1

(η − s)α−2
]
F (s,x(s))ds.

It follows by simple calculus that x(0) =−λx(η) . For the second initial condition, we
put t = 0 then t = η in (15) and obtain respectively

x′ (0) =
1

Γ(α)

η∫
0

[
−β (α −1)

(β +1)
(η − s)α−2

]
F (s,x(s))ds,

x′ (η) =
1

Γ(α)

η∫
0

[
−β (α −1)

(β +1)
(η − s)α−2

]
F (s,x(s))ds

+
α −1
Γ(α)

η∫
0

(η − s)α−2 F (s,x(s))ds

=
1

Γ(α)

η∫
0

(α −1)
β +1

(η − s)α−2 F (s,x(s))ds.

This gives x′ (0)=−βx′ (η) which leads to the second initial condition. This completes
the proof. �

THEOREM 9. The function Λλ ,β ,η (t,s) defined by (8) satisfies the following prop-
erties: Λλ ,β ,η (t,s) is continuous for each (t,s) ∈ [0,T ]× [0,η) and there exist two
positive constants Λ1 , Λ2 such that

sup
t∈(0,T )

η∫
0

∣∣Λλ ,β ,η (t,s)
∣∣ds = Λ1 and sup

t∈(0,T)

η∫
0

∣∣∣∣∂Λλ ,β ,η (t,s)
∂ t

∣∣∣∣ds = Λ2.

Proof. It’s clear that Λλ ,β ,η (t,s) is a continuous function for each (t,s)∈ [0,T ]×
[0,η) and we have

η∫
0

∣∣Λλ ,β ,η (t,s)
∣∣ds �

∣∣∣∣ −λ
(λ +1)

∣∣∣∣
η∫
0

(η − s)α−1 ds

+
∣∣∣∣
(

λ
(λ +1)

η − t

)
β (α −1)
(β +1)

∣∣∣∣
η∫
0

(η − s)α−2 ds
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�
∣∣∣∣ λ
λ +1

∣∣∣∣ ηα

α
+
(∣∣∣∣ λ

λ +1

∣∣∣∣η +T

)∣∣∣∣ β
β +1

∣∣∣∣ηα−1.

Thus, Λ1 :=
∣∣∣∣ λ
λ +1

∣∣∣∣ ηα

α
+
(∣∣∣∣ λ

λ +1

∣∣∣∣η +T

)∣∣∣∣ β
β +1

∣∣∣∣ηα−1.

By differentiation of Λη (t,s) we have

∂Λλ ,β ,η (t,s)
∂ t

= −β (α −1)
(β +1)

(η − s)α−2 ,

and it’s easy to get

η∫
0

∣∣∣∣∂Λλ ,β ,η (t,s)
∂ t

∣∣∣∣ds =
η∫
0

∣∣∣∣β (α −1)
β +1

∣∣∣∣(η − s)α−2 ds �
∣∣∣∣ β
β +1

∣∣∣∣ηα−1.

Then Λ2 :=
∣∣∣∣ β
β +1

∣∣∣∣ηα−1 . This completes the proof. �

Now, give the existence and uniqueness result obtained via the Banach fixed point
theorem.

THEOREM 10. Assume that (A1)–(A3) are satisfied. If

Ω
Γ(α)

[
Λ1 + Λ2 +

Tα

α
+Tα−1

]
< 1; (16)

then the initial value problem (1)–(2) has a unique solution in C1 ([0,T ] ,R) .

Proof. First, define the operator Φ by

Φx(t) =
1

Γ(α)

η∫
0

Λλ ,β ,η (t,s)F (s,x(s))ds+
1

Γ(α)

t∫
0

(t− s)α−1 F (s,x(s))ds (17)

where Λη (t,s) is defined by (8). Under (A1) Φ maps clearly C1 ([0,T ] ,R) into itself.
We have to show that Φ is a contraction. Let x,y ∈ C1 ([0,T ] ,R) , then for each t ∈
[0,T ] we have by virtue of (6)

|Φx(t)−Φy(t) | � 1
Γ(α)

η∫
0

∣∣Λλ ,β ,η (t,s)
∣∣ ∣∣F (s,x(s))−F (s,y(s))

∣∣ds

+
1

Γ(α)

t∫
0

(t− s)α−1 ∣∣F (s,x(s))−F (s,y(s))
∣∣ds
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� Ω‖x− y‖1

Γ(α)

⎡
⎣ η∫

0

∣∣Λλ ,β ,η (t,s)
∣∣ds+

t∫
0

(t − s)α−1 ds

⎤
⎦

� Ω
Γ(α)

[
Λ1 +

T α

α

]
‖x− y‖1 .

After differentiation of (Φx(t)−Φy(t)) we get for each t ∈ [0,T ]

|(Φx(t) − Φy(t))′|

� 1
Γ(α)

η∫
0

∣∣∣∣∂Λη (t,s)
∂ t

∣∣∣∣ ∣∣F (s,x(s))−F (s,y(s))
∣∣ds

+
α −1
Γ(α)

t∫
0

(t − s)α−2 ∣∣F (s,x(s))−F (s,y(s))
∣∣ds

� Ω‖x− y‖1

Γ(α)

⎡
⎣ η∫

0

∣∣∣∣∂Λλ ,β ,η (t,s)
∂ t

∣∣∣∣ds+(α −1)
t∫
0

(t − s)α−2 ds

⎤
⎦ .

In view of theorem 9, we have

∣∣(Φx(t)−Φy(t))′
∣∣ � Ω

Γ(α)
[
Λ2 +Tα−1]‖x− y‖1 .

Thus

‖Φx−Φy‖1 � Ω
Γ(α)

[
Λ1 + Λ2 +

T α

α
+Tα−1

]
‖x− y‖1 .

Consequently, Φ is a contraction together with the condition (16). We conclude
that Φ has unique fixed point in C1 ([0,T ] ,R) which is the unique solution of the
problem (1)–(2). The proof is complete. �

In the second existence result based on Krasnoselskii theorem, we reduce the con-
dition (16) but we lose the uniqueness of the solution.

THEOREM 11. Assume that (A1)–(A3) are satisfied. If

Ω
Γ(α)

[Λ1 + Λ2] < 1, (18)

then the problem (1)–(2) has at least one solution in C1 ([0,T ] ,R) .

Proof. Let us define the operators Φi :C1 ([0,T ] ,R)→C1 ([0,T ] ,R) , i = 1,2 by

Φ1x(t) =
1

Γ(α)

η∫
0

Λλ ,β ,η (t,s)F (s,x(s))ds (19)
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and

Φ2x(t) =
1

Γ(α)

t∫
0

(t− s)α−1 F (s,x(s))ds. (20)

Set Mθ =
{
x ∈C1 ([0,T ] ,R) : ‖x‖1 � θ

}
, a bounded, closed and convex subset of

C1 ([0,T ] ,R) , where θ is some positive constant such that

Kθ
Γ(α)

[
Λ1 + Λ2 +

T α

α
+Tα−1

]
� θ ,

with Kθ = max
‖x‖1�θ

sup
t∈[0,T ]

∣∣F (t,x(t))
∣∣ := Ωθ +M2 , from the fact that for each t ∈ [0,T ]

and all x ∈C1 ([0,T ] ,R)∣∣F(t,x(t))
∣∣ �

∣∣F(t,x(t))−F(t,0)
∣∣+ ∣∣F(t,0)

∣∣
� Ω‖x‖1 +M2.

For all x,y ∈ Mθ and each t ∈ [0,T ] , we get

|Φ1x(t)+ Φ2y(t)|

� 1
Γ(α)

η∫
0

∣∣Λλ ,β ,η (t,s)
∣∣ ∣∣F (s,x(s))

∣∣ds+
1

Γ(α)

t∫
0

∣∣∣(t− s)α−1
∣∣∣ ∣∣F (s,y(s))

∣∣ds

� Kθ
Γ(α)

⎡
⎣ η∫

0

∣∣Λλ ,β ,η (t,s)
∣∣ds+

t∫
0

∣∣∣(t− s)α−1
∣∣∣ds

⎤
⎦

� Kθ
Γ(α)

[
Λ1 +

T α

α

]
.

By the same arguments we get for all x,y ∈ Mθ and each t ∈ [0,T ]∣∣(Φ1x(t)+ Φ2y(t))′
∣∣

� 1
Γ(α)

η∫
0

∣∣∣∣∂Λλ ,β ,η (t,s)
∂ t

∣∣∣∣ ∣∣F (s,x(s))
∣∣ds+

α −1
Γ(α)

t∫
0

∣∣∣(t− s)α−2
∣∣∣ ∣∣F (s,y(s))

∣∣ds

� Kθ
Γ(α)

⎡
⎣ η∫

0

∣∣∣∣∂Λλ ,β ,η (t,s)
∂ t

∣∣∣∣ds+(α −1)
t∫
0

∣∣∣(t− s)α−2
∣∣∣ds

⎤
⎦

� Kθ
Γ(α)

[
Λ2 +Tα−1] .

Thus,

‖Φ1x+ Φ2y‖1 � Kθ
Γ(α)

[
Λ1 + Λ2 +

Tα

α
+Tα−1

]
� θ .
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This shows that Φ1x+ Φ2y ∈ Mθ for all x,y ∈ Mθ . To prove that Φ1 is a contraction,
let x,y ∈ Mθ , then we get for each t ∈ [0,T ]

|Φ1x(t) − Φ1y(t) |

� 1
Γ(α)

η∫
0

∣∣Λλ ,β ,η (t,s)
∣∣ ∣∣F (s,x(s))−F (s,y(s))

∣∣ds

� Ω
Γ(α)

Λ1 ‖x− y‖1 .

After differentiation, we obtain for each t ∈ [0,T ]

|(Φ1x(t) − Φ1y(t))′|

� 1
Γ(α)

η∫
0

∣∣∣∣∂Λλ ,β ,η (t,s)
∂ t

∣∣∣∣ ∣∣F (s,x(s))−F (s,y(s))
∣∣ds

� Ω
Γ(α)

Λ2 ‖x− y‖1 .

From the previous we deduce

‖Φ1x−Φ1y‖1 � Ω
Γ(α)

[Λ1 + Λ2]‖x− y‖1 .

In view of (18), we conclude that Φ1 is a contraction.
Now, we will show that Φ2 is compact and continuous. Let {xn}n�1 be a se-

quence in Mθ such that xn (t) → x(t) , x′n (t) → x′ (t) in Mθ , for each t ∈ [0,T ] . Then,
we have ‖xn− x‖1 → 0 when n → ∞ . We infer that for each t ∈ [0,T ]

|Φ2xn (t) − Φ2x(t) |
� 1

Γ(α)

∫ t

0
(t− s)α−1 ∣∣F (s,xn(s)))−F (s,x(s))

∣∣ds

� Ω
Γ(α)

‖xn− x‖1

∫ t

0
(t− s)α−1 ds

� ΩT α

αΓ(α)
‖xn− x‖1

and after differentiation of (Φ2xn (t)−Φ2x(t)) we have for each t ∈ [0,T ]

|(Φ2xn (t) − Φ2x(t))′|
� α −1

Γ(α)

∫ t

0
(t− s)α−2 ∣∣F (s,xn(s))−F (s,x(s))

∣∣ds

� Ω
Γ(α)

‖xn − x‖1 (α −1)
∫ t

0
(t − s)α−2 ds

� Ω
Γ(α)

Tα−1 ‖xn− x‖1 .
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Consequently,

‖Φ2xn−Φ2x‖1 � Ω
Γ(α)

[
T α

α
+Tα−1

]
‖xn − x‖1 .

The term in the right-hand side of the previous inequality tends clearly, to zero when
n → ∞ , which means that Φ2 is continuous. Φ2x(t) is uniformly bounded in Mθ from
the fact that

|Φ2x(t) | � Kθ
Γ(α)

t∫
0

(t− s)α−1 ds � Kθ
Γ(α)

Tα

α

and ∣∣(Φ2x(t))′
∣∣ � Kθ (α −1)

Γ(α)

t∫
0

(t − s)α−2 ds � Kθ
Γ(α)

T α−1.

Hence,

‖Φ2x‖1 � Kθ
Γ(α)

[
T α

α
+Tα−1

]
� θ .

To show that Φ2x(t) is equicontinuous, let 0 < τ1 < τ2 < T, then we have

|Φ2x(τ2)−Φ2x(τ1)|
� 1

Γ(α)

∣∣∣∣
∫ τ2

0
(τ2− s)α−1 F (s,x(s))ds−

∫ τ1

0
(τ1 − s)α−1 F (s,x(s))ds

∣∣∣∣
� 1

Γ(α)

∫ τ1

0

[
(τ2 − s)α−1− (τ1 − s)α−1

]∣∣F (s,x(s))
∣∣ds

+
1

Γ(α)

∫ τ2

τ1

(τ2− s)α−1 ∣∣F (s,x(s))
∣∣ds

� Kθ
Γ(α)

∫ τ1

0

[
(τ2 − s)α−1− (τ1 − s)α−1

]
ds+

∫ τ2

τ1

(τ2 − s)α−1 ds

� Kθ
Γ(α)

[−(τ2 − τ1)
α

α
+

τα
2

α
− τα

1

α
+

(τ2 − τ1)
α

α

]

� Kθ
αΓ(α)

(τα
2 − τα

1 ) . (21)

Also, we get

|(Φ2x(τ2))
′ − (Φ2x(τ1))

′ |
� α −1

Γ(α)

∫ τ1

0

[
(τ2 − s)α−2− (τ1 − s)α−2

]∣∣F (s,x(s))
∣∣ds

+
α −1
Γ(α)

∫ τ2

τ1

(τ2 − s)α−2 ∣∣F (s,x(s))
∣∣ds

� Kθ
Γ(α)

(
τα−1
2 − τα−1

1

)
. (22)
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Thanks to (21)–(22) it follows

‖Φ2x(τ2)−Φ2x(τ1)‖1 � Kθ
Γ(α)

[
1
α

(τα
2 − τα

1 )+
(
τα−1
2 − τα−1

1

)]

which tends to zero when τ2 → τ1 . So, Φ2 (Mθ ) is relatively compact and together
with Arzelà-Ascoli theorem Φ2 is compact.

Finally, we conclude by Krasnoselskii’s theorem that Φ = Φ1 + Φ2 has at least
one fixed point in Mθ ⊂C1 ([0,T ] ,R) , which is a solution of (1)–(2). �

REMARK 12. The solution of multipoint-initial value problem (1)–(2) with inte-
ger order α = 2, belongs to C2 ((0,T ] ,R) and satisfies integral equation (7) for α = 2.

Morover, the results obtained for non-integer order 1 < α < 2 stay true.

In the sequel, we discuss the positivity of the obtained solution in C1 ([0,T ] ,R)
by the Banach fixed point theorem. To this end, we add adequate assumptions and
expound the following theorem.

Note that we mean by a positive solution of the problem (1)–(2) in C1 ([0,T ] ,R)
that x(t) > 0 and x′(t) > 0 for each t ∈ [0,T ] .

THEOREM 13. Assume that (A1)–(A3) are fulfilled in R+ such that F : [0,T ]×
R+

3 → R+ , h : Δ×R+
2 → R+ where Δ = {(t,s) : 0 � s � t � T} .

If (16) is satisfied for −1 < λ < 0; −1 < β < 0 , then the unique solution in
C1 ([0,T ] ,R) of the problem (1)–(2) is positive.

Proof. In view of theorem 10 and the fact that for −1 < λ < 0; −1 < β < 0, (16)
is a particular case, then (1)–(2) admits a unique solution in C1 ([0,T ] ,R) .

Moreover, since 1 < α < 2, 0 < η < T we have for each t ∈ [0,T ] ,s ∈ [0,η)

−λ
(λ +1)

(η − s)α−1 > 0;

(
λ

(λ +1)
η − t

)
< 0

and
β (α −1)
(β +1)

(η − s)α−2 > 0.

Thus, for each (t,s) ∈ [0,T ]× [0,η)

Λλ ,β ,η (t,s)

=
[ −λ
(λ +1)

(η − s)α−1 +
(

λ
(λ +1)

η − t

)
β (α −1)
(β +1)

(η − s)α−2
]

> 0

and
∂Λλ ,β ,η (t,s)

∂ t
= −β (α −1)

(β +1)
(η − s)α−2 > 0.

From integration properties it results that x(t) the unique solution of (1)–(2) which
satisfies (7) is positive for each t ∈ [0,T ] and the same for x′ (t) which satisfies (15).
This completes the poof. �
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A similar argument is used to provide the positivity of each solution obtained via
Krasnoselskii fixed point theorem.

THEOREM 14. Assume that (A1)–(A3) are fulfilled in R+ such that F : [0,T ]×
R+

3 → R+ , h : Δ×R+
2 → R+ where Δ = {(t,s) : 0 � s � t � T} .

If (18) is satisfied for −1 < λ < 0; −1 < β < 0 then each solution in C1 ([0,T ] ,R)
of the problem (1)–(2) is positive.

4. Example

Let us consider the following fractional initial value problem

cD3/2
0+ x(t) =

x(t)

(t +10)4 (1+ |x(t)|) +
x′(t)

(t +10)4 (1+ |x′(t)|) (23)

+
t∫

0

[
e−s (x(s)+1)

(t +10)10 (2+ |x(s)|) +
e−s (x′(s)+1)

(t +10)10 (2+ |x′(s)|)

]
ds,

subject to the multi-point initial conditions:

x(0)+ x

(
1
2

)
= 0; x′ (0)+ x′

(
1
2

)
= 0. (24)

Here α =
3
2
, λ = β = 1, η =

1
2
, T = 1

F(t,x,y,z) =
1

(t +10)4

[
x

1+ |x| +
y

1+ |y| + z

]
,

h(t,s,x,y) =
e−s

(t +10)6

[
x+1
2+ |x| +

y+1
2+ |y|

]
.

Observe that (A1)-(A3) are satisfied, for all xi,yi,zi ∈ R, i = 1,2 and each t ∈
[0,1] we have

|F(t,x1,y1,z1)−F(t,x2,y2,z2)| � 1

(t +10)4
[|x1− x2|+ |y1 − y2|+ |z1 − z2|] ,

thus, M1 =
1

104 and M2 = sup
t∈[0,1]

1− e−t

(t +10)10 =
1− e−1

1010 .

For all xi,yi ∈ R, i = 1,2 and each (t,s) ∈ Δ we have

|h(t,s,x1,y1)−h(t,s,x2,y2|) � e−s

(t +10)6
[|x1 − x2|+ |y1− y2|],

thus, L1 =
1

106 .
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Also, condition (16) of theorem 10 is satisfied in accordance with following cal-
culus

1
104

[
1+ 1

106

]
Γ(3/2)

[∣∣∣∣12
∣∣∣∣ (1/2)3/2

3/2
+
(∣∣∣∣12

∣∣∣∣ 1
2

+1+1

)∣∣∣∣12
∣∣∣∣
(

1
2

)1/2

+
1

3/2
+1

]

=
0.000258001
0.886226925

< 1.

Then, there exists a unique solution of (23)–(24) in C1 ([0,1] ,R) .
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