
Fractional
Differential

Calculus

Volume 4, Number 2 (2014), 89–124 doi:10.7153/fdc-04-06

ON A LOCAL SOLVABILITY OF THE MULTIDIMENSIONAL

MUSKAT PROBLEM WITH A FRACTIONAL DERIVATIVE

IN TIME ON THE BOUNDARY CONDITION

NATALIYA VASYLYEVA

Abstract. In this paper, we analyze anomalous diffusion version of the multidimensional Muskat
problem without surface tension on a free boundary. We prove the existence and uniqueness of
the classical solution to this moving boundary problem locally in time.

1. Introduction

Let Ω be a double-connected bounded open domain in Rn, n � 2 with the bound-
ary ∂Ω = Γ1

⋃
Γ2, Γ1

⋂
Γ2 = /0 . Let ϒ(t), for each t ∈ [0,T ], be a surface ϒ(t) ⊂ Ω

that separates Ω into two subdomains Ω1(t) and Ω2(t) such that Ω = Ω1(t)
⋃

ϒ(t)
⋃

Ω2(t) , and ∂Ωi = Γi
⋃

ϒ(t), i = 1,2.
In this paper we study the two-phase free boundary problem in the case of anoma-

lous diffusion. We look for the functions pi(y,t), y ∈ Ωi(t), t ∈ [0,T ], i = 1,2, and a
moving boundary ϒ(t) by the following conditions:

−Δypi = 0 in Ωi(t), i = 1,2, t ∈ [0,T ], (1.1)

p1− p2 = 0 on ϒ(t), (1.2)

V ν
nt

= −k1
∂ p1

∂nt
= −k2

∂ p2

∂nt
on ϒ(t), ν ∈ (0,1); (1.3)

pi = ψi(y) on ΓiT = Γi× [0,T ], (1.4)

Ωi(t)|t=0 = Ωi, ϒ(t)|t=0 = ϒ are given. (1.5)

Here Δy = ∇2
y , ∇y = ( ∂

∂y1
, . . . , ∂

∂yn
) ; ki, i = 1,2, are given positive constants, ψi(y) ,

i = 1,2, are given positive functions; nt is the unit normal to ϒ(t) directed in Ω1(t) ;
V ν

nt
is the fractional velocity of the boundary ϒ(t) in the direction of the normal nt and

is represented by (see, e.g., [35]):

V ν
nt

= 〈Dν
t ϒ(t),nt〉, (1.6)
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where 〈·, ·〉 is the notation of the scalar product. Dν
t denotes the Caputo fractional

derivative with respect to t and is defined by (see (2.4.6) in [12])

Dν
t w(·, t) =

1
Γ(1−ν)

∂
∂ t

t∫
0

w(·,τ)dτ
(t− τ)ν − w(·,0)

Γ(1−ν)tν , ν ∈ (0,1), (1.7)

where Γ(ν) is the Gamma function.
One can see that (1.1) and (1.2) together with the second equality in (1.3) define

the transmission problem with the interface Γ(t) , and the first equality in (1.3) serves
to find the unknown curve Γ(t) that is called the free boundary. Moreover, conditions
(1.3) mean that the motion in problem (1.1)–(1.5) is subjected by anomalous diffusion.

Note that the anomalous diffusion means that the diffusive motion can not be mod-
elled as standard Brownian motion [6], [22], and the mean square displacement of the
diffusing species 〈(Δy)2〉 scales as a nonlinear power law in time, i.e. 〈(Δy)2〉 ∼ tν for
some real number ν . In the case ν ∈ (0,1) , this is referred as a subdiffusion.

If ν = 1, problem (1.1)–(1.5) is called as the Muskat problem (the two-phase Hele-
Shaw problem), which was proposed by Muskat in 1934 [23]. This problem describes
the evolution of an interface between two immiscible incompressible fluids (for exam-
ple, water and oil). The motion of fluids is governed by the Darcy law (see (1.3) with
ν = 1), stating that the velocities of fluids are proportional to the pressure gradients,
and the conservation of mass law. The Muskat problem with a regular initial interface
Γ was studied by L. Jiang and Y. Chen [11], F. Yi [36], F. Otto [25], S. Howison [10],
D. Ambrose [1], M. Siegel, R. Caflish and S. Howison [30], J. Escher and B. V. Matioc
[8]. The solvability of the two-phase Hele-Shaw problem in the case of nonsmooth Γ
was studied in the weighted Hölder classes by B.V. Bazaliy and N. Vasylyeva [4, 5].

In this paper we consider the Muskat problem governed by “fractional” Darcy law
which is formulated in [24], [35]. That means the presence of the fractional temporal
derivative in condition (1.3).

The one-phase variant of problem (1.1)–(1.5) (the one-phase fractional Hele-Shaw
problem) can be called as the fractional quasistationary Stefan problem which arises
under consideration of the materials with memory [35], drug release control [18], [17].
Note that if equation (1.1) in the one-phase variant of problem (1.1)–(1.5) is changed by
the subdiffusion equation we will get the fractional Stefan problem, which was formu-
lated and studied by C. Atkinson [2] for the motion of planar, cylindrical and spherical
domains.

The presence of the fractional derivative in time in (1.3) complicates essentially
investigations of problem like (1.1)–(1.5) because this condition is nonlocal and some
useful properties of integer order derivative (i.g., product rules, chain rules and so on)
are not carried over to the fractional derivative operator. To the best of our knowledge,
some exact solutions of the one-phase fractional Hele-Shaw problem and analogous
one were constructed in [18], [33], [35], [19] if Ω(t) ⊂ R1 , ∀ t ∈ [0,T ] . In the case of
Ω(t) ⊂ Rn , the classical solvability of the fractional Hele-Shaw problem for small pe-
riod of time has been proved in [32]. As for investigations of two-phase fractional mov-
ing boundary problems, a class of fractional one-dimensional two-phase free boundary
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problems was researched in [34], where a novel numeric method was developed to han-
dle the moving interface as well as the history kernel of the subdiffusion. However,
solvability of the two-phase moving boundary problem with the fractional velocity of
the free boundary has not yet been studied. Thus, the existence and uniqueness of a so-
lution of problem (1.1)–(1.5) will be a subject of our investigations here. In this paper
the one of the main results is the following.

THEOREM 1.1. Let α,ν ∈ (0,1), the surfaces Γi, i = 1,2, ϒ ∈ Cl+α , l � 3,
0 < k2 < k1 and

min
Γ2

ψ2(x) > max
Γ1

ψ1(x); ψi(x)|Γi > 0 and ψi(x) ∈C3+α(Γi), i = 1,2. (1.8)

Then there exists a unique solution of problem (1.1)–(1.5) for some small T > 0 such
that pi ∈ C([0,T ];C2+α(Ωi(t)×{t})), i = 1,2, ∪t∈[0,T ]ϒ(t) ∈ C2+α , ∪t∈[0,T ]D

ν
t ϒ(t)

∈C1+α .

It is obviously that Theorem 1.1 is a generalization of the known result [36] in the
case of the normal diffusion (ν = 1) to the subdiffusion case (ν ∈ (0,1)).

Moreover, in this paper we also study the local existence of more smooth solutions
of problem (1.1)–(1.5). In Theorem 5.3 of this paper we prove the one-valued solvabil-
ity in the Hölder classes Ck+α ,β ,α with β := αν

2 . Hence, the results obtained in the
nonlocal case (ν ∈ (0,1)) represent marked difference with the local case (see Section
4 [4]) where the exponent β := α

2 is greater.
To prove Theorems 1.1 and 5.3 we adapt the classical approach which is used for a

free boundary problem in the case of normal diffusion (see, e.g. [3]) to the subdiffusion
case. This technique consists in:

1. Reduction of a free boundary problem to a nonlinear problem defined in a fixed
domain;

2. Linearization of this nonlinear problem on an initial data (v01,v02) and on a some
special function s(ω ,t) connected with initial shape of the free boundary ϒ(t) ;

3. The proof that the linear problem has a unique solution;

4. Proving that the corresponding nonlinear mapping is a contraction, so that it has
a unique fixed point.

Under this consideration, we have to solve a lot of technically difficulties which
deal with the nonlocal behavior of the free boundary velocity (i.e. with fractional
derivatives). Especially, it becomes apparent on the (2)–(4) steps. Indeed, to linearize
the nonlinear problem on the second step we have to construct the appropriate function
s(ω ,t) as s =−k1

tν

Γ(ν+1)
∂v10

∂n(ω) and to describe the main properties of this function (see
(3.22)–(3.26)). As for (3) and (4) steps of the method mentioned above, we adjust the
classical Schauder technique and the contraction argument to the case of the fractional
derivatives (see proofs of Theorems 5.1 and 5.2 and Lemma 5.1). To this end we prove
some properties of Caputo and Riemann-Liouville derivatives in Propositions 2.1–2.3.
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However, the main analytical difficulties deal with the research of a nonclassical bound-
ary value problem with a fractional dynamic boundary condition:

Δxu± = 0 in Rn
±T ; ℘(x′,0) = 0 in Rn−1, u±|t=0 = 0 in Rn

±;

u−(x,t)−u+(x,t) = −a0℘(x′,t) on R
n−1
T ;

Dν
t ℘(x′, t)−a1

[
∂u−
∂n

− ∂u+

∂n

]
−〈a2, ∇x′(u−−u+)〉 = f1(x′,t) on R

n−1
T ;

∂u−
∂n

− k
∂u+

∂n
− k〈a3, ∇x′(u−−u+)〉 = 0 on R

n−1
T .

Note that this is the principal model problem such that the nonlinear problem (1.1)–
(1.6) will inherit the main feature of this problem. We remark that, the model problem
in the case of an integer order derivative in time (ν = 1) has been well studied with
different methods. The one of them consists in the getting exact representation of the
solution and the proving some coercive estimates. In this paper we try to follow this
method in the case of the fractional derivative in time, ν ∈ (0,1) . Using Fourier and
Laplace transformations, we obtain the solution of this problem as the convolutions (see
(4.28)–(4.30)): u± = G± � f1 , ℘= G� f1 . The kernels G± and G can be represented
only as integrals which contain the Wright functions. Note that the Wright functions
(see, e.g. [21]) play fundamental roles in various applications of the fractional calcu-
lus. Thus nonlocal forms of the kernels are the distinguishing feature of the fractional
case, ν ∈ (0,1) . As usual in the potential theory, to estimate the functions u±(x,t)
and ℘(x′, t) , it is necessary to describe well the properties of the kernels G± and G .
Unfortunately, in virtue of nonlocal representations for these kernels, it is impossible to
get the good local estimates as in the case of the integer order derivative. We can get
just the integral estimates which are described in Lemma 4.1. Note that to get Lemma
4.1 we essential use the main properties of the Wright functions: asymptotic repre-
sentations, estimates, formula for fractional differentiation and integration. Moreover,
using representation ℘= G � f1 , it is necessary to find a convenient formula of Dν

t ℘
for further investigations. As it turns out (see Proposition 4.1), the suitable form is

Dν
t ℘= f1(x′, t)+

∫ t

0
dτ

∫
Rn−1

[ f1(x′ − y′,t− τ)− f1(x′,t − τ)]∂ ν
τ G(y′,τ)dy′,

where ∂ ν
τ denotes the Riemann-Liouville fractional derivative in time. Note that the

analogous representation is obvious in the non-fractional case (ν = 1), but it is not
evident in the case of fractional derivative. Generally speaking, Lemma 4.1 and Propo-
sitions 4.1 and 4.2 play a significant role in the investigation of the model problem and
their proofs contain the main difficulties caused the presence of the fractional derivative.

The paper is organized as follows. In Section 2 we describe some auxiliary prop-
erties related to the fractional derivative in time, Propositions 2.1–2.3. Note that they
are very useful in the technical plan and apply throughout the paper. In Section 3, we
reduce the problem with an unknown boundary to a problem in a fixed domain and
reformulate the main result as Theorem 3.1. In Subsection 3.2, we represent our non-
linear problem in the form A z = F(x,t)+F 1(z) , where z = (w1,w2,σ) and A is a
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linear operator, the vector F(x,t) is constructed by using the initial data and F 1 is a
nonlinear operator. Section 4 is devoted to investigation of the model boundary-value
problem with fractional derivative in time in the boundary condition. Then in Section 5,
we proved the main result, Theorem 3.1. In Subsection 5.1, using method of a parame-
ter extension together with results of Sections 2 and 4, we get the one-to-one solvability
to the linear problem A z = F(x,t) , Theorem 5.1 (classical solvability) and Theorem
5.2 (solvability in Hölder spaces). In Subsection 5.2, based on the results of Theorem
5.1, Proposition 2.1 and the fixed point theorem, we prove Theorem 3.1. Moreover, in
this subsection we get solvability of the problem A z = F(x,t)+F 1(z) in the Hölder
classes, Theorem 5.3. The proof of some auxiliary assertions which are applied in
Section 4 is given in Appendix 6.

2. Functional spaces and preliminaries

Before proving Theorem 1.1 we need in some auxiliary results and some defini-
tions.

Let D be a given domain in Rn , DT = D× (0,T ) ; x,x be any points in D , x 
= x ;
t,τ ∈ [0,T ], t 
= τ; α,β ∈ (0,1) , l be a nonnegative integer number. Denote by

〈u〉(α)
x,DT

= sup
(x,t),(x,t)∈DT

|u(x,t)−u(x,t)|
|x− x |α ;

〈u〉(β )
t,DT

= sup
(x,t),(x,τ)∈DT

|u(x,t)−u(x,τ)|
|t− τ|β ;

[u](α ,β )
DT

= sup
x,x∈D,t, τ∈[0,T ]

|u(x,t)−u(x,t)−u(x,τ)+u(x,τ)|
|x− x |α |t− τ|β ;

In this paper we will use the two types of the functional spaces C([0,T ], Cl+α(D))
and Cl+α ,β ,α(DT ) . Recall that the spaces C([0,T ],Cl+α(D)) used by many authors
(see, e.g., [20] and references there).

We define the class C
0
([0,T ],Cl+α(D)) as the subspace of C([0,T ], Cl+α(D))

such that Dj
xu|t=0 = 0, | j| = 0, l .

DEFINITION 2.1. We will say that the function u(x,t)∈Cl+α ,β ,α(DT ) iff the fol-
lowing norm is finite

‖u‖Cl+α,β ,α(DT ) = ‖u‖C([0,T ],Cl+α (D)) +
l

∑
| j|=0

{
〈Dj

xu〉(β )
t,DT

+[Dj
xu](α ,β )

DT

}
.

In a similar way we introduce the spaces Cl+α ,β ,α(∂DT ) where ∂DT = ∂D×
[0,T ] . Moreover, we will use the usual Hölder classes Cl+α(D) and Cl+α(∂D) , their
definitions can be found, for instance, in [16].

The following results which is the well known in the case of an integer order
derivative will be essentially applied to prove Lemma 4.3, Theorems 5.1, 5.2 and
Lemma 5.1.
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PROPOSITION 2.1. Let α,ν ∈ (0,1), Ω ⊂ Rn , ΩT = Ω × (0,T ), ψ ,Dν
t ψ ∈

C([0,T ],Cα (Ω)) , then

|ψ(·, t1)−ψ(·,t2)| � C|t1 − t2|ν sup
ΩT

|Dν
t ψ |; (2.1)

〈ψ(·, t1)−ψ(·,t2)〉(α)
x,ΩT

� C〈Dν
t ψ〉(α)

x,ΩT
|t1− t2|ν ∀ t1,t2 ∈ [0,T ]. (2.2)

Proof. Following the arguments of Theorem 3.1 [29], one can easily obtain in-
equality (2.1). Then to get estimate (2.2) it is enough to apply inequality (2.1) to the
function |ψ(x,t)−ψ(x,t)|

|x−x|α . �

Next, we define the fractional Riemann-Liouville integral and derivative of a func-
tion g(·, t) with respect to t as (see, e.g., (2.1.1) and (2.1.8) [12]):

Iθ
t g(·,t) :=

1
Γ(θ )

∫ t

0

g(·,τ)dτ
(t− τ)1−θ , θ > 0, t > 0; (2.3)

∂ θ
t g(·,t) :=

1
Γ(1−θ )

∂
∂ t

∫ t

0

g(·,τ)dτ
(t− τ)θ , θ ∈ (0,1). (2.4)

Repeating the arguments from the proofs of Lemma 2.10 and formula (2.4.10) in
[12], we can deduce the following.

PROPOSITION 2.2. Let α, ν ∈ (0,1), Ω⊆Rn , ΩT = Ω×(0,T ), ϕ(x,t), ϕ1(x,t)
∈C([0,T ],L∞(Ω)), ∂ ν

t ϕ1(x,t) ∈ L1(ΩT ) . Then

(i) Dν
t ϕ(x, t) = ∂ ν

t ϕ(x,t), if ϕ(x,0) = 0, where ∂ ν
t ϕ(x,t) is given by (2.4);

(ii) ∂ ν
t

t∫
0

ϕ1(x, t−τ)ϕ(x,τ)dτ =
t∫
0

ϕ(x,t−τ)∂ ν
τ ϕ1(x,τ)dτ +ϕ(x,t) limz→0 I1−ν

z ϕ1(x,z) ,

∀t ∈ [0,T ] .

After that we represent some properties of a solution to the transmission problem
which depends on time t as a parameter:

ΔxWi = g0i(x,t) in ΩiT ; Wi|t=0 = 0 in Ωi;

Wi = gi(x,t) on ΓiT , i = 1,2; W1−W2 = g3(x,t) on ϒT ,

∂W1

∂ n(ω)
− k

∂W2

∂ n(ω)
−

n−1

∑
j=1

c j(x)
∂

∂ω j
(W1 −W2) = g4(x,t) on ϒT , (2.5)

where ω1, . . . ,ωn−1 are some coordinates on ϒ .

PROPOSITION 2.3. Let α,β ,ν ∈ (0,1), ϒ,Γi ∈C2+α , i = 1,2, k > 0 and c j(x)∈
C2+α(ϒ) , j = 1,n−1, and g0i(x,0) , gl(x,0) = 0, l = 1,4 .
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(i) If g0i ∈C([0,T ],Cα(Ωi)) , gi ∈C([0,T ],C2+α(Γi)), i = 1,2, g3 ∈C([0,T ], C2+α(ϒ)) ,
g4 ∈ C([0,T ],C1+α(ϒ)) , then there is a unique solution (W1(x,t), W2(x, t)) of
(2.5) and

2

∑
i=1

‖Wi‖C([0,T ],C2+α (Ωi))
� C(

2

∑
i=1

[‖g0i‖C([0,T ],Cα (Ωi))
+‖gi‖C([0,T ],C2+α (Γi))]

+‖g3‖C([0,T ],C2+α (ϒ)) +‖g4‖C([0,T ],C1+α (ϒ))).

(ii) If g0i ∈ Cα ,β ,α(ΩiT ) , gi ∈ C2+α ,β ,α(ΓiT ), i = 1,2, g3 ∈ C2+α ,β ,α(ϒT ) , g4 ∈
C1+α ,β ,α(ϒT ) , then there is a unique solution (W1(x,t), W2(x,t)) of (2.5) and

2

∑
i=1

‖Wi‖C2+α,β ,α (ΩiT ) � C(
2

∑
i=1

[‖g0i‖Cα,β ,α (ΩiT ) +‖gi‖C2+α,β ,α (ΓiT )]

+‖g3‖C2+α,β ,α (ϒT ) +‖g4‖C1+α,β ,α (ϒT )).

(iii) Let g0i,gi,g4 ≡ 0, i = 1,2, and g3 ∈C([0,T ], C2+α(ϒ)) , Dν
t g3 ∈C([0,T ], C1+α(ϒ)) .

Then the following estimates hold

sup
ΩiT

|Wi| � CT ν sup
ΩiT

|Dν
t Wi| � C2T

ν‖Dν
t g3‖C([0,T ],C1+α (ϒ)). (2.6)

Proof. Statements (i) and (ii) of this proposition follow from results [28]. Thus,
to finish the proof of Proposition 2.3 we should get (2.6).

After differentiation (2.5) with respect to time, we get the new transmission prob-
lem for the functions Vi := Dν

t Wi, i = 1,2 :

ΔxVi = 0 in ΩiT ; Vi = 0 on ΓiT , i = 1,2; V1−V2 = Dν
t g3 on ϒT ,

∂V1

∂ n(ω)
− k

∂V2

∂ n(ω)
−

n−1

∑
j=1

c j(x)
∂

∂ω j
(V1−V2) = 0 on ϒT . (2.7)

Then we apply results from [28] to problem (2.7) and get

‖Vi(·, t)‖W 2
p (Ωi)

� C‖Dν
t σ(·,t)‖

W
2− 1

p
p (ϒ)

, ∀t ∈ [0,T ], ∀p > 1, i = 1,2. (2.8)

Based on the embedding theorem and properties of the function Dν
t g3 , we can deduce

from (2.8)
sup
ΩiT

|Vi| � C‖Dν
t g3‖C([0,T ],C1+α (ϒ)). (2.9)

Returning to the functions Wi, i = 1,2, and using estimates (2.1) together with (2.9),
we obtain (2.6). �

The following result is a simple consequence of Proposition 2.3.

REMARK 2.1. Proposition 2.3 is true in the case Ω1 ∪Ω2 is an unbounded do-
main.
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3. The nonlinear functional equation, linearization

3.1. Reduction of problem (1.1)–(1.5) to a problem in the fixed domain

To prove the solvability of problem (1.1)–(1.5), it is convenient to reduce the one
to a problem in a fixed domain. To this end, we use the Hanzawa method [9].

Let ω = (ω1, . . . ,ωn−1) be some coordinates on ϒ . We represent ϒ in the form
y = m(ω) and denote by n(ω) the normal to ϒ directed into Ω1 .

For sufficiently small γ0 > 0, ω -surfaces: m(ω) + ηn(ω), |η | < 2γ0 , do not
intersect each other and Γ1

⋃
Γ2 . On the set

N = {y ∈ Rn : dist(y,ϒ) < 3γ0/2}
we introduce the local coordinates (ω ,η) by

y = (y1, . . . ,yn) = m(ω)+ ηn(ω), m(ω) ⊂ ϒ.

We assume that the free boundary in problem (1.1)–(1.5) is given as

ϒ(t) = {(y,t) : y(ω ,t) = m(ω)+ ρ(ω ,t)n(ω), t ∈ [0,T ]}, (3.1)

where ρ(ω , t) is an unknown function, and

|ρ(ω ,t)| < γ0c0, 0 < c0 < 1, ρ(ω ,0) = 0. (3.2)

It means that in the local variables the surface ϒ(t) is given by

Φρ(y,t) = η(y)−ρ(ω(y),t) = 0. (3.3)

Using (1.6), (3.1) and (3.3), we can rewrite the boundary conditions in (1.3) as

Dν
t ρ

〈∇yΦρ (y,0),∇yΦρ(y,t)〉
|∇yΦρ(y,0)| = −k1〈∇yp1,∇yΦρ(y,t)〉

= −k2〈∇yp2,∇yΦρ(y,t)〉. (3.4)

Let χ(λ ) ∈ C∞
0 (R1), χ(λ ) = 1 if |λ | < γ0/4 and χ(λ ) = 0 if |λ | > 3γ0/4, |χ (k)| �

c1/γk
0 , k = 1,2,3. We choose c0 in (3.2) such that c0 < 1/2c1 then 1+ χ ′(λ )μ � 1/2

if |μ | � γ0c0 . We will use the coordinates (ω ,η) to define the diffeomorphism

eρ : (x,t) → (y,t)

from XT = Rn × [0,T ] onto YT = Rn× [0,T ] by setting{
y = x, if dist(x,ϒ) > 3γ0/4,

ω(y) = ω(x),η(y) = λ (x)+ χ(λ (x))ρ(ω(x),t), otherwise,
(3.5)

such that the transform e−1
ρ maps Ωi(t) onto Ωi × (0,T ) = ΩiT , i = 1,2, and ϒ(t)

onto ϒ× [0,T ] = ϒT ; the free boundary is given by

eρ({λ (x) = 0}), (3.6)
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and ω(x) , λ (x) are the coordinates in XT similar to the coordinates ω(y) , η(y) in YT .
After the change of variables (3.5), we have the new desired functions

vi(x1, . . . ,xn,t) = pi(y1, . . . ,yn,t)◦ eρ(x,t), i = 1,2. (3.7)

Denote by ∇ρ = (E∗
ρ)−1∇x , where ∇x = ( ∂

∂x1
, . . . , ∂

∂xn
) and Eρ is the Jacobi matrix of

the mapping y = eρ(x,t), so that

∇y = ∇ρ and Δy = ∇2
ρ .

Taking into account that y = x near ΓiT , i = 1,2, we can deduce from (1.1), (1.2)
and (1.4) that the functions vi(x,t), i = 1,2, satisfy the equations:

∇2
ρvi(x,t) = 0 in ΩiT , i = 1,2; (3.8)

v1(x,t)− v2(x,t) = 0 on ϒT , (3.9)

vi = ψi(x) on ΓiT . (3.10)

Using (3.4), we can rewrite boundary conditions (1.3) as

Dν
t ρ = −k1

[
S(ω ,ρ ,∇ωρ)

∂v1

∂λ
+

n−1

∑
i=1

Si(ω ,ρ ,∇ωρ)
∂v1

∂ωi

]

= −k2

[
S(ω ,ρ ,∇ωρ)

∂v2

∂λ
+

n−1

∑
i=1

Si(ω ,ρ ,∇ωρ)
∂v2

∂ωi

]
on ϒT , (3.11)

where ∇ω ρ = (ρω1 , . . . ,ρωn−1) ; S(ω ,ρ ,∇ωρ) and Si(ω ,ρ ,∇ω ρ), i = 1,n−1, are
some specific smooth functions [9]:

S(ω ,ρ ,∇ωρ) =
n

∑
m=1

[
∂λ
∂ym

(y(ω ,ρ(ω ,t)))−
n−1

∑
j=1

ρω j (ω ,t)
∂ω j

∂ym
(y(ω ,ρ(ω , t)))

]2

,

Si(ω ,ρ ,∇ω ρ) =
n

∑
m=1

[
∂ωm

∂ym
(y(ω ,ρ(ω ,t)))

∂λ
∂ym

(y(ω ,ρ(ω ,t)))

−
n−1

∑
j=1

ρω j(ω ,t)
∂ω j

∂ym
(y(ω ,ρ(ω ,t)))

∂ωm

∂ym
(y(ω ,ρ(ω ,t)))

]
, (3.12)

such that

S(ω ,0,0) = 1,
∂S

∂ρωi

(ω ,0,0) = 0, Si(ω ,0,0) = 0, i = 1,n−1. (3.13)

Moreover, one can easily check that

∇2
ρ |t=0 = ∇2

x = Δx. (3.14)
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Thus, free boundary problem (1.1)–(1.5) is reduced to the nonlinear problem in the
fixed domain for the functions vi(x,t), i = 1,2, and ρ(ω ,t) that satisfy conditions (see
equations (3.8)–(3.11)):

−∇2
ρvi(x, t) = 0 in ΩiT , i = 1,2; vi(x,t) = ψi(x) on ΓiT , ρ(ω ,0) = 0;

v1(x,t)− v2(x,t) = 0 on ϒT ;

−Dν
t ρ = k1

[
S(ω ,ρ ,∇ωρ)

∂v1

∂λ
+

n−1

∑
i=1

Si(ω ,ρ ,∇ω ρ)
∂v1

∂ωi

]
= k2

[
S(ω ,ρ ,∇ωρ)

∂v2

∂λ
+

n−1

∑
i=1

Si(ω ,ρ ,∇ω ρ)
∂v2

∂ωi

]
on ϒT . (3.15)

We define the function vi0(x) as a solution of the following transmission problem

Δxvi0 = 0 in Ωi, i = 1,2; vi0|Γi = ψi(x);

v10− v20 = 0 and k1
∂v10

∂ n(ω)
= k2

∂v20

∂ n(ω)
on Γ. (3.16)

We assume that conditions (1.8) hold.
By the theory of transmission problems for elliptic equations [28], there exists a

unique solution (v10(x),v20(x)) to problem (3.16) and

2

∑
i=1

‖vi0‖C3+α (Ωi)
� C

2

∑
i=1

‖ψi‖C3+α (Γi), α ∈ (0,1); (3.17)

∂vi0

∂ n(ω)
|ϒ < 0, (3.18)

where C is a positive constant.
Henceforward the letter C will be used to denote different constants encountered

in our formulae.
Thus Theorem 1.1 from Section 1 can be reformulated as follows:

THEOREM 3.1. (Reformulated form) Let conditions of Theorem 1.1 hold; k = k2
k1

and
0 < k < 1. (3.19)

Then for some small T , there exists a unique solution (v1(x,t),v2(x,t),ρ(ω , t)) of non-
linear problem (3.15) for t ∈ [0,T ] , such that

vi(x, t) ∈C([0,T ],C2+α(Ωi)), ρ(ω ,t) ∈C([0,T ],C2+α(ϒ)),

Dν
t ρ(ω ,t) ∈C([0,T ],C1+α(ϒ)), (3.20)

vi(x,0) = vi0(x), i = 1,2, (3.21)

where vi0 is given with (3.16).

Note that, equalities (3.21) follow immediately from (3.13) and (3.14).
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3.2. A perturbation form of system (3.15)

In this subsection, we linearize system (3.15) on the initial data and rewrite it as a
system A z = Fz , where A is a linear operator and F is a nonlinear perturbation.

From (3.13) and (3.15), (3.21), for t = 0, we have

Dν
t ρ(ω ,0) = −k1S(ω ,0,0)

∂v10

∂λ
|ϒ = −k2S(ω ,0,0)

∂v20

∂λ
|ϒ, (3.22)

or due to (3.13)

Dν
t ρ(ω ,0) = −k1

∂v10

∂λ
|ϒ = −k2

∂v20

∂λ
|ϒ. (3.23)

Let a function s(ω ,t) be such that

s(ω ,0) = 0, Dν
t s(ω ,0) = Dν

t ρ(ω ,0) on ϒ. (3.24)

As an example of the function s(ω ,t) , we can take

s(ω ,t) =
tν

Γ(ν +1)
Dν

t ρ(ω ,0)|ϒ. (3.25)

Due to

Dν
t

tν

Γ(ν +1)
= 1,

we can deduce from (3.25), (3.22) and (3.17) the following result.

COROLLARY 3.1. The function s(ω ,t) given by (3.25) satisfies (3.24) and

‖s‖C([0,T ],C2+α (ϒ)) +‖Dν
t s‖C([0,T ],C2+α (ϒ)) � ‖s‖C2+α,ν,α (ϒT ) +‖Dν

t s‖C1+α,ν,α (ϒT )

� C
2

∑
i=1

‖ψi‖C3+α (Γi). (3.26)

Next, using equation (3.9), we reduce boundary conditions (3.11) to the form:

Dν
t ρ =

k2

1− k
S(ω ,ρ ,∇ωρ)

[
∂v1

∂ n(ω)
− ∂v2

∂ n(ω)

]
on ϒT , (3.27)

S(ω ,ρ ,∇ωρ)
[
k1

∂v1

∂ n(ω)
−k2

∂v2

∂ n(ω)

]
+

n−1

∑
i=1

Si(ω ,ρ ,∇ω ρ)
[
k1

∂v1

∂ωi
−k2

∂v2

∂ωi

]
= 0 on ϒT .

(3.28)
After that, we introduce the new unknown functions wi(x,t), i = 1,2, and σ(ω ,t) as:

σ(ω ,t) = ρ(ω ,t)− s(ω ,t); (3.29)

wi(x,t) = vi(x,t)− vi0(x)−〈∇xvi0, eσ 〉, i = 1,2, (3.30)

where

eσ =
∂x
∂λ

χ(λ )σ(ω ,t), x = (x1, . . . ,xn). (3.31)
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Denote by
L0 = −∇2

x, Lρ = −∇2
ρ ,

such that (L0u)◦ eρ = Lρ(u ◦ eρ) . Now, taking into account (3.27), (3.28) and (3.16),
we rewrite system (3.15) in the terms of the functions wi, i = 1,2, σ , and after some
tedious calculations, get the next problem:

Δxwi = F0i(wi,σ) in ΩiT , i = 1,2; (3.32)

w1 −w2 = −〈∇xv10−∇xv20, eσ 〉 ≡ −A(x)σ on ϒT ; (3.33)

Dν
t σ − k2

1− k

[
∂w1

∂ n(ω)
− ∂w2

∂ n(ω)

]
= F1(w1,w2,σ) on ϒT ; (3.34)

k1
∂w1

∂ n(ω)
− k2

∂w2

∂ n(ω)
− k

n−1

∑
i=1

bi(x)
∂

∂ωi
(w1 −w2) = F2(w1,w2,σ) on ϒT ; (3.35)

wi = 0 ΓiT , i = 1,2; (3.36)

σ(ω ,0) = Dν
t σ(ω ,0) = 0 on ϒ; (3.37)

where

A(x) = −1− k
k

∂v10

∂ n(ω)
, bi(x) =

1

(1− k) ∂v10
∂n(ω)

n−1

∑
j=1

∂S j(ω ,0,0)
∂ρωi

∂v10

∂ω j
; (3.38)

F0i(wi,σ)
= −[(L0vi0)◦ eρ − (L0vi0)◦ es]−Lsvi0− (Lρ −L0)(vi0 − vi0 ◦ eρ)

+(Ls −L0)(vi0 − vi0 ◦ es)−L0[vi0 + 〈∇vi0, eρ〉− vi0 ◦ eρ ]
+L0[vi0 + 〈∇vi0, es〉− vi0 ◦ eρ ]− (Lρ −L0)(wi + 〈∇vi0, eσ 〉); (3.39)

F1(w1,w2,σ)

=
k2

1−k

[
S(ω ,ρ ,∇ωρ)−S(ω ,0,0)−

n−1

∑
i=1

∂S
∂ρωi

(ω ,0,0)(σωi+sωi)−
∂S
∂ρ

(ω ,0,0)(σ+s)
]

×
[

∂ (w1 + v10)
∂ n(ω)

− ∂ (w2 + v20)
∂ n(ω)

]
− k2

1− k

[
∂ 2v10

∂ n(ω)2 − ∂ 2v20

∂ n(ω)2

]
S(ω ,ρ ,∇ωρ)σ

+
k2

1− k
∂S
∂ρ

(ω ,0,0)
[

∂ (w1 + v10)
∂ n(ω)

− ∂ (w2 + v20)
∂ n(ω)

]
(σ + s); (3.40)

F2(w1,w2,σ)

= −
[
S(ω ,ρ ,∇ωρ)−S(ω ,0,0)− ∂S

∂ρ
(ω ,0,0)ρ −

n−1

∑
i=1

∂S
∂ρωi

(ω ,0,0)ρωi

]
×

[
k1

∂w1

∂ n(ω)
− k2

∂w2

∂ n(ω)

]
− (s+ σ)

∂S
∂ρ

(ω ,0,0)
[
k1

∂w1

∂ n(ω)
− k2

∂w2

∂ n(ω)

]
−σS(ω ,ρ ,∇ωρ)

[
k1

∂ 2v10

∂ n(ω)2 − k2
∂ 2v20

∂ n(ω)2

]
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−
n−1

∑
j=1

[
S j(ω ,ρ ,∇ωρ)−S j(ω ,0,0)−ρ

∂S j

∂ρ
(ω ,0,0)−

n−1

∑
i=1

∂S j

∂ρωi

(ω ,0,0)ρωi

]
×

[
∂v1

∂ω j
+

∂v10

∂ω j
+

∂ 2v10

∂ n(ω)∂ω j
σ +

∂v10

∂ n(ω)
σω j

]
−

n−1

∑
i j=1

{ ∂S j

∂ρωi

(ω ,0,0)ρωi

[
∂v1

∂ω j
+

∂ 2v10

∂ω j∂ n(ω)
σ +

∂v10

∂ n(ω)
σω j

]

+
k−1

k ∂v10
∂n(ω)

∂ 2v10

∂ω j∂ n(ω)
σ

∂S j

∂ρωi

(ω ,0,0)
}

+
n−1

∑
i j=1

sωi

∂v10

∂ω j

∂S j

∂ρωi

(ω ,0,0). (3.41)

Thus system (3.15) can be written briefly in the form

A z = Fz, where z = (w1,w2,σ). (3.42)

Based on representations (3.38)–(3.41); properties (3.13), (3.14) and (3.17), (3.19); and
Corollary 3.1, we can conclude the following.

COROLLARY 3.2. The functions F0i(wi,σ) , i = 0,1, F j(w1,w2,σ) , j = 1,2,
contain the higher derivatives of wi(x,t) and σ(ω ,t) with the coefficients that tend to
zero as t → 0 , the “quadratic” terms with respect to wi(x,t) and σ(ω ,t) , and their
derivatives, and the terms of minor differential orders of unknown functions. Moreover,

F0i(wi,σ)|t=0 = 0, F j(w1,w2,σ)|t=0 = 0, i, j = 1,2; (3.43)

A(x) ∈C2+α(ϒ), bi(x) ∈C1+α(ϒ), A(x) > 0. (3.44)

Note that conditions (3.43) together with (3.32)–(3.37) lead to

wi(x,0) = 0, x ∈ Ωi, i = 1,2. (3.45)

The next step of our investigation is a proof of the boundedness of the linear op-
erator A in the corresponding functional spaces. To this end, we freeze the functional
arguments in the functions F0i(wi,σ) and F j(w1,w2,σ) . Then system (3.32)–(3.37)
or (3.42) will be a linear system with variable coefficients, which will be studied in
detail in Subsection 5.1. We remaind that investigation of this linear system is based on
the research of the corresponding model problem with a fractional dynamic boundary
condition.

4. The model problem with a fractional dynamic boundary condition

As is known, to construct a model problemnear the boundary by using the Schauder
method, it is necessary to fix the coefficients of the original problem at the boundary
point and, if necessary, straighten the boundary in some vicinity of the fixed point. In
this section we study the model problem of the more general view than it is demanded
by operator A (see (3.42)).
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Let a0 and a1 be some given positive constants, and a2 = {a1
2, . . . ,a

n−1
2 } , a3 =

{a1
3, . . . ,a

n−1
3 } be given vectors;

Rn
+ = {(x′,xn) : x′ ∈ Rn−1,xn > 0}, Rn

− = {(x′,xn) : x′ ∈ Rn−1,xn < 0},

x′ = (x1, . . . ,xn−1); Rn
±T = Rn

±× (0,T ); Rn−1
T = Rn−1× (0,T ).

We look for a solution (u+(x,t),u−(x,t),℘(x′,t)) bounded at the infinity by the
following conditions:

Δxu± = f±0 (x,t) in Rn
±T ; (4.1)

u−(x,t)−u+(x,t) = −a0℘(x′,t) on R
n−1
T ; (4.2)

Dν
t ℘(x′, t)−a1

[
∂u−
∂n

− ∂u+

∂n

]
−〈a2,∇x′(u−−u+)〉 = f1(x′,t) on R

n−1
T ; (4.3)

∂u−
∂n

− k
∂u+

∂n
− k〈a3,∇x′(u−−u+)〉 = f2(x′,t) on R

n−1
T ; (4.4)

℘(x′,0) = 0 in Rn−1, u±|t=0 = 0 in Rn
±, (4.5)

where n is the unit normal to Rn−1 directed in Rn− ; f±0 , f1 and f2 are some given
functions:

f±0 , fi ≡ 0 if either t = 0 or |x| > R0, (4.6)

for some positive number R0 .
If ν = 1 and n = 2, problem (4.1)–(4.5) was studied by F. Yi [36], B. V. Bazaliy

and N. Vasylyeva [4]; and the one-valued solvability of this problem was proved in the

classes C([0,T ],C2+α(R2±)) and E2+α ,α ,α(R
2
±T ), α ∈ (0,1) .

THEOREM 4.1. Let α,ν ∈ (0,1) , 0 < k < 1, condition (4.6) hold.

(i) If
f±0 ∈C([0,T ],Cα(R

n
±)), fi ∈C([0,T ],C1+α(Rn−1)), i = 1,2, (4.7)

then there exists a unique solution (u+(x,t),u−(x,t),℘(x′,t)) of (4.1)–(4.5):

‖u+‖C([0,T ],C2+α (R
n
+)) +‖u−‖C([0,T ],C2+α (R

n
−))

+‖Dν
t ℘‖C([0,T ],C1+α (Rn−1)) +‖℘‖C([0,T],C2+α (Rn−1))

� C1[‖ f +
0 ‖C([0,T ],Cα (R

n
+)) +‖ f−0 ‖C([0,T ],Cα (R

n
−)) (4.8)

+‖ f1‖C([0,T ],C1+α (Rn−1)) +‖ f2‖C([0,T ],C1+α (Rn−1))].

(ii) If the right-hand sides in (4.1)–(4.5) meet the requirements:

fi ∈C1+α , α
2 ν,α(R

n−1
T ), i = 1,2, f±0 ∈Cα , α

2 ν,α(R
n
±T ), (4.9)
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then there is a unique solution (u+,u−,℘) of (4.1)–(4.5), u± ∈C2+α , α
2 ν,α (R

n
±T ),

℘∈C2+α , α
2 ν,α (R

n−1
T )

‖u+‖
C2+α, α

2 ν,α (R
n
+T )

+‖u−‖
C2+α, α

2 ν,α (R
n
−T )

+‖Dν
t ℘‖

C1+α, α
2 ν,α (R

n−1
T )

+‖℘‖
C2+α, α

2 ν,α (R
n−1
T )

� C2[‖ f1‖C1+α, α
2 ν,α (R

n−1
T )

+‖ f2‖C1+α, α
2 ν,α (R

n−1
T )

+‖ f +
0 ‖

Cα, α
2 ν,α (R

n
+T )

+‖ f−0 ‖
Cα, α

2 ν,α (R
n
−T )

], (4.10)

where Ci , i = 1,2, are positive constants independent of the right-hand sides of
problem (4.1)–(4.5).

As it follows from results of Proposition 2.3, it is enough to prove Theorem 4.1 in
the following case

f±0 , f2 ≡ 0. (4.11)

4.1. Integral representation of the solution to problem (4.1)–(4.5) in the case of
(4.11)

First of all we will construct the integral representations for ℘ and u± , and then
we will obtain estimate (4.10).

Let ξ = (ξ1, . . . ,ξn−1) and |ξ | =
(
∑n−1

k=1 ξ 2
k

)1/2
. We denote by w̃(ξ ,xn, t) the

Fourier transform of w(x′,xn,t) , and by ŵ(·, p) the Laplace transform of w(·,t), and

use the notation “∗” instead of “ ̂̃ ”. By applying the Fourier and Laplace transfor-
mations to problem (4.1)–(4.5), we get

∂ 2u∗±
∂x2

n
(ξ ,xn, p)−4π2|ξ |2u∗±(ξ ,xn, p) = 0, (4.12)

u∗−(ξ ,0, p)−u∗+(ξ ,0, p) = −a0℘∗(ξ , p); (4.13)

pν℘∗(ξ , p)+a1
∂

∂xn
(u∗−−u∗+)−2π i〈a2,ξ 〉(u∗−−u∗+) = f ∗1 (ξ , p) if xn = 0, (4.14)

∂
∂xn

(u∗−− ku∗+)+2kπ i〈a3,ξ 〉(u∗−−u∗+) = 0 if xn = 0. (4.15)

Note that to get (4.14) we used formula (2.2.38) in [12]:

D̂ν
t w(·,t) = pν ŵ(·, p)− pν−1w(·,0).

To satisfy equations in (4.12), we set

u∗−(ξ ,xn, p) = M∗
−(ξ , p)e2π |ξ |xn , u∗+(ξ ,xn, p) = M∗

+(ξ , p)e−2π |ξ |xn , (4.16)

and then, we look for the function ℘∗(ξ , p) from (4.13) as

℘∗(ξ , p) = − 1
a0

[M∗
−(ξ , p)−M∗

+(ξ , p)]. (4.17)
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To find the unknown functions M∗−(ξ , p) and M∗
+(ξ , p) , we have two transmission

equations (4.14) and (4.15). It is easy to show that

M∗
+(ξ , p) =

a0

k+1
[1+ ik〈a3,ξ 〉|ξ |−1] f ∗1 (ξ , p)Q∗(ξ , p); (4.18)

M∗
−(ξ , p) = − ka0

k+1
[1− i〈a3,ξ 〉|ξ |−1] f ∗1 (ξ , p)Q∗(ξ , p), (4.19)

where

Q∗(ξ , p) =
1

pν +2πa1a0
1−k
1+k |ξ |+ i 2πa0

1+k 〈2ka1a3 +(k+1)a2,ξ 〉
.

Note that if condition (3.19) holds, then 2πa1a0
1−k
1+k > 0. Thus, Re 1

Q∗(ξ ,p) > 0 if

Re pν > 0 and Im ξ = 0, i.e. the function Q∗(ξ , p) does not have any singularities in
this case.

Denote by

A0(k) = 2πa1a0
1− k
1+ k

, A1(k) =
2πa0

1+ k
[2ka1a3 +(k+1)a2],

K∗
+(ξ ,xn,η)=

(
1+ ik

〈a3,ξ 〉
|ξ |

)
exp

{
−A0(k)|ξ |

(
η +

2πxn

A0(k)

)
− iη〈A1(k),ξ 〉

}
,

(4.20)

K∗
−(ξ ,xn,η) =

(
1− i

〈a3,ξ 〉
|ξ |

)
exp

{
−A0(k)|ξ |

(
η − 2πxn

A0(k)

)
− iη〈A1(k),ξ 〉

}
,

(4.21)
K∗(ξ ,η) = exp{−A0(k)|ξ |η − iη〈A1(k),ξ 〉}. (4.22)

Then, using (4.16)–(4.19), one can easily check that

u∗+(ξ ,xn, p) =
a0

k+1
f ∗1 (ξ , p)

+∞∫
0

e−η pν
K∗

+(ξ ,xn,η)dη ≡ a0

k+1
f ∗1 (ξ , p)G∗

+(ξ ,xn, p);

(4.23)

u∗−(ξ ,xn, p) = − ka0

k+1
f ∗1 (ξ , p)

+∞∫
0

e−η pν
K∗
−(ξ ,xn,η)dη

≡− ka0

k+1
f ∗1 (ξ , p)G∗

−(ξ ,xn, p); (4.24)

℘∗(ξ , p) = f ∗1 (ξ , p)
+∞∫
0

e−η pν
K∗(ξ ,η)dη ≡ f ∗1 (ξ , p)G∗(ξ , p). (4.25)

To get representations for the functions u±(x,t) and ℘(x′,t) , we need formula
(3.2.7) from [26]:

ê−cpν = t−1W (−ct−ν ;−ν,0), c > 0. (4.26)
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Here W (z;β ,γ) is the Wright function which is defined for z, β , γ ∈ C as (see, e.g.,
(1.8.1 (27)) in [7])

W (z;β ,γ) =
∞

∑
k=0

zk

k!Γ(βk+ γ)
. (4.27)

Note that the main properties of the Wright functions are described in Chapter 18.1 [7];
Chapter 1.11 [12]; Chapter 2 [26].

After that, applying the inverse Laplace and Fourier transformations to (4.23)–
(4.25), we obtain

u+(x′,xn,t) =
a0

k+1

t∫
0

dτ
∫

Rn−1

G+(y′,xn,τ) f1(x′ − y′,t− τ)dy′, (4.28)

y′ = (y1, . . . ,yn−1),

u−(x′,xn, t) = − ka0

k+1

t∫
0

dτ
∫

Rn−1

G−(y′,xn,τ) f1(x′ − y′,t− τ)dy′, (4.29)

℘(x′,t) =
t∫

0

dτ
∫

Rn−1

G(y′,τ) f1(x′ − y′, t − τ)dy′, (4.30)

where

G(y′,τ) =
∞∫

0

dη
W (−ητ−ν ;−ν,0)

τ
K(y′,η),

K(y′,η) =
∫

Rn−1

K∗(ξ ,η)e2π i〈ξ ,y′〉dξ , (4.31)

G±(y′,xn,τ) =
∞∫

0

W (−ητ−ν ;−ν,0)K±(y′,xn,η)
τ

dη ,

K±(y′,xn,η) =
∫

Rn−1

e2π i〈ξ ,y′〉K∗
±(ξ ,xn,η)dξ . (4.32)

As usual in the potential theory, to estimate the functions u±(x,t) and σ(x′,t) , it is
necessary to describe well the properties of the kernels G±(y′,xn,τ), G(y′,τ) and
K±(y′,xn,τ), K(y′,τ) .

4.2. Estimates of the functions ℘(x′,t) and u±(x,t) constructed in (4.28)–(4.30)

The next lemma describes the main properties of the kernels G(y′,t), K(y′,z)
which will be essential used to get estimates (4.8) and (4.10) for ℘(x′, t) and Dν

t ℘(x′,t)
if f±0 , f2 ≡ 0.
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LEMMA 4.1. Let α , ν ∈ (0,1); 0 < k < 1, y′ ∈ Rn−1 ; y′′ ∈ Rn−2 , y′′ = (y1, . . . ,
yl−1,yl+1, . . . , yn−1) , l = 1,n−1 , η ∈ (0,+∞); ε and A be positive numbers. Then
functions K(y′,η) and G(y′,t) which are given by (4.31) satisfy to the following in-
equalities:

(i)

|Dm
y′K(y′,η)| � C

exp
(
−A∑n−1

j=1 |y j|/η
)

ηn−1+|m| , |m| =
n−1

∑
i=1

mi, |m| = 0,1,2, . . . ;

(4.33)

(ii)

|∂K(y′,η)/∂η | � C
exp

(
−A∑n−1

j=1 |y j|/η
)

ηn ; (4.34)

(iii) ∫
Rn−1

K(y′,η)dy′ = 1; (4.35)

∫ +∞

−∞

∂K
∂yi

(y′,η)dyi = 0, i = 1,n−1; (4.36)

(iv)
K(y′,0) = Πn−1

j=1δ (−y j), (4.37)

where δ (y) is the Dirac delta function;

(v) ∫
Rn−1

G(y′,t)dy′ =
tν−1

Γ(ν)
; (4.38)

∫ t

0
dτ

∫
Rn−1

+

|G(y′,τ)|dy′ � Ctν ; (4.39)

(vi) ∫ t

0
dτ

∫
Rn−1

+

yα
j

∣∣∣∣∂G(y′,τ)
∂yi

∣∣∣∣dy′ � Ctαν , i, j = 1,n−1; (4.40)

(vii) ∫ t

0
dτ

∫
Rn−2

+

dy′′
∫ ε

0
yα

j

∣∣∣∣∂G(y′,τ)
∂yi

∣∣∣∣dyl � Cεα , l, i, j = 1,n−1; (4.41)

∫ t

0
dτ

∫
Rn−2

+

dy′′
∫ +∞

ε

∣∣∣∣∂G(y′,τ)
∂yi

∣∣∣∣dyl � C, l 
= i; (4.42)

∫ t

0
dτ

∫
Rn−2

+

dy′′
∣∣∣∣∫|y j |�ε

∂G(y′,τ)
∂y j

dy j

∣∣∣∣ = 0, j = 1,n−1; (4.43)
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(viii) ∫ t

0
dτ

∫
Rn−2

+

dy′′
∫ +∞

ε
yα

j

∣∣∣∣∂ 2G(y′,τ)
∂yi∂yl

∣∣∣∣dyl � Cεα−1, (4.44)

(ix) ∫ t

0
dτ

∫
Rn−2

+

dy′′
∫ ε

0
yα

j |∂ ν
τ G(y′,τ)|dyl � Cεα , l, j = 1,n−1, (4.45)

∫ t

0
dτ

∫
Rn−2

+

dy′′
∫ +∞

ε
|∂ ν

τ G(y′,τ)|dyl � Ct, (4.46)

∫ t

0
dτ

∫
Rn−2

+

dy′′
∫ +∞

ε
yα

j

∣∣∣∣∂ ν
τ

∂G(y′,τ)
∂yl

∣∣∣∣dyl � Cεα−1. (4.47)

Proof. Note that statements (i)–(viii) of this lemma have been proved in Lemma
3.1 [32] if A1(k) in the representation of the function K(y′,η) (see (4.22) and (4.31))
is a null vector. To prove (4.33)–(4.44) in the case of an arbitrary A1(k) (i.e. A1(k) 
=
{0, . . . ,0} ) it is enough to take into account that the factor exp{−iη〈A1(k),ξ 〉} does
not influence essentially to the main properties of the functions K(y′,η) and G(y′,t) .
Thus, repeating all the arguments from Lemma 3.1 [32] in our case, we get statements
(i)–(viii) of this lemma.

To prove estimates (4.45)–(4.47), we will obtain the representation of the func-
tion ∂ ν

τ
∂mG
∂ym

l
, m = 0,1, l = 1,n−1. Using the well known formula for the Riemann-

Liouville derivative of the Wright function (see, e.g. (9) [27] or (11) [13]):

∂ γ
t [tδ−1W (−ct−β ;−β ,δ )] = tδ−1−γW (−ct−β ;−β ,δ − γ), (4.48)

we deduce

∂ ν
τ

∂mG
∂ym

l
(y′,η) =

+∞∫
0

τ−1−νW (−ητ−ν ;−ν,−ν)
∂mK
∂ym

l
(y′,η)dη , m = 0,1. (4.49)

Then, applying estimate (4.33) to the right-hand side in (4.49), we infer

∣∣∣∣∂ ν
τ

∂mG
∂ym

l

∣∣∣∣ � C

+∞∫
0

τ−1−ν |W (−ητ−ν ;−ν,−ν)|
exp

{
−A

n−1
∑
j=1

|y j|η−1

}
ηn−1+m dη , m = 0,1.

(4.50)
Further, we will use inequality (4.50) to obtain estimates (4.45), (4.46). Let m = 0, we
will get (4.45) if l 
= j . Note that the case l = j can be proved with the same way.
Inequality (4.50) gives:

I1 :=
t∫

0

dτ
∫

Rn−2
+

dy′′
ε∫

0

yα
j |∂ ν

τ G(y′,τ)|dyl � C

+∞∫
0

dτ
+∞∫
0

dη
∫

Rn−2
+

dy′′yα
j

ε∫
0

τ−1−ν
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|W (−ητ−ν ;−ν,−ν)|
exp

{
−A

n−1
∑
j=1

|y j|η−1

}
ηn−1 dyl. (4.51)

After that, doing the consecutive change of variables:

yi = xiη , 1,n−1, i 
= l; (4.52)

η = τν z, (4.53)

in the right-hand side of (4.51), we obtain

I1 � C
∫

Rn−2
+

dx′′xα
j exp

{
−A

n−1

∑
j=1, j 
=l

x j

} ε∫
0

dyl

+∞∫
0

dz|W (−z;−ν,−ν)|

×
+∞∫
0

τνα−ν−1zα−1 exp

{
−A

yl

zτν

}
dτ. (4.54)

Then, the change of variable

τ =
(

yl

zr

)1/ν
(4.55)

in the last integral in (4.54) allows us to deduce that

I1 � C

ε∫
0

dyly
α−1
l

+∞∫
0

dz|W (−z;−ν,−ν)|
+∞∫
0

e−Arr−αdr

� Cεα
+∞∫
0

|W (−z;−ν,−ν)|dz. (4.56)

To show a boundedness of the last integral in (4.56), we will use the next estimate for
the Wright function (see Lemma 3 in [27]):

|W (−z;−β ,γ)| � const.

1+ |z|−
γ−1

β
, if γ < 1, (4.57)

where we put β := ν and γ := −ν . Thus, inequalities (4.56), (4.57) lead to (4.45).
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As for a proof of inequality (4.46), we again use inequality (4.50) and change of
variable (4.52). Thus, we have

I2 :=
t∫

0

dτ
∫

Rn−2
+

dy′′
+∞∫
ε

|∂ ν
τ G(y′,τ)|dyl

� const.
∫

Rn−2
+

dx′′ exp

{
−A

n−1

∑
j=1, j 
=l

x j

} t∫
0

dτ
+∞∫
0

dη |W (−ητ−ν ;−ν,−ν)|τ−1−ν

×
+∞∫
ε

e−Ayl/η dyl

η
.

Then the simple calculations lead to the following inequality

I2 � C

+∞∫
0

dηe−Aε/η
t∫

0

|W (−ητ−ν ;−ν,−ν)|τ−1−νdτ. (4.58)

Doing the change of variable

τ = (η/ρ)1/ν (4.59)

in the inner integral in (4.58) and using inequality (4.57), we conclude

I2 � C

+∞∫
0

dηe−Aε/ηη−1

+∞∫
ηt−ν

|W (−ρ ;−ν,−ν)|dρ � C

+∞∫
0

dη
e−Aε/η

η

+∞∫
ηt−ν

dρ
ρ1+ 1

ν
.

(4.60)
After that, estimate (4.46) follows from (4.60).

At last, to complete the proof of Lemma 4.1, we have to obtain (4.47). Using
(4.50) with m = 1 and doing the change of variables (4.52) and (4.59), we infer after
some calculations:

I3 :=
t∫

0

dτ
∫

Rn−2
+

dy′′
+∞∫
ε

yα
j

∣∣∣∣∂ ν
τ

∂G
∂yl

∣∣∣∣dyl

� C

t∫
0

dτ
∫

Rn−2
+

dx′′xα
j exp

{
−A

n−1

∑
j=1, j 
=l

x j

} +∞∫
0

dη
|W (−ητ−ν ;−ν,−ν)|

η1−α τ1+ν

+∞∫
ε/η

exp{−Axl}dxl

� C

+∞∫
0

ηα−2e−Aε/ηdη
+∞∫
0

|W (−ρ ;−ν,−ν)|dρ , l 
= j. (4.61)
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We apply estimate (4.57) in the inner integral in the right-hand side of (4.61) and per-
form the change of variable: ε/η = ζ . Thus, we deduce the following inequality

I3 � Cεα−1

+∞∫
0

ζ−αe−Aζ dζ
+∞∫
0

dρ
1+ ρ1+ 1

ν

which proves (4.47). In the similar way we can deduce (4.47) if l = j . �
Next we repeat the arguments from Section 7 [32] and use the results of Lemma

4.1 to get the following view for Dν
t ℘.

PROPOSITION 4.1. Let conditions of Lemma 4.1 hold then there is the following
representation for the function Dν

t ℘:

Dν
t ℘= f1(x′, t)+

∫ t

0
dτ

∫
Rn−1

[ f1(x′ − y′,t − τ)− f1(x′,t− τ)]∂ ν
τ G(y′,τ)dy′. (4.62)

Then Lemma 4.1, Proposition 4.1 and results of Chapter 3 [16] allow us to deduce
the following result.

LEMMA 4.2. Let α,ν ∈ (0,1), conditions (4.6) and (4.11) hold, and f1 ∈C([0,T ],
C1+α(Rn−1)) . Then the function ℘ given with (4.30) satisfies the following estimate

‖℘‖C([0,T ],C2+α (Rn−1)) +‖Dν
t ℘‖C([0,T ],C1+α (Rn−1)) � C‖ f1‖C([0,T ],C1+α (Rn−1)). (4.63)

If in addition f1 ∈C1+α ,αν/2,α(R
n−1
T ) then

2

∑
|k|=0

[Dk
x℘](α ,να/2)

Rn−1
T

+
1

∑
|k|=0

[Dν
t Dk

x℘](α ,να/2)
Rn−1

T
� C‖ f1‖C1+α,αν/2,α (R

n−1
T )

. (4.64)

Next step of our investigation is a proof of the corresponding estimates to the func-
tions ℘(x′, t) and Dν

t ℘(x′,t) with respect to time. To this end, we need the following
result.

PROPOSITION 4.2. Let α,ν ∈ (0,1), T1 , T2 ∈ [0,T ], T2 > T1 . Then the function
G(y′,τ) which is represented by (4.31) satisfies the following inequalities:

(i) ∫ T2

T1

dτ
∫

Rn−1
+

yα
j |∂ ν

τ G(y′,τ)|dy′ � C(T2−T1)αν , j = 1,n−1, (4.65)

(ii) ∫ 3T1−2T2

0
dτ

∫ T2

T1

dt
∫

Rn−1
+

yα
j

∣∣∣∣ ∂
∂ (t − τ)

∂ ν
t−τG(y′,t− τ)

∣∣∣∣dy′ � C(T2 −T1)αν ,

if T1 > 2(T2−T1), j = 1,n−1. (4.66)
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The obtaining of these results is technically tedious so we give their proof in the
Appendix 6.1

LEMMA 4.3. Let α,ν ∈ (0,1), conditions (4.6), (4.11) and (4.9) hold. Then there
is the following estimate:

2

∑
|m|=0

〈Dm
x ℘〉(αν/2)

t,Rn−1
T

+
1

∑
|m|=0

〈Dν
t Dm

x ℘〉(αν/2)
t,Rn−1

T
� C‖ f1‖C1+α,να/2,α (R

n−1
T )

. (4.67)

Proof. Note that estimate of the term ∑2
|m|=0〈Dm

x ℘〉(αν/2)
t,Rn−1

T
follows from Proposi-

tion 2.1, Lemma 4.2 and the next interpolation inequality (see Lemma 3.1 [31] and
Corollary 1.2.18 [20]):

‖V‖Cl0 (Q) � C‖V‖ε
Cl2 (Q)‖V‖1−ε

Cl1(Q)
,

where ε ∈ (0,1), 0 � l1 < l2, l0 = l1 + ε(l2− l1) . Thus, we have

2

∑
|m|=0

〈Dm
x ℘〉(αν/2)

t,Rn−1
T

� C‖ f1‖C([0,T ],C1+α (Rn−1)). (4.68)

To finish the proof of Lemma 4.3, we have to evaluate the terms 〈Dν
t

∂m℘
∂xm

i
〉(αν/2)
t,Rn−1

T
, m =

0,1; i = 1,n−1. Let t1,t2 ∈ [0,T ] , t2 > t1 and denote by

Δt := t2 − t1, ΔtDν
t

∂m℘
∂xm

i
:= Dν

t
∂m℘
∂xm

i
(x′,t2)−Dν

t
∂m℘
∂xm

i
(x′,t1).

As follows from (4.62), we can conclude that

Dν
t

∂m℘
∂xm

i
=

∂m f1
∂xm

i
+

t∫
0

dτ
∫

Rn−1

[
∂m f1
∂xm

i
(x′ − y′,τ)− ∂m f1

∂xm
i

(x′,τ)
]

∂ ν
t−τG(y′,t− τ)dy′,

(4.69)
where m = 0,1; i = 1,n−1.

First, we analyze the case t1 > 2Δt and represent the difference ΔtDν
t

∂m℘
∂xm

i
as

ΔtDν
t

∂m℘
∂xm

i
=

t2∫
t1−2Δt

dτ
∫

Rn−1

[
∂m f1
∂xm

i
(x′ − y′,τ)− ∂m f1

∂xm
i

(x′,τ)
]

∂ ν
t2−τG(y′,t2− τ)dy′

−
t1∫

t1−2Δt

dτ
∫

Rn−1

[
∂m f1
∂xm

i
(x′ − y′,τ)− ∂m f1

∂xm
i

(x′,τ)
]

∂ ν
t1−τG(y′,t1− τ)dy′

+
t1−2Δt∫

0

dτ
∫

Rn−1

[
∂m f1
∂xm

i
(x′ − y′,τ)− ∂m f1

∂xm
i

(x′,τ)
]
[∂ ν

t2−τG(y′,t2− τ)
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−∂ ν
t1−τG(y′,t1 − τ)]dy′ +

[
∂m f1
∂xm

i
(x′,t2)− ∂m f1

∂xm
i

(x′,t1)
]

≡
4

∑
l=1

Jl. (4.70)

To evaluate the term J1 , we do the change of a variable: z = t2−τ , in the inner integral
and then apply inequality (4.65) with T2 := 3Δt and T1 := 0. Thus, we have

|J1| � C(Δt)αν
〈

∂m f1
∂xm

i

〉(α)

x,Rn−1
T

. (4.71)

The estimate of J2 is got with the same way. As for J3 , the mean-value theorem
together with estimate (4.66), where T1 := t1 and T2 := t2 ,

|J3| � C(Δt)αν
〈

∂m f1
∂xm

i

〉(α)

x,Rn−1
T

. (4.72)

At last, the estimate of J4 follows immediately from the properties of the function f1 .
Thus, as it follows from (4.70)–(4.72), the following inequality is fulfilled:

n−1

∑
i=1

〈
Dν

t
∂m℘
∂xm

i

〉(αν/2)

t,Rn−1
T

� C‖ f1‖C1+α,αν/2(R
n−1
T )

, m = 0,1, if t1 > 2Δt. (4.73)

Let us prove estimate (4.73) if t1 < 2Δt . To this end, we use another form to difference
ΔtDν

t
∂m℘
∂xm

i
:

ΔtDν
t

∂m℘
∂xm

i
=

t1∫
0

dτ
∫

Rn−1

[
∂m f1
∂xm

i
(x′ − y′,t2 − τ)− ∂m f1

∂xm
i

(x′,t2− τ)
]

∂ ν
τ G(y′,τ)dy′

−
t1∫

0

dτ
∫

Rn−1

[
∂m f1
∂xm

i
(x′ − y′,t1 − τ)− ∂m f1

∂xm
i

(x′, t1 − τ)
]

∂ ν
τ G(y′,τ)dy′

+
t2∫

t1

dτ
∫

Rn−1

[
∂m f1
∂xm

i
(x′ − y′,t2 − τ)− ∂m f1

∂xm
i

(x′, t2 − τ)
]

∂ ν
τ G(y′,τ)dy′

+
[

∂m f1
∂xm

i
(x′,t2)− ∂m f1

∂xm
i

(x′,t1)
]

≡
4

∑
j=1

B j, i = 1,n−1, m = 0,1. (4.74)

Note that the estimate of B2 follows from inequality (4.65) where T1 := 0 and T2 := t1 :

|B2| � C‖ f1‖C([0,T ],C1+α (Rn−1))t
αν
1 .
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Since we consider the case of t1 < 2Δt , the last inequality is rewritten as

|B2| � C‖ f1‖C([0,T ],C1+α (Rn−1))(Δt)αν . (4.75)

The estimates of B1 and B3 are obtained with the same arguments. The term B4 is
evaluated like J4 . Thus, based on (4.74) and (4.75), we get estimate (4.73) in the case
of t1 < 2Δt .

Then, we collect these results with inequalities (4.68) and (4.73) to complete the
proof of Lemma 4.3. �

The following statement follows immediately from the results of Lemmas 4.2 and
4.3.

LEMMA 4.4. Let α,ν ∈ (0,1) , conditions (4.6), (4.11) and (4.9) hold, then next
estimate is fulfilled:

‖℘‖
C2+α,να/2,α(R

n−1
T )

+‖Dν
t ℘‖

C1+α,να/2,α (R
n−1
T )

� C‖ f1‖C1+α,να/2,α (R
n−1
T )

. (4.76)

Now we will prove the results similarly to Lemmas 4.2 and 4.4 for the functions
u±(x,t) . To this end, we need in the following properties of the kernels G±(x′,0,τ)
and K±(x′,0,η) represented with (4.32).

LEMMA 4.5. Let the conditions of Lemma 4.1 and Proposition 4.2 hold. Then:

• The functions K±(x′,0,η) satisfy inequalities (4.33), (4.34) and (4.36).

• Inequalities (4.39)–(4.47) hold for the functions G±(x′,0,τ) .

•
3T1−2T2∫

0

dτ
T2∫

T1

dt
∫

Rn−1
+

yα
j

∣∣∣∣∂ 2G±(x′,0,t− τ)
∂ (t− τ)∂yi

∣∣∣∣dy′ � C(T2 −T1)αν , (4.77)

if T1 > 2(T2−T1), j, i = 1,n−1.

The proof of Lemma 4.5 is given in Appendix 6.2. After that, using the results of
Lemma 4.5 and repeating arguments from the proofs of Lemmas 4.2 and 4.4, we get
the following.

LEMMA 4.6. Let the conditions of Lemma 4.2 hold, then the functions u±(x′,0,t)∈
C([0,T ],C2+α(Rn−1)) and

‖u±‖C([0,T ],C2+α (Rn−1)) +‖Dν
t u±‖C([0,T ],C1+α (Rn−1)) � C‖ f1‖C([0,T ],C1+α (Rn−1)). (4.78)

If the conditions of Lemma 4.4 hold, then the functions u±(x′,0,t) ∈ C2+α ,να/2,α

(R
n−1
T )

‖u±‖C2+α,να/2,α (R
n−1
T )

+‖Dν
t u±‖C1+α,να/2,α (R

n−1
T )

� C‖ f1‖C1+α,να/2,α (R
n−1
T )

. (4.79)
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4.3. Proof of Theorem 4.1

First of all we prove estimates (4.8) and (4.10) if either (4.7) or (4.9) holds. To
this end, as it follows from results of Lemmas 4.2, 4.4 and 4.6, it is enough to extend
estimates (4.78) and (4.79) into the functions u±(x′,xn, t), (x,t) ∈ Rn

±T . We represent
u±(x′,xn, t) as u±(x′,xn,t) = K � u±(x′,0,t), where K is the kernel of the Dirich-
let problem and u±(x′,0,t) ∈C2+α(Rn−1) for all t ∈ [0,T ] . Then, applying arguments
from Chapter 3 [16] allows us to show that functions u±(x′,xn,t) satisfy estimate either
(4.8) or (4.10). Moreover, the functions u±(x′,xn,t) represented by (4.28) and (4.29)
satisfy equations (4.1). The direct calculations together with applications of Lemmas
4.1 and 4.5 assure that ℘(x′,t) and u±(x′,xn,t) given by (4.28)–(4.30) meet require-
ments (4.2)–(4.5). Note that the uniqueness of the constructed solution in the corre-
sponding classes follows from coercive estimates (4.8), (4.10). All the written above
proves Theorem 4.1 in the case of (4.9).

To get Theorem 4.1 in the case of (4.7) we have to show continuous of the func-
tions ℘(x′, t) and u±(x′,xn,t) together with their derivatives with respect to time. To
this end, we repeat the arguments from Section 4 [14] adapting them to our case. That
completes the proof of Theorem 4.1.

If constant k in condition (4.4) is changed by kδ , δ ∈ [0,1] , then we can repeat all
the arguments from this section and obtain the results of Theorem 4.1, where the con-
stants in estimates (4.8) and (4.10) are independent of δ . The last statement follows
from uniformly boundedness of A0(kδ ), A1(kδ ) , a3kδ , a0

kδ+1 , kδa0
kδ+1 (see representa-

tions of the solution (4.20)–(4.22), (4.28)–(4.32)). Moreover, it is easy to see that

0 < A0(k) < A0(kδ ) < 2πa1a0; 0 <
a0

k+1
<

a0

kδ +1
< a0; 0 � kδa0

kδ +1
< ka0.

Thus, we can conclude the following:

REMARK 4.1. Let boundary condition (4.4) be changed by

∂u−
∂n

− kδ
∂u+

∂n
− kδ 〈a3,∇x′(u−−u+)〉 = f2(x′,t) on Rn−1

T , (4.80)

where δ ∈ [0,1] . We assume that conditions of Theorem 4.1 hold, then problem (4.1)–
(4.3), (4.80), (4.5), (4.6) has a unique solution (u−,u+,℘) which satisfies inequalities
(4.8) and (4.10) with the constants independent of δ .

5. Proof of the main results

Our argument splits into two steps. The first is related to the proof of the bounded-
ness of the linear operator A (see (3.42)). The second step is connected with the proof
of the nonlinear operator A −1F (z) is a contraction one.

5.1. Linear problem corresponding to (3.42)

Here we analyze the following linear problem

Δxwi = F0i(x,t) in ΩiT , 1,2, (5.1)
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w1 −w2 = −A(x)σ ϒT ; (5.2)

Dν
t σ − k2

1− k

[
∂w1

∂ n(ω)
− ∂w2

∂ n(ω)

]
−

n−1

∑
j=1

a j(x)
∂

∂ω j
(w1 −w2) = F1(x,t) on ϒT ; (5.3)

∂w1

∂ n(ω)
− k

∂w2

∂ n(ω)
− k

k1

n−1

∑
j=1

b j(x)
∂

∂ω j
(w1 −w2) = F2(x,t) on ϒT ; (5.4)

wi(x,t) = 0 on ΓiT , 1,2; (5.5)

σ(ω ,0) = 0 on ϒ; wi(x,0) = 0, x ∈ Ωi. (5.6)

Here F0i, Fi, i = 1,2, A(x), a j(x), b j(x), j = 1,n−1, are some given functions and

F0i(x,0) = 0, x ∈ Ωi, 1,2; Fj(x,0) = 0, x ∈ ϒ, j = 1,2;

F0i(x, t) ∈C([0,T ],Cα (Ωi)), Fj(x,t) ∈C([0,T ],C1+α(ϒ)); (5.7)

A(x), b j(x) satisfy condition (3.44) and a j(x) ∈C1+α(ϒ),

k =
k2

k1
, 0 < k2 < k1. (5.8)

THEOREM 5.1. Let α,ν ∈ (0,1); conditions (5.7), (5.8) and (3.44) hold; Γi, ϒ ∈
C2+α . Then, for a sufficiently small T , there exists a solution (w1,w2,σ) of problem
(5.1)–(5.6) and

2

∑
i=1

‖wi‖C([0,T ],C2+α (Ωi))
+‖σ‖C([0,T ],C2+α (ϒ)) +‖Dν

t σ‖C([0,T ],C1+α (ϒ))

� C[
2

∑
i=1

‖F0i‖C([0,T ],Cα (Ωi))
+

2

∑
j=1

‖Fj‖C([0,T ],C1+α (ϒ))]. (5.9)

Proof. First of all we analyze problem (5.1)–(5.6) under conditions

F0i, F2 ≡ 0, 1,2. (5.10)

We will use the method of parameter extension to solve problem (5.1)–(5.6), that is
replacing condition (5.4) by

∂w1

∂ n(ω)
− kδ

∂w2

∂ n(ω)
− kδ

k1

n−1

∑
j=1

b j(x)
∂

∂ω j
(w1 −w2) = 0 on ϒT , δ ∈ [0,1]. (5.11)

Let us consider problem (5.1)–(5.3), (5.11), (5.5) and (5.6). If δ = 1, this problem
is just problem (5.1)–(5.6). When δ = 0, this problem splits into two problems:

Δxw1 = 0 in Ω1T ,
∂w1

∂ n(ω)
|ΓT = 0, w1|Γ1T = 0, w1(x,0) = 0, x ∈ Ω1, (5.12)
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so w1 ≡ 0 in Ω1T ; and

Δxw2 = 0 in Ω2T ; w2|Γ2T = 0; w2(x,0) = 0, x ∈ Ω2; σ(ω ,0) = 0, ω ∈ ϒ;

w2 = A(x)σ and Dν
t σ +

k2

1− k
∂w2

∂ n(ω)
+

n−1

∑
j=1

a j(x)
∂w2

∂ω j
= F1 on ϒT . (5.13)

Problem (5.13) with a j(x) ≡ 0, j = 1,n−1, has been studied in Section 4 [32]. Thus,
it is not hard to prove, using arguments and results from Section 4 [32], one-to-one
solvability of (5.13): w2 ∈C([0,T ],C2+α(Ω2)), σ ∈C([0,T ],C2+α(ϒ)) :

‖w2‖C([0,T ],C2+α (Ω2))
+‖Dν

t w2‖C([0,T ],C1+α (Ω2))
+‖σ‖C([0,T],C2+α (ϒ))

+‖Dν
t σ‖C([0,T ],C1+α (ϒ)) � C‖F1‖C([0,T ],C1+α (ϒ)), (5.14)

where the constant C depends only on k1, k2, ‖A(x)‖C2+α (ϒ), ‖a j‖C1+α (ϒ), and mea-
sure of ϒ, Γ2, Ω2 .

In order to get the well-posedness of problem (5.1)–(5.6), we have to obtain a
uniform a priori estimate with respect to δ of the solution wi ∈ C([0,T ],C2+α(Ωi)),
i = 1,2, σ ∈C([0,T ],C2+α(ϒ)) of problem (5.1)–(5.3), (5.5), (5.6) and (5.11).

Adapting the standard Schauder technique to the case of a fractional derivative (to
this end we essential use Proposition 2.1) and applying the results of Theorem 4.1 and
Remark 4.1, we deduce:

2

∑
i=1

‖wi‖C([0,T ],C2+α (Ωi))
+‖σ‖C([0,T ],C2+α (ϒ)) +‖Dν

t σ‖C([0,T ],C1+α (ϒ))

� C1[‖F1‖C([0,T ],C1+α (ϒ)) + sup
Ω1T

|w1|+ sup
Ω2T

|w2|], (5.15)

where C1 is independent of δ .
As for estimates of sup

ΩiT

|wi|, i = 1,2, we apply statement (iii) from Proposition 2.3

where we put g3 := −A(x)σ , and Wi := wi . Thus we have

sup
ΩiT

|wi| � CT ν sup
ΩiT

|Dν
t wi| � C2T

ν‖Dν
t σ‖C([0,T ],C1+α (ϒ)). (5.16)

Then we collect (5.15) and (5.16) and, choosing T such that

C1C2T
ν < 1/4, (5.17)

we get the uniform estimate

2

∑
i=1

[‖wi‖C([0,T ],C2+α (Ωi))
+‖Dν

t wi‖C([0,T ],Cα (Ωi))
]+‖σ‖C([0,T ],C2+α (ϒ))

+‖Dν
t σ‖C([0,T ],C1+α (ϒ)) � C‖F1‖C([0,T ],C1+α (ϒ)), (5.18)
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where constant C is independent of δ .
In this way, we have proved the well-posedness of problem (5.1)–(5.6) in the case

of (5.10). At last results of statement (i) from Proposition 2.3 allow us to remove
restriction (5.10). �

Next, using results of Theorem 5.1 and Proposition 2.1 together with inequality
(4.9), we can get an existence of the more smooth solution of problem (5.1)–(5.6).

THEOREM 5.2. Let conditions of Theorem 5.1 hold and F0i(x,t) ∈Cα , αν
2 ,α(ΩiT ),

Fj(x,t) ∈ C1+α , αν
2 ,α(ϒT ) . Then, for a sufficiently small T , there exists a solution

(w1,w2,σ) of problem (5.1)–(5.6) and

2

∑
i=1

‖wi‖
C2+α, αν

2 ,α (ΩiT )
+‖σ‖

C2+α, αν
2 ,α (ϒT )

+‖Dν
t σ‖

C1+α, αν
2 ,α (ϒT )

� C[
2

∑
i=1

‖F0i‖
Cα, αν

2 ,α (ΩiT )
+

2

∑
j=1

‖Fj‖
C1+α, αν

2 ,α (ϒT )
]. (5.19)

Note that Theorem 5.1 gives the local classical solvability of linear problem (5.1)–
(5.6) with fractional derivative. The same result takes place in the case ν = 1 (see
Section 4 from [36]). As for results of Theorem 5.2, they mean the local one-valued
solvability in Hölder spaces Ck+α ,β ,α , β := αν/2. These results represent a marked
difference with the case ν = 1 where exponent β is greater, β := α , α ∈ (0,1/2) (see
Section 4 [4]).

5.2. Solvability of nonlinear problem (3.32)–(3.37)

We introduce the functional spaces H1 and H2 , such that z∈H1 and Fz ∈H2 ,

H1 = C
0
([0,T ],C2+α(Ω1))×C

0
([0,T ],C2+α(Ω2))×C

0
([0,T ],C2+α(ϒ))

×C
0
([0,T ],C1+α(ϒ));

H2 = C
0
([0,T ],Cα(Ω1))×C

0
([0,T ],Cα(Ω2))×C

0
([0,T ],C2+α(ϒ))×C

0
([0,T ],C1+α(ϒ))

×C
0
([0,T ],C1+α(ϒ))×C

0
([0,T ],C2+α(Γ1))×C

0
([0,T ],C2+α(Γ2));

and

‖z‖H1 = ‖(w1,w2,σ)‖H1

=
2

∑
i=1

‖wi‖C([0,T ],C2+α (Ωi))
+‖σ‖C([0,T ],C2+α (ϒ)) +‖Dν

t σ‖C([0,T ],C1+α (ϒ));

‖Fz‖H2 = ‖(F01(z),F02(z),0,F1(z),F2(z),0,0)‖H2

=
2

∑
i=1

‖F0i(z)‖C([0,T ],Cα (Ωi))
+

2

∑
j=1

‖F j(z)‖C([0,T ],C1+α (ϒ)).
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Based on (3.42) and representations (3.39)–(3.41), we can rewrite problem (3.32)–
(3.37) in the form

A z = Fz = F(x,t)+F 1(z), (5.20)

where z = (w1,w2,σ), A is the linear operator which has been studied in Subsection
5.1, A : H1 → H2; the vector F(x,t) is constructed by initial data; F 1(z) contains
the elements described in Corollary 3.2.

Since the operator A satisfies the conditions of Theorem 5.1, nonlinear problem
(5.20) can be represented as

z = A −1F(x,t)+A −1F 1(z) ≡ P(z).

LEMMA 5.1. Let Bd , Bd ⊂ H1 , be a ball with the center located in the origin
and the radius of d . For z ∈ Bd the following estimates hold

‖F (0)‖H2 � C1(T ); (5.21)

‖F (z1)−F (z2)‖H2 � C2(T,d)‖z1− z2‖H1 , (5.22)

where constants C1(T ) and C2(T,d) vanish if T,d → 0 .

Proof. To prove Lemma 5.1 we adapt the arguments from Section 5 [4] to the
case of the fractional derivative. On this route we use essentially representations (3.25),
(3.39)–(3.41) and results of Theorem 5.1 and Corollaries 3.1, 3.2, Proposition 2.1.

First we get inequality (5.21) for F1(z) . As for estimates of F0i(z) and F2(z)
which are contained in F (z) , they are evaluated with the same way.

From (3.40), one can see that the “worst” term under evaluating F1(0) is sωi . So
that we get, using (3.17), (3.25) and (3.26),

‖sωi‖C([0,T ],C1+α (ϒ)) � const.T ν
2

∑
i=1

‖ψi‖C3+α (Γi). (5.23)

In virtue of the appropriate choose the function s , inequality (5.23) will be hold in the
case ν = 1 ( i.e. in the case of integer order derivative).

Thereby we conclude from Corollary 3.2 and (5.23) that

‖F1(0)‖C([0,T ],C1+α (ϒ)) � CT ν
2

∑
i=1

‖ψi‖C3+α (Γi).

Then we show that F2(z) satisfies inequality (5.22). As it follows from Corollary
3.2, the main difficulties deal with the linear terms in the difference [F2(z1)−F2(z2)] .
The “worst” term comes from ∑n−1

i, j=1
∂S j

∂ρωi
(ω ,0,0)sωi

∂v10
∂n(ω)σω j , and one is

∂S j

∂ρωi

∣∣∣∣
t=0

sωi

∂v10

∂ n(ω)
σω j = Φ(x)tν σω j , Φ(x) ∈C2+α(ϒ). (5.24)
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Note that to deduce (5.24) we apply representation (3.25) for the function s and esti-
mates (3.17) together with (3.26).

Thus, we can conclude from (5.24) and Theorem 5.1∥∥∥∥∥ n−1

∑
i, j=1

∂S j

∂ρωi

(ω ,0,0)sωi

∂v10

∂ n(ω)

[
∂σ1

∂ω j
− ∂σ2

∂ω j

]∥∥∥∥∥
C([0,T ],C1+α (ϒ))

� CT ν‖σ1−σ2‖C([0,T ],C2+α (ϒ)). (5.25)

The other terms in the difference [F2(z1)−F2(z2)] can be estimated more easily, using
again Proposition 2.1, Corollaries 3.1 and 3.2, Theorem 5.1, so that we get inequality
(5.22) for F2(z) . In the same way one can obtain estimate (5.22) for F1(z) and
F0i(z) . That completes the proof of Lemma 5.1. �

Inequalities (5.22) mean that for sufficiently small T and d the nonlinear operator
P(z) satisfies the conditions of the fixed point theorem for a contraction operator.
Hence, the fixed point of the operator is the solution of problem (3.15), and Theorem
3.1 has been proved.

To get the local solvability of nonlinear problem (3.15) in the more smooth classes,
we repeat the arguments above and apply the results of Theorem 5.2 together with the
second inequality in (3.29). Thus, we get the following result.

THEOREM 5.3. Let conditions of Theorem 3.1 hold. Then for some small T ,
there is a unique solution (v1(x,t),v2(x,t),ρ(ω ,t)) of nonlinear problem (3.15) for
t ∈ [0,T ] , such that

vi(x, t) ∈C2+α , αν
2 ,α(ΩiT ), ρ(ω ,t) ∈C2+α , αν

2 ,α(ϒT ), Dν
t ρ(ω ,t) ∈C1+α , αν

2 ,α(ϒT ),

and equality (3.21) takes place.

6. Appendix

6.1. The proof of Proposition 4.2

First, we get estimate (4.65). Using inequalities (4.50) with m = 0, we deduce

L1 :=
T2∫

T1

dτ
∫

Rn−1
+

yα
j |∂ ν

τ G(y′,τ)|dy′

� C
∫

Rn−1
+

yα
j dy′

T2∫
T1

dτ
+∞∫
0

τ−1−ν |W (−ητ−ν ;−ν,−ν)|exp

{
−A

n−1

∑
i=1

yi

η

}
η1−ndη .
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Then the change of variables (4.52) and (4.53) leads to

L1 � C
∫

Rn−1
+

xα
j exp

{
−A

n−1

∑
i=1

xi

}
dx′

T2∫
T1

dτ
+∞∫
0

τνα−1zα |W (−z;−ν,−ν)|dz

� C(T2−T1)να . (6.1)

To obtain the last inequality in (6.1), we applied estimate (4.57) with β := ν, γ := −ν
to the function |W (−z;−ν,−ν)| .

Next, we prove (4.66). Using the following formula from[26]

dn

dtn
(tγ−1W (ct−β ;−β ,γ)) = tγ−1−nW (ct−β ;−β ,γ −n), (6.2)

we represent ∂
∂ t ∂ ν

t G(y′,t) as

∂
∂ t

∂ ν
t G(y′,t) =

+∞∫
0

t−2−νW (−ηt−ν ;−ν,−ν −1)K(y′,η)dη . (6.3)

After that we apply inequality (4.33) with m = 0 to the right-hand side in (6.3) and
infer

∣∣∣∣ ∂
∂ t

∂ ν
t G(y′, t)

∣∣∣∣ � C

+∞∫
0

t−2−ν |W (−ηt−ν ;−ν,−ν −1)|
exp

{
−A

n−1
∑
i=1

|yi|η−1

}
ηn−1 dη .

(6.4)
Based on estimate (6.4), one can easily deduce that

L2 :=
3T1−2T2∫

0

dτ
T2∫

T1

dt
∫

Rn−1
+

yα
j

∣∣∣∣ ∂
∂ (t − τ)

∂ ν
t−τG(y′,t− τ)

∣∣∣∣dy′

� C

3T1−2T2∫
0

dτ
T2∫

T1

dt

+∞∫
0

(t − τ)−2−ν |W (−η(t− τ)−ν ;−ν,−1−ν)|

×
∫

Rn−1
+

yα
j exp

{
−A

n−1

∑
i=1

yi

η

}
η1−ndy′, (6.5)

or, after the change of variables (4.52), (4.53),

L2 � C
∫

Rn−1
+

xα
j exp

{
−A

n−1

∑
i=1

xi

}
dy′

3T1−2T2∫
0

dτ
T2∫

T1

dt

+∞∫
0

(t−τ)−2+ανzα |W (−z;−ν,−1−ν)|

� C

3T1−2T2∫
0

dτ
T2∫

T1

dt(t− τ)−2+αν . (6.6)
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Here we applied again estimate (4.57) with β := ν , γ := −1− ν . After some simple
calculations, we get from (6.6) that

L2 � C[T αν
2 −Tαν

1 +(1−2αν)(T2 −T1)αν ]. (6.7)

Since we consider the case T2−T1
T1

� 1
2 , then

Tαν
2 −Tαν

1 =
([

T2 −T1

T1
+1

]αν
−1

)
T αν
1 � C(T2 −T1)αν . (6.8)

Hence, inequality (6.7) together with (6.8) lead to estimate (4.66).

6.2. Proof of Lemma 4.5

As follows from representation (4.20)–(4.22).

K∗
+(ξ ,0,η) =

(
1+ ik

〈a3,ξ 〉
|ξ |

)
K∗(ξ ,η),

K∗
−(ξ ,0,η) =

(
1− i

〈a3,ξ 〉
|ξ |

)
K∗(ξ ,η), (6.9)

where the function 〈a3,ξ 〉
|ξ | does not change essentially properties of the function K∗(ξ ,η) .

Moreover, representations (4.31) and (4.32) together with (6.9) lead to

G+(y′,0,τ) = G(y′,τ)+
+∞∫
0

dητ−1W (−ητ−ν ;−ν,0)
∫

Rn−1

ik〈a3,ξ 〉
|ξ | K∗(ξ ,η)e2iπ〈ξ ,y′〉dξ ;

G−(y′,0,τ) = G(y′,τ)−
+∞∫
0

dητ−1W (−ητ−ν ;−ν,0)
∫

Rn−1

K∗(ξ ,η)
i〈a3,ξ 〉
|ξ | e2iπ〈ξ ,y′〉dξ .

Thus, to get statements (i) and (ii) of Lemma 4.5, it is enough to repeat the correspond-

ing arguments from Lemma 4.1. As for inequality (4.77), we can represent ∂ 2G±
∂τ∂yi

as

∂ 2G±
∂τ∂yi

(y′,0,τ) =
+∞∫
0

∂
∂τ

(τ−1W (−ητ−ν ;−ν,0))
∂K±
∂yi

(y′,0,η)dη

=
+∞∫
0

τ−2W (−ητ−ν ;−ν,−1)
∂K±
∂yi

(y′,0,η)dη . (6.10)

Here we used again formula (6.2). Based on statement (i) of Lemma 4.5 and represen-
tation (6.10), one can easily infer that
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∣∣∣∣ ∂ 2G±
∂τ∂yi

(y′,0,τ)
∣∣∣∣ � C

+∞∫
0

τ−2|W (−ητ−ν ;−ν,−1)|exp

{
−A

n−1

∑
i=1

|yi|
η

}
η−ndη . (6.11)

Then, we repeat the proof of estimate (4.66) and, using (6.11) together with change of
variables (4.52) and (4.53), have

L3 :=
3T1−2T2∫

0

dτ
T2∫

T1

dt
∫

Rn−1
+

yα
j

∣∣∣∣ ∂ 2G±
∂ (t − τ)∂yi

(y′,0,t− τ)
∣∣∣∣dy′

� C
∫

Rn−1
+

xα
j exp

{
−A

n−1

∑
i=1

xi

}
dx′

3T1−2T2∫
0

dτ
T2∫

T1

dt(t− τ)να−2

×
+∞∫
0

zα−1|W (−z;−ν,−1)|dz. (6.12)

Applying inequality (4.57) with β := ν, γ := −1 to the last integral in (6.12), we
deduce after some simple calculations:

L3 � C

3T1−2T2∫
0

dτ
T2∫

T1

dt(t− τ)να−2. (6.13)

Note that estimate (6.13) is the same as (6.6). Hence, repeating the end of arguments
from the proof of Proposition 4.2, we can get estimate (4.77).
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