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SUBORDINATION RESULTS ON MULTIVALENT FUNCTIONS RELATED

TO THE SAIGO FRACTIONAL DIFFERINTEGRAL OPERATOR

J. K. PRAJAPAT

Abstract. In this paper we consider a class of multivalent analytics functions based on the use
of the Saigo operators of fractional calculus, known as Saigo hypergeometric fractional integrals
and derivatives. We obtain some useful properties and characteristics using the techniques of
differential subordinations. The main results are illustrated by several interesting corollaries and
show their relevance with earlier results.

1. Introduction and definitions

Let Ap denote the class of functions f (z) of the form

f (z) = zp +
∞

∑
n=1

ap+nz
p+n (p ∈ N = {1,2,3, . . .}), (1.1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1}. For the functions
f (z) and g(z), which are analytic in U , we say that the function f (z) is subordinate
to g(z) in U , and write f (z) ≺ g(z) , if there exists a function w(z) analytic in U such
that |w(z)| < 1, z ∈ U, and w(0) = 0 with f (z) = g(w(z)) in U . In particular, if f (z)
is univalent in U, we have the following equivalence:

f (z) ≺ g(z) (z ∈ U) ⇐⇒ [ f (0) = g(0) and f (U) ⊂ g(U)].

An analytic function f is said to be p -valent (p∈N) in a domain D , if it assumes
no value more than p times in D and there is some w0 such that f (z) = w0 has exactly
p solutions in D , when roots are counted in accordance with their multiplicities. If
p = 1, then function f is said to be univalent in D . For a given positive integer p ,
a p -valent is called p -valent starlike function in the open unit disk D , if there exist a
δ > 0 so that

ℜ
(

z f ′(z)
f (z)

)
> 0 for δ < |z| < 1.

Further, for the functions f j(z) ∈ Ap , given by

f j(z) = zp +
∞

∑
n=1

ap+n, jz
p+n ( j = 1,2; p ∈ N),
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the Hadamard product (or Convolution) of f1(z) and f2(z) is defined by

( f1 ∗ f2)(z) := zp +
∞

∑
n=1

ap+n,1ap+n,2z
p+n (p ∈ N, z ∈ U).

Let α j ( j = 1, . . . , p) and β j ( j = 1, . . . ,q) be complex numbers with β 	=
0,−1,−2, . . . ( j = 1, . . . ,q). Then the generalized hypergeometric function pFq is de-
fined by (cf. e.g. [2])

pFq(z) =
∞

∑
n=0

(α1)n . . . (αp)n

(β1)n . . . (βq)n

zn

n!
(p,q ∈ N0, p � q+1, z ∈ U), (1.2)

here (x)0 = 1 for x 	= 0, and (a)n is the Pochhammer symbol (or shifted factorial
function), defined by

(x)n =
Γ(x+n)

Γ(x)
= x(x+1)(x+2) . . .(x+n−1)

for n = 1,2, · · · . Here Γ denotes the well known gamma function. We recall here
the following definitions of the Saigo hypergeometric fractional integral operator and
differential operator, used in this paper.

DEFINITION 1. For real numbers λ > 0, μ and η , the Saigo hypergeometric

fractional integral operator Iλ ,μ,η
0,z is defined by

Iλ ,μ,η
0,z f (z) =

z−λ−μ

Γ(λ )

∫ z

0
(z− t)λ−1

2F1

(
λ + μ ,−η ;λ ;1− t

z

)
f (t) dt, (1.3)

where the function f (z) is analytic in a simply-connected region of the complex z-
plane containing the origin, with the order

f (z) = O(|z|ε) (z → 0, ε > max{0,μ −η}−1),

and the multiplicity of (z− t)λ−1 is removed by requiring log(z− t) to be real when
(z− t) > 0.

The operator Iλ ,μ,η
0,z has been initially introduced by Saigo in a series of papers

for studying boundary value problems for partial differential equations, especially for
the Euler-Darboux equation (see [17, 18]). Later the Saigo hypergeometric operator
and its modifications have been used in many papers, to study various problems of the
Univalent function theory (see [6, 12, 13, 15, 19]).

DEFINITION 2. Under the hypotheses of Definition 1, the Saigo hypergeometric
fractional derivative operator Jλ ,μ,η

0,z is defined by

Jλ ,μ,η
0,z f (z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

Γ(1−λ )
d
dz

zλ−μ ∫ z
0 (z− t)−λ

2F1

(
μ −λ ,1−η ;1−λ ;1− t

z

)
f (t)dt

(0 � λ < 1);
dn

dzn Jλ ,μ,η
0,z f (z) (n � λ < n+1; n ∈ N0 = N∪{0}),

(1.4)
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where the multiplicity of (z− t)−λ is removed as in Definition 1.
It may be remarked that

Iλ ,−λ ,η
0,z f (z) = D−λ

z f (z) (λ > 0) and Jλ ,μ,η
0,z f (z) = Dλ

z f (z) (0 � λ < 1),

where D−λ
z denotes the fractional integral operator, Dλ

z – resp. the fractional deriva-
tive operator in the sense of classical (Riemann-Liouville) fractional calculus, see [16],
adopted for analytic functions in complex domain (as used for example by Owa [10],
see also [15], [5, Ch. 5] and many other works on this topic).

Recently, Goyal and Prajapat [3, 13] have considered the generalized fractional
differintegral operator S

λ ,μ,η
0,z : Ap → Ap, defined by

S
λ ,μ,η
0,z f (z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Γ(1+ p− μ)Γ(1+ p+η−λ )

Γ(1+ p)Γ(1+ p+ η− μ)
zμJλ ,μ,η

0,z f (z) (0 � λ < η + p+1);

Γ(1+ p− μ)Γ(1+ p+η−λ )
Γ(1+ p)Γ(1+ p+ η− μ)

zμ Iλ ,μ,η
0,z f (z) (−∞ < λ < 0),

(1.5)
(z ∈ U; μ ,η ∈ R; μ < p+1; μ −η < p+1)

as a variant of the “normalized” Saigo operator mapping A1 into A1, from Kiryakova
[5, Ex. 8, p. 296–297] and [6, operators (23)].

It is easily seen from (1.5) that for a function f of the form (1.1), we have

S
λ ,μ,η
0,z f (z) = zp +

∞

∑
n=1

(1+ p)n(1+ p+ η− μ)n

(1+ p− μ)n(1+ p+ η−λ )n
ap+nz

p+n

= zp
3F2(1,1+ p,1+ p+ η− μ ;1+ p− μ ,1+ p+η−λ ;z)∗ f (z).

(1.6)

It is easy to find from (1.6) that, generalized fractional differintegral operator
S λ ,μ,η

0,z satisfies the following recurrence relation:

z
(
S

λ ,μ,η
0,z f (z)

)′ = (p+ η −λ )S λ+1,μ,η
0,z f (z)− (η −λ )S λ ,μ,η

0,z f (z). (1.7)

Note that

S 0,0,0
0,z f (z) = f (z), S 1,1,1

0,z f (z) = S 1,0,0
0,z f (z) =

z f ′(z)
p

and

S 2,1,1
0,z f (z) =

z f ′(z)+ z2 f ′′(z)
p2 .

We also note that
S λ ,λ ,η

0,z f (z) = S λ ,μ,0
0,z f (z) = Ωλ ,p

z f (z),

where Ωλ ,p
z is the extended fractional differintegral operator studied by Patel and Mishra

[11] (see also [14]). On the other hand, if we set λ = −α , μ = 0 and η = β − 1 in
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(1.6), we obtain the following p -valent generalization of multiplier transformation op-
erator [4]

Qα
β f (z) =

(
p+ α + β −1

p+ β −1

)
α
zβ

∫ z

0
tβ−1

(
1− t

z

)α−1

f (t)dt

= zp +
∞

∑
n=2

Γ(p+ β +n)Γ(p+ α + β )
Γ(p+ α + β +n)Γ(p+ β )

an+pz
n+p (β > −p, α + β > −p).

(1.8)

Furthermore, if we set μ = 0, λ =−1 and η = γ−1 in (1.6), we obtain the generalized
Bernardi-Libera-Livingston operator [1], defined by

Fγ,p( f )(z) :=
γ + p

zγ

∫ z

0
tγ−1 f (t)dt

= zp +
∞

∑
n=1

γ + p
γ + p+n

an+pz
n+p, γ > −p. (1.9)

Using the generalized fractional differintegral operator S λ ,μ,η
0,z , we now introduce

the following subclass of Ap :

DEFINITION 3. For fixed parameters A,B (−1 � B < A � 1) and α > 0, we say
that a function f (z) ∈ Ap is in the class M λ ,μ,η(α,A,B), if it satisfies the following
subordination condition:

(1−α)
S

λ ,μ,η
0,z f (z)

zp + α
S

λ+1,μ,η
0,z f (z)

zp ≺ 1+Az
1+Bz

, z ∈ U. (1.10)

For simplicity, we put

M λ ,μ,η
(

α,1− 2β
p

,−1

)
= M̃ λ ,μ,η(α,β ),

where M̃ λ ,μ,η(α,β ) denotes the class of functions f ∈Ap, which satisfy the inequal-
ity

ℜ

(
(1−α)

S
λ ,μ,η
0,z f (z)

zp + α
S

λ+1,μ,η
0,z f (z)

zp

)
>

β
p

(z ∈ U, α > 0, 0 � β < p).

(1.11)
In the present paper we derive various useful and interesting properties and char-

acteristics of the function classes M λ ,μ,η(α,A,B) and M̃ λ ,μ,η(α,β ) (defined above)
by using the subordination principle. Several corollaries are deduced from the main
results and their connections with known results are also pointed out.
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2. Preliminaries

We shall require the following lemmas to investigate the function classes
M λ ,μ,η(α,A,B) and M̃ λ ,μ,η(α,β ) .

LEMMA 1. ([7, p. 71]) Let h(z) be a convex (univalent) function in U with h(0)=
1, and let the function φ(z) = 1+ p1z+ p2z2 + . . . be analytic in U . If

φ(z)+
zφ ′(z)

γ
≺ h(z) (2.1)

for γ 	= 0 and ℜ(γ) � 0 , then

φ(z) ≺ ψ(z) :=
γ
zγ

∫ z

0
tγ−1h(t) dt ≺ h(z) (2.2)

and ψ(z) is the best dominant.

LEMMA 2. ([8, Theorem 8]) Let a function f (z) of the form (1.1) be analytic in
U . If there exists a (p−m+1)-valent starlike function of the form

g(z) = zp−m+1 +
∞

∑
k=p−m+2

akz
k

in U such that

ℜ

(
z f (m)(z)

g(z)

)
> 0, z ∈ U,

then f (z) is p−valent in U .

Below we remind some known formulas for the hypergeometric function 2F1 (cf.
e.g. [2]), that will be used next in our proofs.

LEMMA 3. For real or complex numbers a,b and c (c 	= 0,−1,−2, . . .), we have

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−a dt =

Γ(b)Γ(c−b)
Γ(c) 2F1(a,b;c;z) (ℜ(c) > ℜ(b) > 0),

(2.3)

2F1(a,b;c;z) = (1− z)−a
2F1

(
a,c−b;c;

z
z−1

)
, (2.4)

and

(b+1)2F1(1,b;b+1;z) = (b+1)+bz2F1(1,b+1;b+2;z). (2.5)
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3. Main results

Our first result is given by the following theorem:

THEOREM 1. If f (z) ∈ M λ ,μ,η(α,A,B) , then

S
λ ,μ,η
0,z f (z)

zp ≺ X (z) ≺ 1+Az
1+Bz

, z ∈ U, (3.1)

where

X (z)=

⎧⎪⎪⎨⎪⎪⎩
A
B

+
(

1− A
B

)
(1+Bz)−1

2F1

(
1,1;

p+ η −λ
α

+1;
Bz

Bz+1

)
(B 	= 0);

1+
p+ η −λ

α + p+ η −λ
Az (B = 0),

and X (z) is the best dominant of (3.1). Also,

ℜ

⎧⎪⎨⎪⎩
(

S λ ,μ,η
0,z f (z)

zp

) 1
m

⎫⎪⎬⎪⎭> {X (−1)} 1
m . (3.2)

The result (3.2) is sharp.

Proof. Let f (z) ∈ M λ ,μ,η(α,A,B) , and assume that

S
λ ,μ,η
0,z f (z)

zp = p(z), z ∈ U. (3.3)

We may express the function p(z) as

p(z) = 1+ c1z+ c2z
2 + . . . (3.4)

which is analytic in U with p(0) = 1. Differentiating (3.3) with respect to z , we get

S
λ+1,μ,η
0,z f (z)

zp = p(z)+
1

p+ η −λ
zp′(z). (3.5)

From (1.10), (3.3) and (3.5), we obtain

(1−α)
S λ ,μ,η

0,z f (z)

zp + α
S λ+1,μ,η

0,z f (z)

zp = p(z)+
α

p+ η −λ
zp′(z)

≺ 1+Az
1+Bz

, z ∈ U.
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Thus applying Lemma 1, we obtain (3.1). Moreover by Lemma 3, we have

p(z) ≺ p+ η −λ
α

z−
p+η−λ

α

∫ z

0
t

p+η−λ
α −1 1+At

1+Bt
dt

=

⎧⎪⎪⎨⎪⎪⎩
A
B

+
(

1−A
B

)
(1+Bz)−1

2F1

(
1,1;

p+η−λ
α

+1;
Bz

Bz+1

)
(B 	= 0);

1+
p+η−λ

α+p+η−λ
Az (B = 0),

(3.6)

= X (z).

Next to prove (3.2), we observe that the subordination relation (3.6) is equivalent
to

S λ ,μ,η
0,z f (z)

zp =
p+ η −λ

α

∫ 1

0
u

p+η−λ
α −1 1+Auw(z)

1+Buw(z)
du,

where w(z) is analytic in U with w(0) = 1 and |w(z)| < 1 in U . Hence

ℜ

(
S

λ ,μ,η
0,z f (z)

zp

)
=

p+ η −λ
α

∫ 1

0
u

p+η−λ
α −1ℜ

(
1+Auw(z)
1+Buw(z)

)
du

>
p+ η −λ

α

∫ 1

0
u

p+η−λ
α −1 1−Au

1−Bu
du.

= X (−1). (3.7)

Therefore, with the aid of the identity

ℜ(w
1
m ) � {ℜ(w)} 1

m for ℜ(w) > 0 and m � 1,

the identity (3.1) follows directly from (3.7).
To establish sharpness of result (3.2), it is sufficient to show that

inf
|z|<1

ℜ{X (z)} = X (−1). (3.8)

We observe from (3.7) that for |z| � r (0 < r < 1) :

ℜ

(
S

λ ,μ,η
0,z f (z)

zp

)
� p+ η −λ

α

∫ 1

0
u

p+η−λ
α −1ℜ

(
1+Aur
1+Bur

)
du

→ X (−1) as r → 1−,

which establishes (3.8) and this completes the proof of Theorem 1.

REMARK 1. Setting η = 0 in Theorem 1, we get an improved form of a result
due to Patel and Mishra [11, p. 115, Theorem 1.8].
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COROLLARY 1. Let −1 � B < A1 � 1 and B 	= 0. If f (z) ∈ M λ ,μ,η(α,A1,B) ,
where A1 is given by

A1 =
B 2F1

(
1,1;

p+ η −λ
α

+1;
B

B−1

)
2F1

(
1,1;

p+ η −λ
α

+1;
B

B−1

)
+(B−1)

,

then

ℜ

(
S λ ,μ,η

0,z f (z)

zp

)
> 0 (z ∈ U),

hence S
λ ,μ,η
0,z f (z) is p-valent in U.

Proof. Putting m = 0 and replacing A by A1 in Theorem 1, we get

ℜ

(
S λ ,μ,η

0,z f (z)

zp

)
= ℜ

(
zS λ ,μ,η

0,z f (z)

zp+1

)
> 0, z ∈ U,

Since zp+1 is (p+ 1)-valently starlike function in U, hence in view of Lemma 2, we

obtain that S
λ ,μ,η
0,z f (z) is p -valent in U. �

Further, putting

α =
p

p+1
, λ = 1 and μ = η = 1,

in Corollary 1, we get the following result:

COROLLARY 2. If f (z) ∈ Ap, such that

2 f ′(z)+ z f ′′(z)
p(p+1)zp−1 ≺ 1+A1z

1+Bz
(z ∈ U, −1 � B < A2 � 1; B 	= 0),

where A2 is given by

A2 =
B 2F1

(
1,1; p+2;

B
B−1

)
2F1

(
1,1; p+2;

B
B−1

)
+(B−1)

,

then

ℜ
(

f ′(z)
zp−1

)
> 0, z ∈ U,

and f (z) is hence p-valent in U.
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THEOREM 2. Let f (z) ∈ Ap , α > 0 , γ > −p and −1 � B < A � 1. If

(1−α)
S

λ ,μ,η
0,z Fγ,p f (z)

zp + α
S

λ ,μ,η
0,z f (z)

zp ≺ 1+Az
1+Bz

, z ∈ U, (3.9)

then
S

λ ,μ,η
0,z Fγ,p f (z)

zp ≺ τ(z) ≺ 1+Az
1+Bz

, (3.10)

where Fγ,p is defined by (1.9) and the function τ(z) is given by

τ(z) =

⎧⎪⎨⎪⎩
A
B

+
(

1− A
B

)
(1+Bz)−1

2F1

(
1,1;

γ + p
α

+1;
Bz

Bz+1

)
(B 	= 0);

1+
γ + p

γ + p+ α
Az (B = 0),

and τ(z) is the best dominant of (3.10). Furthermore

ℜ

⎧⎪⎨⎪⎩
(

S
λ ,μ,η
0,z Fγ,p f (z)

zp

) 1
m

⎫⎪⎬⎪⎭> {τ(−1)} 1
m . (3.11)

The result (3.11) is the best possible.

Proof. It is follows from (1.6) and (1.9), that

z
(
S λ ,μ,η

0,z Fγ,p f (z)
)′

= (γ + p)S λ ,μ,η
0,z f (z)− γS λ ,μ,η

0,z Fγ,p f (z), z ∈ U. (3.12)

Now we assume that

q(z) =
S

λ ,μ,η
0,z Fγ,p f (z)

zp , (3.13)

then q(z) is of the form (3.4) and analytic in U with q(0) = 1. Differentiating (3.13)
with respect to z and using (3.12), we get

(1−α)
S λ ,μ,η

0,z Fγ,p f (z)

zp + α
S λ ,μ,η

0,z f (z)

zp = q(z)+
α

p+ λ
zq′(z)

≺ 1+Az
1+Bz

, z ∈ U.

Now following the same process as of Theorem 1, we get the required result and hence
we omit it. �

Putting m = α = 1 in Theorem 2 and observing that

S
λ ,μ,η
0,z Fγ,p f (z) =

γ + p
zγ

∫ z

0
tγ−1S

λ ,μ,η
0,z f (t)dt, ( f ∈ Ap, z ∈ U),

then we get
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COROLLARY 3. Let f (z) ∈ Ap , γ > −p and −1 � B < A � 1. If

S
λ ,μ,η
0,z f (z)

zp ≺ 1+Az
1+Bz

(α > 0, z ∈ U),

then
γ + p

zγ

∫ z

0
tγ−1S

λ ,μ,η
0,z f (t)dt ≺ Ξ(z) ≺ 1+Az

1+Bz
(z ∈ U), (3.14)

where the function Ξ(z) is given by

Ξ(z) =

⎧⎪⎨⎪⎩
A
B

+
(

1− A
B

)
(1+Bz)−1

2F1

(
1,1;γ + p+1;

Bz
Bz+1

)
(B 	= 0);

1+
γ + p

γ + p+1
Az (B = 0),

and Ξ(z) is the best dominant of (3.14). Furthermore

ℜ
(

γ + p
zγ

∫ z

0
tγ−1S λ ,μ,η

0,z f (t)
)

> Ξ(−1). (3.15)

The result (3.15) is the best possible.

A further special case of Corollary 3, when

A = 1−2β (0 � β < 1), B = −1, p = 1 and λ = μ = η = 0,

would immediately yields the following result.

COROLLARY 4. If f (z) ∈ A satisfies

ℜ
(

f (z)
z

)
> β , (0 � β < 1, z ∈ U),

then

ℜ
(

γ +1
zγ+1

∫ z

0
tγ−1 f (t)dt

)
> β +(1−β )

{
2F1

(
1,1;γ +2;

1
2

)
−1

}
. (3.16)

The result (3.16) is the best possible.

REMARK 2. In [9], it is proved by Obradović that, if f (z) ∈ A and

ℜ
(

f (z)
z

)
> β (0 � β < 1, z ∈ U),

then

ℜ
(

γ +1
zγ+1

∫ z

0
tγ−1 f (t)dt

)
> β +

1−β
3+2γ

(γ > −1, z ∈ U), (3.17)

this shows that the result of Corollary 4 is an improvement of the result (3.17) given in
[11].
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THEOREM 3. Let f (z) ∈ Ap,

Q
λ ,μ,η
0 f (z) =

S
λ ,μ,η
0,z f (z)

zp , z ∈ U, (3.18)

Qλ ,μ,η
ν,k f (z) =

ν +1
zν+1

∫ z

0
tν
(
Qλ ,μ,η

ν,k−1 f (t)
)

dt (ν > −1, k ∈ N0, z ∈ U), (3.19)

where Q
λ ,μ,η
ν,0 = Q

λ ,μ,η
0 . If f (z) ∈ M λ ,μ,η(α,A,B), then for |z| = r < 1,

ℜ
(
Qλ ,μ,η

ν,k f (z)
)

� ρk(r) > ρk(1) (k ∈ N), (3.20)

where

0 < ρk(r) = 1+(B−A)(p+ η−λ )(ν +1)k
∞

∑
n=1

Bn−1rn

(αn+ p+ η−λ )(n+ ν +1)k < 1.

(3.21)
The estimate (3.20) is sharp.

Proof. We shall prove this theorem by the principle of mathematical induction on
n . Let f (z) ∈ M λ ,μ,η(α,A,B), then by the Theorem 1, we get

ℜ

(
S

λ ,μ,η
0,z f (z)

zp

)
� p+ η −λ

α

∫ z

0
u

p+η−λ
α −1 1−Aur

1−Bur
du (|z| = r < 1). (3.22)

Using the Lemma 3 in (3.22), we obtain

ℜ

(
S

λ ,μ,η
0,z f (z)

zp

)
�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2F1

(
1,

p+ η −λ
α

;
p+ η −λ

α
+1;Br

)
− p+ η −λ

α + p+ η −λ
Ar2F1

(
1,

p+ η −λ
α

+1;
p+ η −λ

α
+2;Br

)
(B 	= 0);

1− p+ η −λ
α + p+ η−λ

Ar

(B = 0).

Simplifying right hand side of the above estimate, we deduce that

ℜ

(
S

λ ,μ,η
0,z f (z)

zp

)
� ρ0(r) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1+(B−A)(p+ η−λ )∑∞
n=1

Bn−1rn

(αn+ p+ η −λ )
(B 	= 0);

1− p+ η −λ
α + p+ η −λ

Ar

(B = 0),
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which implies that (3.20) holds true for n = 0. Again by letting t = ueiθ , we find that

ℜ
(
Qλ ,μ,η

ν,1 f (z)
)

= ℜ

(
ν +1
zν+1

∫ z

0
tν

(
S λ ,μ,η

0,z f (t)

t p

)
dt

)

=
ν +1
rν+1

∫ r

0
uνℜ

(S λ ,μ,η
0,z f (ueiθ )

(ueiθ )p

)
du

� ν +1
rν+1

∫ r

0
uν
(
1+(B−A)(p+ η−λ )

∞

∑
n=1

Bn−1un

αn+ p+ η −λ

)
du

= 1+
ν +1
rν+1 (B−A)(p+ η −λ )

∫ r

0

( ∞

∑
n=1

Bn−1uν+n

αn+ p+ η−λ

)
du.

We note that for |B|� 1, u < 1 and αn+ p+η−λ � α + p+η−λ for all n � 1, the
series in the right hand side is uniformly convergent in U, so that it can be integrated
term by term. Thus, we have

ℜ
(
Q

λ ,μ,η
ν,1 f (z)

)
� ρ1(r) = 1+(B−A)(p+η−λ )(μ+1)

∞

∑
n=1

Bn−1rn

(αn+p+η−λ )(n+ν+1)

and this shows that (3.20) is also true for n = 1.
Next, we assume that (3.20) holds true for n = m. Then, letting t = ueiθ , we have

ℜ
(
Q

λ ,μ,η
ν,m+1 f (z)

)
= ℜ

(
ν +1
zν+1

∫ z

0
tν
(
Qλ ,μ,η

ν,m f (t)
)

dt

)
=

ν +1
rν+1

∫ r

0
uνℜ

(
Qλ ,μ,η

ν,m f (ueiθ )
)

du

� ν+1
rν+1

∫ r

0
uν
(
1+(B−A)(p+η−λ )

∞

∑
n=1

(ν+1)mBn−1un

(αn+p+η−λ )(n+ν+1)m

)
du

= 1+
(B−A)(p+η−λ )(ν+1)m+1

rν+1

∫ r

0

( ∞

∑
n=1

Bn−1uν+n

(αn+p+η−λ )(n+ν+1)m

)
du.

Noting that the integrand in the right hand side is uniformly convergent in U, we deduce
that

ℜ
(
Q

λ ,μ,η
ν,m+1 f (z)

)
� ρm+1(r)

= 1+(B−A)(p+η−λ )(ν+1)m+1
∞

∑
n=1

Bn−1rn

(αn+p+η−λ )(n+ν+1)m+1 .

Therefore, we conclude that

ℜ
(
Qλ ,μ,η

ν,k f (z)
)

� ρn(r),
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for any integer k ∈ N0.
Finally to prove sharpness of the result (3.26), let us consider the function

Gk(r) = 1+(B−A)(p+η−λ )(ν +1)k
∞

∑
n=1

Bn−1rn

(αn+ p+ η−λ )(n+ ν +1)k , 0 < r < 1.

The series Gk(r) is absolutely and uniformly convergent for each k∈N0 and 0 < r < 1.
By suitably rearranging the terms of Gk(r), it is easy to see that 0 < Gk(r) < 1. Further,
since Gk(r) � Gk−1(r) and

rν+1Gk(r) = (ν +1)
∫ r

0
uνGk−1(u)du, k ∈ N,

we have that G ′
k(r) � 0 and Gk(r) decreasing with r as r → 1− for fixed k and in-

creases to 1 as k → ∞ for fixed r. This implies that Gk(r) > Gk(1). Therefore the
estimate in (3.20) is sharp. This completes the proof of theorem. �

Setting

A = 1− 2β
p

(0 � β < p) and B = −1,

in Theorem 3, we have the following result.

COROLLARY 5. If f (z) ∈ M̃ λ ,μ,η(α,β ), then

ℜ
(
Qλ ,μ,η

ν,k f (z)
)

� ρ∗
n (r) > ρ∗

n (1) (n ∈ N0, |z| = r < 1),

where

0 < ρ∗
n (r) = 1− 2(p−β )(p+ η−λ )(ν +1)k

p

∞

∑
n=1

(−1)n−1rn

(αn+ p+ η −λ )(n+ ν +1)k < 1.

The result is sharp.

Furthermore on taking α = k = 1 and λ = μ = η = 1, in Theorem 3, we have the
following result.

COROLLARY 6. If f (z) ∈ Ap such that

f ′(z)
zp−1 ≺ p

1+Az
1+Bz

, z ∈ U,

then

ℜ
(

ν +1
zν+1

∫ z

0
tν−p f (t)dt

)
� ρ , z ∈ U,

where

ρ = 1+(B−A)(ν +1)p
∞

∑
n=1

(B)n−1rn

(p+n)(n+ μ +1)
.

The result is sharp.
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