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EXISTENCE OF AN UNBOUNDED SOLUTION FOR MULTI–POINT

BOUNDARY VALUE PROBLEMS OF FRACTIONAL

DIFFERENTIAL EQUATIONS ON AN INFINITE DOMAIN

YOUSEF GHOLAMI

Abstract. In this paper, considering the fractional boundary value problem⎧⎪⎪⎨
⎪⎪⎩

Dα
0+u(t)+a(t) f (t,u(t),u′(t)) = 0; t ∈ (0,∞), α ∈ (2,3),

u(0) = u′(0) = 0, lim
t→∞

Dα−1
0+ u(t) =

m

∑
i=1

βiD
α−1
0+ u(t)

∣∣∣∣
t=ξi

,

0 < ξ1 < ξ2 < ... < ξm < ∞, βi ∈ R,

where Dα
0+ represents Riemann-Liouville fractional derivative of order α and using famous

Leray-Schauder Nonlinear Alternative theorem, we will obtain an unbounded solution of above
BVP. At the end some examples illustrate.

1. Introduction

Fractional differential equations is a full applicable theory in almost whole sci-
ences such as basic sciences, engineering, social sciences, medicine, economics, dy-
namical processes and so on [see more details in monographes [1], [2], [3]]. Every
interested researcher can find a large number of attractive investigations in various
fields of fractional calculus and related applications such as solvability and existence
of multiplicity of positive solutions for a given boundary value problems of fractional
differential equations such as [4], [5], [6], [7], [8], [9], and references therein.

Kazem Ghanbari and Yousef Gholami in [6] used some standard fixed point the-
orems in order to represent the existence of triple positive solutions of the following
fractional boundary value problem

⎧⎪⎪⎨
⎪⎪⎩

Dα
0+u(t)+ λa(t) f (t,u(t)) = 0, t ∈ (0,∞), α ∈ (2,3)

u(0)+u′(0) = 0, limt→∞ Dα−1
0+ u(t) =

m−2

∑
i=1

βiu
′(ξi),

0 < ξ1 < ξ2 < ... < ξm−2 < ∞, βi ∈ R
+ ∪0, i = 1,2, ...,m−2

where Dα
0+ represent the fractional Riemann-Liouville derivative of order α .
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In this paper we consider the following BVP:⎧⎪⎪⎨
⎪⎪⎩

Dα
0+u(t)+a(t) f (t,u(t),u′(t)) = 0; t ∈ (0,∞), α ∈ (2,3),

u(0) = u′(0) = 0, lim
t→∞

Dα−1
0+ u(t) =

m

∑
i=1

βiD
α−1
0+ u(t)

∣∣∣∣
t=ξi

,

0 < ξ1 < ξ2 < ... < ξm < ∞, βi ∈ R.

(1.1)

By means of Leray-Schauder Nonlinear Alternative theorem, we show that the
boundary value problem (1.1) has an unbounded solution.

Firstly assume that the following conditions are satisfy:

(C1)
m

∑
i=1

βi < 1.

(C2) a ∈C ([0,∞), [0,∞)) and there exist ρ ∈ (0,∞) such that

0 <

∫ ∞

ρ
a(s)ds < ∞.

(C3) f ∈C
(
[0,∞)×R

2,R
)

and f (t,0,0) dos not vanish identically zero on [0,∞).

(C4) F(t,u,u′) = f (t,exp(tα−1)u,exp(tα−2)u′) and

lim
|u|→∞
|u′|→∞

|F(t,u,u′)|
ψ1(|u|)ψ2(|u′|) = φ(t),

where φ ∈ L1[0,∞) and ψ1 ∈ C ([0,∞),(0,∞)) is nondecreasing on [0,∞) also
there exist M ∈ R

+ such that 0 < |ψ2(|u′|)| � M on [0,∞) .

2. Technical background

In this section we introduce some standard definitions and lemmas that will be
needed to prove the main result in the next section.

DEFINITION 2.1. Assume that u ∈ L1(0,∞) . The fractional Riemann-Liouville
integral of order α for u is defined by

Iα
0+u(t) =

1
Γ(α)

∫ t

0
(t − s)α−1u(s)ds, α > 0.

DEFINITION 2.2. The fractional Riemann-Liouville derivative of order α for a
given real valued function u on (0,∞) is defined by

Dα
0+u(t) =

1
Γ(n−α)

(
d
dt

)n ∫ t

0
(t − s)n−α−1u(s)ds, α > 0, n = [α]+1,

provided that the right hand side is point-wise defined on (0,∞) .
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LEMMA 2.3. If u ∈C(0,∞) , Dα
0+u(t) ∈ L1(0,∞) , α > 0 , then

Iα
0+Dα

0+u(t) = u(t)+
n

∑
i=1

cit
i, ci ∈ R, n = [α]+1.

LEMMA 2.4. Assume that y ∈ C(0,∞) , 0 <
∫ ∞
0 y(s)ds < ∞. Then the boundary

value problem
Dα

0+u(t)+ y(t) = 0, t ∈ (0,∞), α ∈ (2,3), (2.1)

u(0) = u′(0) = 0, lim
t→∞

Dα−1
0+ u(t) =

m

∑
i=1

βiD
α−1
0+ u(t)

∣∣∣∣
t=ξi

, (2.2)

has the unique solution as

u(t) =
∫ ∞

0
G(t,s)y(s)ds, (2.3)

such that
G(t,s) = G1(t,s)+G2(t,s), (2.4)

with

G1(t,s) =
1

Γ(α)

{
tα−1− (t− s)α−1; 0 � s � t < ∞

tα−1; 0 � t � s < ∞
(2.5)

and

G2(t,s) =

m

∑
i=1

βit
α−1

Γ(α)(1−
m

∑
i=1

βi)

{
0; 0 � s � ξi < ∞

1; 0 � ξi � s < ∞
(2.6)

Proof. By means of Lemma 2.3 and considering (2.1), we have

u(t) = c1t
α−1 + c2t

α−2 + c3t
α−3−

∫ t

0

(t − s)α−1

Γ(α)
y(s)ds.

Implementing boundary conditions u(0) = 0, u′(0) = 0 we conclude that c3 = 0, c2 =
0 respectively. Now applying third boundary condition

lim
t→∞

Dα−1
0+ u(t) =

m

∑
i=1

βiD
α−1
0+ u(t)

∣∣∣∣
t=ξi

,

we deduce that

c1 =

∫ ∞

0
y(s)ds−

m

∑
i=1

βi

∫ ξi

0
y(s)ds

Γ(α)(1−
m

∑
i=1

βi)
.



128 YOUSEF GHOLAMI

Thus

u(t) = c1t
α−1−

∫ t

0

(t − s)α−1

Γ(α)
y(s)ds

= tα−1

∫ ∞

0
y(s)ds−

m

∑
i=1

βi

∫ ξi

0
y(s)ds

Γ(α)(1−
m

∑
i=1

βi)
−

∫ t

0

(t − s)α−1

Γ(α)
y(s)ds

=
∫ ∞

0
G1(t,s)y(s)ds−

∫ ∞

0

tα−1

Γ(α)
y(s)ds+ tα−1

∫ ∞

0
y(s)ds−

m

∑
i=1

βi

∫ ξi

0
y(s)ds

Γ(α)(1−
m

∑
i=1

βi)

=
∫ ∞

0
G1(t,s)y(s)ds+

m

∑
i=1

βit
α−1

∫ ∞

0
y(s)ds

Γ(α)(1−
m

∑
i=1

βi)
−

m

∑
i=1

βit
α−1

∫ ξi

0
y(s)ds

Γ(α)(1−
m

∑
i=1

βi)

=
∫ ∞

0
G1(t,s)y(s)ds+

∫ ∞

0
G2(t,s)y(s)ds =

∫ ∞

0
G(t,s)y(s)ds,

where G(t,s) that is called Green’s function corresponds to (2.1) and defined by (2.4)–
(2.6). Uniqueness of coefficients c1 , c2 , c3 , shows that (2.3) is the unique solution of
boundary value problem (2.1), (2.2). The proof is complete. �

REMARK 2.5. The Green function of (2.1), (2.2) has the following properties:

(H1 ) G(t,s) � 0 for t,s ∈ (0,∞) .

(H2) exp(−tα−1)G(t,s) � L0, L0 = 1
Γ(α)

1

1−
m

∑
i=1

βi

.

(H3) exp(−tα−2) ∂G(t,s)
∂ t � L1, L1 = 1

Γ(α−1)
1

1−
m

∑
i=1

βi

.

REMARK 2.6. Considering the following space

X =
{

u ∈C([0,∞),R)
∣∣∣∣ lim

t→∞
exp(−tα−1)u(t) < ∞

}
,

such that equipped with the norm

||u||X = ||u||∞ = sup
t∈[0,∞)

exp(−tα−1)|u(t)|,
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define the space

Y =
{

u(t) ∈ X

∣∣∣∣ u′(t) ∈C([0,∞),R), lim
t→∞

exp(−tα−2)u′(t) < ∞
}

,

that endowed with the norm

||u||Y = ||u||∞ + ||u′||∞ = sup
t∈[0,∞)

exp(−tα−1)|u(t)|+ sup
t∈[0,∞)

exp(−tα−2)|u′(t)|,

and applying some standard arguments about properties of a given Banach space, we
can show that X ,Y are Banach spaces.

Basically in this paper, we use the Banach space Y defined above.

Define the operator T : Y → Y as follows

(Tu)(t) =
∫ ∞

0
G(t,s)a(s) f (s,u(s),u′(s))ds, u ∈ Y. (2.7)

Obviously fractional boundary value problem (1.1) has a solution u if and only if u
solve the operator equation u = Tu .

THEOREM 2.7. [5] Let C be a convex subset of a Banach space, U be a open
subset of C with 0 ∈U . Then every completely continuous map T :U →C has at least
one of the two following properties:

(E1) There exist an u ∈U such that Tu = u.

(E2) There exist an v ∈ ∂U and λ ∈ (0,1) such that v = λTv.

As a result of noncompactness of half line [0,∞) , the Arzela-Ascoli theorem fails
to work in space Y . Thus in order to show the compactness of the operator T defined
by (2.7), we need to represent the following modified compactness criterion.

LEMMA 2.8. [9] Assume that Z is a bounded subset of Y . Then Z is relatively
compact in Y , provided that the following conditions hold:

(i) For u(t) ∈ Z , exp(−tα−1)u(t) and exp(−tα−2)u′(t) are equicontinuous on any
compact subinterval of [0,∞) .

(ii) For given ε > 0 , there exist ν = ν(ε) such that for every t1,t2 � ν

exp(−tα−1)|[u(t2)−u(t1)]| < ε, exp(−tα−2)|[u′(t2)−u′(t1)]| < ε, u(t) ∈ Z.

(ii) is called Equiconvegence at infinity for Z .

LEMMA 2.9. If conditions (C1)− (C4) hold, then operator T : Y → Y is com-
pletely continuous.
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Proof. In order to represent the proof, we divide it into the three steps as follows:

(i) In this step show that integral operator T : Y → Y is continuous. Assume that
{un} be a sequence in Y such that un → u and u′n → u′ as n → ∞ . Hence there exist
positive constant δ such that

max{||u||Y , sup
n∈N

||un||Y}, max{||u′||Y , sup
n∈N

||u′n||Y} < δ .

Then using Lebesgue dominated convergence theorem, we conclude that

∫ ∞

0
f (s,un(s),u′n(s))ds →

∫ ∞

0
f (s,u(s),u′(s))ds, n → ∞.

Therefore considering Remark 2.5 and Remark 2.6, we can get

||Tun−Tu||Y = ||Tun−Tu||∞ + ||(Tun)′ − (Tu)′||∞
� L0

∫ ∞

0
a(s)| f (s,un(s),u′n(s))− f (s,u(s),u′(s))|ds

+L1

∫ ∞

0
a(s)| f (s,un(s),u′n(s))− f (s,u(s),u′(s))|ds

→ 0, n → ∞.

So T is continuous.

(ii) Now in order to prove the relatively compactness of operator T : Y → Y , as-
sume that Ω is a bounded subset of Y . Thus there exist ρ > 0 such that ||u||Y � ρ for
u ∈ Ω . Then using conditions (C2),(C4) and Remark 2.5, Remark 2.6 we have

||Tu||∞ = sup
t∈[0,∞)

∣∣∣∣
∫ ∞

0
G(t,s)a(s) f (s,u(s),u′(s))ds

∣∣∣∣
� L0

∫ ∞

0
a(s)

∣∣∣∣ f

(
s,exp(sα−1)

u(s)
exp(sα−1)

,exp(sα−2)
u′(s)

exp(sα−2)

)∣∣∣∣ ds

= L0

∫ ∞

0
a(s)

∣∣∣∣ F

(
s,

u(s)
exp(sα−1)

,
u′(s)

exp(sα−2)

)∣∣∣∣ ds

� L0

∫ ∞

0
a(s)φ(s)ψ1

( |u|
exp(sα−1)

)
ψ2

( |u′|
exp(sα−2)

)
ds

� L0ψ1(ρ)M
∫ ∞

0
a(s)φ(s)ds < ∞, u ∈ Ω.

Similarly we can show that ||(Tu)′||∞ < ∞ for u ∈ Ω . It show that TΩ is uniformly
bounded.

In order to use Lemma 2.8, we should prove that TΩ is equicontinuous on any
compact subinterval of [0,∞) . For J > 0, t1,t2 ∈ [0,J] and for u ∈ Ω , without lose
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generality, let t1 < t2 . Indeed:

|exp(−tα−1
2 )(Tu)(t2)− exp(−tα−1

1 )(Tu)(t1)|
�

∫ ∞

0
a(s)|[exp(−tα−1

2 )G(t2,s)− exp(−tα−1
1 )G(t1,s)] f (s,u(s),u′(s))|ds

�
∫ ∞

0
a(s)|[exp(−tα−1

2 )G1(t2,s)− exp(−tα−1
1 )G1(t1,s)] f (s,u(s),u′(s))|ds

+

m

∑
i=1

βi

Γ(α)(1−
m

∑
i=1

βi)
|exp(−tα−1

2 )tα−1
2 − exp(−tα−1

1 )tα−1
1 |

×
∫ ∞

ξi

a(s)| f (s,u(s),u′(s))|ds

� L0ψ1(ρ)M
∫ ∞

0
|[exp(−tα−1

2 )G1(t2,s)− exp(−tα−1
1 )G1(t1,s)]a(s)φ(s)ds

+

L0ψ1(ρ)M
m

∑
i=1

βi

Γ(α)(1−
m

∑
i=1

βi)
|exp(−tα−1

2 )tα−1
2 − exp(−tα−1

1 )tα−1
1 |

∫ ∞

ξi

a(s)φ(s)ds.

So we conclude that

|exp(−tα−1
2 )(Tu)(t2)− exp(−tα−1

1 )(Tu)(t1)|
� L0ψ1(ρ)M

∫ ∞

0
exp(−tα−1)|G1(t2,s)−G1(t1,s)|a(s)φ(s)ds

+

L0ψ1(ρ)M
m

∑
i=1

βi

Γ(α)(1−
m

∑
i=1

βi)
exp(−tα−1

1 )|tα−1
2 − tα−1

1 |
∫ ∞

ξ i
a(s)φ(s)ds

−→ 0, as uniformly t1 → t2 for u ∈ Ω.

Similarly we can prove that

|exp(−tα−2
2 )(Tu)′(t2)− exp(−tα−2

1 )(Tu)′(t1)| → 0,

when uniformly t1 → t2 . Therefore TΩ is locally equicontinuous on [0,∞) .

(iii) At last we must prove that TΩ is equiconvergent at infinity.
For u ∈ Ω ,we know that∫ ∞

0
a(s)| f (s,u(s),u′(s))|ds � ψ1(ρ)M

∫ ∞

0
a(s)φ(s)ds < ∞.

on the other hand considering (2.5), obviously we have

lim
t→∞

∫ ∞

0

G1(t,s)
exp(tα−1)

a(s) f (s,u(s),u′(s))ds = 0.



132 YOUSEF GHOLAMI

Hence

lim
t→∞

exp(−tα−1)|(Tu)(t)|

= lim
t→∞

∫ ∞

0

G1(t,s)
exp(tα−1)

a(s) f (s,u(s),u′(s))ds

+ lim
t→∞

exp(−tα−1)

m

∑
i=1

βit
α−1

Γ(α)(1−
m

∑
i=1

βi)

∫ ∞

ξi

a(s) f (s,u(s),u′(s))ds

�
L0ψ1(ρ)M

m

∑
i=1

βi

Γ(α)(1−
m

∑
i=1

βi)
lim
t→∞

tα−1

exp(tα−1
1 )

∫ ∞

ξ i
a(s)φ(s)ds < ∞.

Similarly we can obtain the following

lim
t→∞

exp(−tα−2)|(Tu)′(t)| < ∞.

Therefore TΩ is equiconvrgent at infinity. Finally by means of compactness criterion in
Lemma 2.8, we deduce that integral operator T :Y →Y is completely continuous. �

3. Main result

THEOREM 3.1. Let that conditions (C1)− (C4) hold and the following condition
is satisfied:

there exist positive constant μ such that(
1
L0

+
1
L1

)
>

2ψ1(μ)M
μ

∫ ∞

0
a(s)φ(s)ds. (3.1)

Then the fractional boundary value problem (1.1) has an unbounded solution u = u(t)
such that

0 � exp(−tα−1)u(t)+ exp(−tα−2)u′(t) � μ , t ∈ [0,∞).

Proof. Let us consider the following fractional boundary value problem⎧⎪⎪⎨
⎪⎪⎩

Dα
0+u(t)+ λa(t) f (t,u(t),u′(t)); t ∈ (0,∞), α ∈ (2,3),λ ∈ (0,1),

u(0) = u′(0) = 0, lim
t→∞

Dα−1
0+ u(t) =

m

∑
i=1

βiD
α−1
0+ u(t)

∣∣∣∣
t=ξi

,

0 < ξ1 < ξ2 < ... < ξm < ∞, βi ∈ R.

(3.2)

According to end part of Remark 2.6, we know that solving (3.2) is equivalent to solving
the fixed point problem u = λTu .
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Assume that

K = {u ∈Y | ||u||Y � μ}.
We claim that there is no u ∈ ∂K such that u = λTu for λ ∈ (0,1) .

The proof is immediate, because if there exist u ∈ ∂K with u = λTu , then for
λ ∈ (0,1) we have

||u||∞ = ||λ (Tu)(t)||∞ = sup
t∈[0,∞)

λ exp(−tα−1)|(Tu)(t)|

� sup
t∈[0,∞)

∫ ∞

0

G(t,s)
exp(tα−1)

a(s)| f (s,u(s),u′(s))|ds

� L0

∫ ∞

0
a(s)

∣∣∣∣ f

(
s,exp(sα−1)

u(s)
exp(sα−1)

,exp(sα−2)
u′(s)

exp(sα−2)

)∣∣∣∣ ds

= L0

∫ ∞

0
a(s)

∣∣∣∣ F

(
s,

u(s)
exp(sα−1)

,
u′(s)

exp(sα−2)

)∣∣∣∣ ds

� L0ψ1(μ)M
∫ ∞

0
a(s)φ(s)ds.

Thus

μ � L0ψ1(μ)M
∫ ∞

0
a(s)φ(s)ds.

Therefore it is clear that

1
L0

�
ψ1(μ)M

∫ ∞

0
a(s)φ(s)ds

μ
. (3.3)

Similarly we can show that

1
L1

�
ψ1(μ)M

∫ ∞

0
a(s)φ(s)ds

μ
. (3.4)

Gathering (3.3) and (3.4), we conclude that

(
1
L0

+
1
L1

)
�

2ψ1(μ)M
∫ ∞

0
a(s)φ(s)ds

μ
,

which is contradiction with (3.1). Then by means of Remark 2.5, Theorem 2.7, the
fractional boundary value problem (1.1) has an unbounded solution u = u(t) such that

0 � exp(−tα−1)u(t)+ exp(−tα−2)u′(t) � μ , t ∈ [0,∞).

This completes the proof. �
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4. Applications

EXAMPLE 4.1. Considering the fractional boundary value problem⎧⎪⎪⎨
⎪⎪⎩

D
5
2
0+u(t)+a(t) f (t,u(t),u′(t)) = 0, t ∈ [0,∞),

u(0) = u′(0) = 0, lim
t∈[0,∞)

D
3
2
0+u(t) =

1
4
D

3
2
0+u

(
1
4

)
+

1
2
D

3
2
0+u

(
1
2

)
,

(4.1)

where

a(t) = exp
(
− t

2

)
, f (t,u,u′) =

1
exp(t2)

exp(t
3
2 )+ exp(−t

3
2 )u2

exp(t
1
2 )+ exp(−t

1
2 )(u′)2

,

observing conditions (C1)− (C4) , it is clear that the conditions (C1)− (C3) hold. Also
by means of condition (C4) we find that

F(t,exp(t
3
2 )u,exp(t

1
2 )u′) = exp(−t)

1+u2

1+(u′)2 .

In this case, we conclude that

lim
|u|→∞
|u′|→∞

|F(t,u,u′)|
ψ1(|u|)ψ2(|u′|) = φ(t),

where φ(t) = exp(−t)∈ L1[0,∞) and ψ1(u) = 1+u2 is nondecreasing and continuous
on [0,∞) , also ψ2(u′) = 1

1+(u′)2 ∈ [0,1) on [0,∞) . Hence condition (C4) holds.

At last according to (3.1) and choosing μ > 20
3[Γ( 3

2 )+Γ( 5
2 )]

, by means of Theorem 3.1

we conclude that the fractional boundary value problem (4.1) has at least one positive
solution u = u(t) such that

0 � exp(−t
3
2 )u(t)+ exp(−t

1
2 )u′(t) � μ , t ∈ [0,∞).

EXAMPLE 4.2. Let us consider the following three-point fractional boundary value
problem on positive half line

⎧⎪⎪⎨
⎪⎪⎩

D
7
3
0+u(t)+a(t) f (t,u(t),u′(t)) = 0, t ∈ [0,∞),

u(0) = u′(0) = 0, lim
t∈[0,∞)

D
4
3
0+u(t) =

3

∑
i=1

βiD
4
3
0+u(ξi),

(4.2)

where

a(t) = exp(−t), β1 =
1
8
, β2 =

1
4
, β3 =

1
2
, ξ1 =

1
27

, ξ2 =
1
9
, ξ3 =

1
3
, (4.3)
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with

f (t,u,u′)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp

(
−t+exp

(
u

exp(t
4
3 )

) )
.

tg−1
(

u′

exp(t
1
3 )

)
1000

, 0 < u � 1

exp

(
−t+exp

(
u

exp(t
4
3 )

) )⎡
⎢⎣ tg−1

(
u′

exp(t
1
3 )

)
1000

+103(u−1)

⎤
⎥⎦ , 1 � u � 103

exp

(
−t+exp

(
u

exp(t
4
3 )

) )⎡
⎢⎣ tg−1

(
u′

exp(t
1
3 )

)
1000

+9.99×105

⎤
⎥⎦ , 103 � u.

(4.3) ensures that the conditions (C1),(C2) hold. Also construction of function f (t,u,u′)
shows that f is continuous on [0,∞) . Thus condition (C3) hold.

Now we have

F(t,u,u′) = f
(
t,exp(t

4
3 )u,exp(t

1
3 )u′

)
,

|F(t,u,u′)| � φ(t)ψ1(|u|)ψ2(|u′|),
where φ(t) = exp(−t) and ψ1(t) = exp(exp(u(t))) and

ψ2(u′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tg−1 u′

exp(t
1
3 )

1000
, 0 < u � 1

tg−1 u′

exp(t
1
3 )

1000
+103(u−1), 1 � u � 103

tg−1 u′

exp(t
1
3 )

1000
+9.99×105, 103 � u.

Hence φ2(u′) ∈ (0, π
2000 +106] . Therefore condition (C4) holds.

Now using (3.1) and choosing μ >
9( π

2000 +106)
2[Γ( 4

3 )+Γ( 7
3 )]

and applying Theorem 3.1, we

deduce that the fractional boundary value problem (4.2) has an unbounded solution u
such that

0 � exp(−t
7
3 )u(t)+ exp(−t

4
3 )u′(t) � μ , t ∈ [0,∞).
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