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A NEW SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS
ASSOCIATED WITH FRACTIONAL CALCULUS OPERATOR

SAURABH PORWAL

Abstract. The purpose of the present paper is to study a new subclass of harmonic univalent
functions associated with fractional calculus operator. We obtain coefficient conditions, distor-
tion bounds and extreme points for this class and discuss a class preserving integral operator.
We also show that the class studied in this paper is closed under convolution and convex combi-
nation. The results obtained for the class reduce to the corresponding results for several known
classes in the literature are briefly indicated.

1. Introduction

A continuous complex-valued function f = u+iv defined in a simply-connected
domain D is said to be harmonic in D if both # and v are harmonic in D. In any simply-
connected domain D we can write f = h+ g, where i and g are analytic in D. A
necessary and sufficient condition for f to be locally univalent and sense-preserving in
D is that |1 (z)| > |g'(z)|, z € D. See Clunie and Sheil-Small [2].

Denote by Sy the class of functions f = h+ g that are harmonic univalent and
sense-preserving in the open unit disk U = {z : |z| < 1} for which f(0) = f;(0) —1=0.
Then for f =h+ g € Sy we may express the analytic functions 4 and g as

h(z)=z+ Y @, g(z) =Y bd, b < 1. (1)
k=2 k=1

The class Sy reduces to class S of normalized analytic univalent functions if the
co-analytic part of f i.e. g =0. For this class f(z) may be expressed as

flz)=z+ i k. 2
k=2

For more basic results on harmonic univalent functions one may refer to the fol-
lowing introductory text book by Duren [6], (see also [1], [9]).

The following definitions of fractional derivatives are due to Owa [7] and Srivas-
tava and Owa [12].
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DEFINITION 1. The fractional derivative of order A is defined for a function f(z)

of the form (2) by
1 d = f(&)
Y LY (Y
/) F(1-A)dzJo (z—&)* s
where 0 < A < 1, f(z) is an analytic functions in a simply connected region of the
z-plane containing the origin and the multiplicity of (z — é)fl is removed by requiring
log(z— &) to be real when (z—&) > 0.

DEFINITION 2. Under the hypothesis of Definition | the fractional derivative of
order n+ A is defined for a function f(z) by
dn
A A
D () = Dl f(2), 3)
where 0 < A <1 and ne Ny=1{0,1,2...}.

Using the Definition 1 and its known extension involving fractional derivatives
Owa and Srivastava [8] introduced the operator Q1 : A — A as follows

Qrf(z) =T (22— DA f(z), (A #2,3,4,...), 4)

where A denote the class of functions of form (2) which are analytic in U .

Recently, Porwal and Dixit [10] (see also [5]), defined the subclass My () C Sy
consisting of harmonic univalent functions f (z) of the form (1) satisfying the following
condition

h (z) — z¢g'
My (B) = {feSH:EK<M> </3},(1 <B<4/3)andzeU. (5)
h(z) +¢(2)
For g =0 the class of My (f3) reduce to the class M () studied by Uralegaddi et
al. [13].
Generalizing the class My (B), we let My (A4, 3,1), denote the family of functions
f =h+ g of form (1) which satisfy the condition

z (Q’Lh(z))/ -7 (Q’Lg(z))/
(1—1)z+t (Q’Lh(z) + Q%g(z))

R B, (6)

where 1 <B<4/3,0<A<1and0<r <1,
Further, let VMpy (4, 3,t) be the subclass of My (A,f,¢) consisting of functions
of the form

f@ =2+ |la| =Y b 2~ (7)
k=2 k=1

In this paper, we give a sufficient coefficient condition for f = h+ g, given by (1)
to be in My (A,B,¢) and it is shown that this condition is also necessary for functions
of the form (7) in VMg (A,B,1). We then obtain distortion theorem, extreme points
for this class. We also show that the class VMy (A, f,¢) is closed under convolution
and convex combination. Finally, we discuss a class preserving integral operator for
functions in VMy (4, B,1).
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2. Main results

First, we give a sufficient coefficient bound for the class My (A,f,1).

THEOREM 1. If f =h+g € Sy be given by (1). If

< k— Pt k+ Pt
Fot) o+ 3 GBrowm <1,

k=2 ﬂ

where
C(k+1)T(2-2)
1<B<4/3, 0<A<1, 0<t<land¢ (kL) = Tk+1—7)

®)

)

then f € My (A,B,1).

Proof. Let 37 "5PL (k, A) la| + 3, ‘52500 (K, A) [bye] <
It suffices to show that
Z(Qxh(z))/—z(Q’Lg(z)), 1
(lft)zH(Q’lh(ZHQ’lg(Z))
<1, zeU.

() —2(Q5(2))
—(2B—1
(1—t)z+t(9lh(z)+9xg(z)) (2B )

We have
Z(Qkh(z))/*m 1
(1=n)z+ (Q4h(2)+ Qg (2)

Z(th(z)),—m B }
(1*l)z+t(ﬂlh( )+ Qg2 )) (2B-1)

ok, A) |ag] |2 1+2 k+1)9(k,A) byl |2

2
< L L
2 (k= 2Bt 409k A) arl 12 = 3 (k2B — 1) ok, 1) b
k=2 k=1
i Ok A) x|+ 3 (k+1) (k. A) [by
< = = :
- 3, (=210 0k Dlerl— 3 (21— 006
= k=1

The last expression is bounded above by 1, if

S (k-0 dkA) ad + 3 (k1) (k) |y

k=2 k=1

<2(B-1)- i (k—=2Br+1)9(k,A) ] = Y, (k+2Bt —1) 9 (k, 1) byl
k=1

k=2
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which is equivalent to

i /3 o(k,2))| k|+2 1;;[3;)) (k,A)|be] < 1. ©)

But (9) is true by hypothesis.
Z(th(z))/—z(fﬂg(z)),
(1—t)z+t (th(z)erg(z))
A(Q*h(2)) ~2(Q4g(2))
— (2B —1
(1—1)z+t (Q’Lh(z)ﬁ-ng(z)) (2B )
The harmonic univalent functions of the form

-1

Hence

<1, z€ U, and the theorem is proved.

-1 B-1) —

f@) =2+ Y m—grnd + Y, s ik, (10)
,Z‘z(k—BtW(kﬂl) ,Z‘l(kJrﬁt)(P(k,?L)

where 1 < 3 <4/3, 0<A<1,0<r<1 and X7, x| +X5; [vk] =1, show that

the coefficient bound given by (8) is sharp. It is worthy to note that the function of the

form (10) belongs to the class Ry (n,,A) for all 37, |x¢| + X5 || < 1 because

coefficient inequality (8) holds. O

In the following theorem, it is proved that the condition (8) is also necessary for
functions f =h+g € VMg (A,B,t) to be given by (7).

THEOREM 2. A function f(z) of the form (7) is in VMy (A, B,t), if and only if

> (k=B oA ]+ 3 (k+ By ok A) bl < (B—1). (11)

k=2 k=1

Proof. Since VMpy (A,B,t) C My (A,B,t), we only need to prove the “only if”
part of the theorem. For this we show that f ¢ VMg (A,,¢) if the condition (11) does
not hold.

Note that a necessary and sufficient condition for f = h+g given by (7) is in
VMpy (A, B,t) if

z (Q’Lh(z))/ -7 (Q’Lg(z))/
(1—1)z+t (Q’Lh(z) + ng(z))

R <B,

which is equivalent to

(B2 (k—Br)o(kA) lal — 3 (k+ Br) ok, A) || 2

k=2 k=1
R

2+ 2 ok, At |a| =Y ok, At by Z*
k=2 k=1
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The above condition must hold for all values of z, |z] = r < 1. Upon choosing the
values of z on the positive real axis where 0 < z =r < 1, we must have

(B—l)—i(k—ﬁt) (koA ) g 71— i (k+Br)d(k,A) x| 7

k=2

>0.  (12)

oo

1+ Y ok, At |ag| 1= ¢k, At b P
k=2 k=1
If the condition (11) does not hold then the numerator of (12) is negative for r
sufficiently close to 1. Thus there exists a zg = ry in (0,1) for which the quotient in (12)
is negative. This contradicts the required condition for f € VMg (A,B,¢) and so the
proof is complete.
The harmonic univalent functions of the form

= D B-1)
z+2m % +Zmyk27 (13)

where 1 <B<4/3,0<A<1,0<r<1,x20, y=>0and ¥ x4+ e < 1
belongs to the class VMg (A,B,¢). O

Next, we determine the extreme points of the closed convex hulls of VMy (A, 3,1),
denoted by clcoVMy (A, B,t). For this we recall the definition of extreme points.

DEFINITION 3. A function f in a family G is said to be an extreme point of G if
f can not be expressed as a proper convex combination of two distinct functions in G.

THEOREM 3. f € clcoVMy (A,B,t), if and only if

oo

Exkhk )+ i) (14)
where
hi(z) =z,
_ (B-1) _
hk(Z)—Z—FWZk, k—(2,3,...),
_ B-1 & < B
gk(Z)—Z—WZk, k=(1,2,3,...), ]Zl(xk—l—yk)—l,

Xp =20 and yr > 0. In particular the extreme points of VMy(A,B,t) are {h;} and

{&k}-

Proof. For functions f of the form (14), we have

Mg

f(2) =D, (xehi (z) +yigr(2))

k=1

= 1) = —1) _
Z k— m )0 (k, A )’“kZ ) k+Bt) (k,x)Yka'

k=1
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Then

= (k— 1) B-1) 2 k+Bt B-1)
,Zz(ﬁ—l)(p(k’M((k—Bt)(P(k, - ) 2 ><<k+ﬁr>¢<k,x>”“)
:ixk"‘iyk

k=2 k=1

=1—x; <1, and so f € clecoVMy (A,B,1).

(k=PrjotkA),
B-1

(k=2,3,4...) and y % |br|, (k=1,2,3...). Then note that by The-

orem 2, 0<x <1, (k=2,3,4...) and 0 <y, <1, (k=1,2,3...). We define

x1=1= xc— Y yk,and by Theorem 2, x; > 0.
= k=l

Conversely, suppose that f € clcoVMy(A,3,t). Set x; =

Consequently, we obtain f(z) = Y, (xxh (z) + yegk(z)) as required. [
k=1

In next theorem, we obtain maximum and minimum value of |f(z)| in |z| =r < 1.

THEOREM 4. If f € VMy(A,B,t) then

2—A<m—n_jm+u

@< U+l == =5y~ a=pn

|b1> . lzZl=r<1
and

f@) =1 =bi])r—

lzZl =r<1.

2—A<(ﬂ—l)—(ﬂt+1>|bl|)r2
2 \(@2-p1) (2-p1) ’
Proof. We only prove the right hand inequality. The proof for left hand inequality

is similar and will be omitted. Let f € VMy(A,B,t). Taking the absolute value of f,
we have

@< 1+ b1|>r+§<ak| T [bel)

<U+BD)r+ S, (gl + bel) P

k=2
B B S (BeRA),  (Pe@A)
_(1+b1|)+(2—ﬁt)¢(27/1),§< (A (- 'bk>

2
<o EICSR 5 (CP o)+ (B ok ) 2

k=2
<(1+b1|)r+(ﬁ2_(21)_(2ﬁ;)m (1 ((%t+1)> b1> r2
~ e S5 (g - g )
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The result is sharp for the function

_ _, 2=A)rB-1) (Bt+1)
f2)=z—|b1|z+ 7 ((Z—ﬁt)_(Z—ﬂt)bl>Zz' O

For our next theorem, we need to define the convolution of two harmonic func-
tions. For harmonic functions of the form

f@) =2+ la =Y |by z*
=2 k=1

and ~ ~
F(z)=z+ Y A 2= |B] z*
k=2 k=1

we define the convolution of two harmonic functions f and F as

(F*F) @) =@+ F @) =2t Y laddl &~ 3 [beBel 7. (15)

k=2 k=1

The computation of (15) arises from the formula (see [11])

. 2n . . 2
(f*F)(r2ele) — L/ h(rel(eit))H(re”)dt _ i g(re"(efl))G(re”)dt
21 Jo 21 Jo

1 /27[ < k ik(6—t < imt
=— Y lag|rte’ (6-1) N (Al e™ b dt
2m Jo {kl m=1
l/m i‘ |k eik(0-1) i‘ e
- = by|r*e™\v— By |rMe™ 5 dt
21 Jo k=1 m=1

wherea; =A; =1

1 21 oo . - |
T o / 3 arAr 25RO 4 S agh | A e ROk 4 gy
i 0 k=1 k,m=1

k#m

1 2 oo ' - |
S— / 2 ‘kak‘r2ketk9 + 2 |kam|r‘k+me’(k9*kT+ml) dt
2n | Jo =

k,m=1
k#£m

oo

\akAk\rzkeike — Z |b By | r2kek®.
1 =1

Ms

k

Equivalently

(fi+ ) (@) =2+ X larAel = 3 |biBil2F, |2] < R=1r.
=2 =1

Using this definition, we show that the class VMpy (A, ,1) is closed under convolution.
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THEOREM 5. For 1 <a < <4/3,let feVMy (A, a,t) and F€VMy (A,B,1).
Then

(f*F)(z) € VMu (A, a,t) CVMy (A,B,1).

Proof. Let f(z) =z+ Z |ay| & — Z k| X bein VMy (A, 0,t) and F(z) = z+
k=1

2 x| ZF — 2 Bi| z* bein VMy (A,B,1).
k=2 k=1

Then the convolution (f* F)(z) is given by (15). We wish to show that the co-
efficients of (f* F)(z) satisfy the required condition given in Theorem 2. For F(z) €
VMpy (A,B,t) we note that |[A;| < land |Bi| < 1. Now, for the convolution function
(f*F)(z), we obtain

3 ol + T o)
<i2((k _alt))¢(kz | k|+2 k+°;t)) (k, ) | i

VA /!
—_

, (sincef € VMy (l,a,t)).

Therefore f+«F € VMy (A, 0,t) CVMy (A,B,t). O
THEOREM 6. The class VMg (A,B,t) is closed under convex combination.

Proof. Fori=1,2,3...,letf;(z) € VMy (A,B,1), where f;(z) is given by

filz) =z+ i lay,| & - i by 2
k=2 k=1

Then by Theorem 2,
< (k+ Br)
o(k,A) + ok, 1) |b 16
I iRl I Gkl < "o

For Zt,- =1, 0<¢ < 1, the convex combination of f; may be written as

1) 2% (Selnl)

itifi (Z) =z+ i (iti
i=1 k=2 \i=1
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Then by (16)

g k=B, 5 () =
L () 4550 )
_y (s KB & (k+Br)

_g (kg'z(ﬁ 1) 1;1(3 D k7z’)}bki>
<=

I
—_

This is the condition required by Theorem 2 and so Y. #if; (z) € VMp (A,B,1). O
i=1

3. A family of class preserving integral operator

Let f(z) = h(z) + g(z) be defined by (1), then F(z) defined by the relation

| R 1 /2
%/ t‘*lh(t)dH—ct /t“lg(t)dt,(c>—1). (17)
< 0 Z 0

F(z) =

THEOREM 7. Let f(z) = h(z) +g(z) € Sy be given by (7) and f € VMy (A, B,1)
then F (z) be defined by (17) also belong to VMpy (A, B,1).

=z+ Z |ag | — Z |bg| 78 bein VMy (A, B,1), then by Theorem

Proof. Let f(z)
k=1
2, we have o
T AP
2o dEAlal+ 2 gy ek )b <1

By definition of F (z), we have

S ) ¢ (c+1)
E DY
& ) (c+k)

k=1

Now
< (k—Pr) (c+l) k+[3t) (c+1)
5 oot ({glad ) + 3 ot ({5 10

k=2 (ﬂ_l) (+k)
« (k—Bt) (k+P1)
<§,2(B 1) (kl\k\Jrz B- 1) ¢ (k, A) byl

Thus F(z) € VMp (A,B,t). O
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REMARK 1. Ifwe put A =0, 7 =1 in Theorems 1-7, then we obtain correspond-
ing results of Porwal and Dixit [10].

REMARK 2. If we put g =0, t =1 in Theorems 1-7, then we obtain correspond-
ing results of Dixit and Pathak [3].

REMARK 3. If we put g =0, t =0 in Theorems 1-7, then we obtain correspond-
ing results of Dixit and Pathak [4].

REMARK 4. If we put g=0, 7 =1 with A =0 in Theorems 1-7, then we obtain
corresponding results of Uralegaddi ef al. [13].

REMARK 5. If we put g=0, r =0 with A =0 in Theorems 1-7, then we obtain
corresponding results of Uralegaddi et al. [14].

Acknowledgements. The authors are thankful to the referee for his/her valuable
comments and observations which helped in improving the paper.

REFERENCES

[1] O. P. AHUIJA, Planar harmonic univalent and related mappings, J. Inequal. Pure Appl. Math., 6 (4)
(2005), Art. 122, 1-18.
[2] J. CLUNIE AND T. SHEIL-SMALL, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Series A. 1.
Math., 9 (1984), 3-25.
[3] K. K. DIXIT AND A. L. PATHAK, A new class of analytic functions with positive coefficients, Indian
J. Pure Appl. Math., 34 (2), (2003), 209-218.
[4] K. K. DIXIT AND A. L. PATHAK, On a new class of close-to-convex functions with positive coeffi-
cients, Bull. Cal. Math. Soc., 97 (6), (2005), 531-542.
[5] K. K. DIXIT AND SAURABH PORWAL, An application of fractional calculus to harmonic univalent
functions, Bull. Cal. Math. Soc., 102 (4) (2010), 343-352.
[6] P. DUREN, Harmonic mappings in the plane, Cambridge University Press, Cambridge, 2004.
[71 S. OWA, On the distortion theorem I, Kyungpook Math. J., 18 (1978), 53-59.
[8] S. OWA AND H. M. SRIVASTAVA, Univalent and starlike generalized hypergeometric functions,
Canad. J. Math., 39 (1987), 1057-1077.
[9] S.PONNUSAMY AND A. RASILA, Planar harmonic and quasiconformal mappings, RMS Mathemat-
ics Newsletter, 17 (3) (2007), 85-101.
[10] SAURABH PORWAL AND K. K. DIXIT, New subclasses of harmonic starlike and convex functions,
Kyungpook Math. J., 53 (2013), 467-478.
[11] SAURABH PORWAL AND M. V. SINGH, Convolution on a certain class of harmonic univalent func-
tions, J. Indian Math. Soc., 82 (1-2) (2015), 117-127.
[12] H. M. SRIVASTAVA AND S. OWA, An application of the fractional derivative, Math. Japon., 29 (1984),
383-389.
[13] B. A. URALEGADDI, M. D. GANIGI AND S. M. SARANGI, Univalent functions with positive coeffi-
cients, Tamkang J. Math., 25 (1994), 225-230.
[14] B. A. URALEGADDI, M. D. GANIGI AND S. M. SARANGI, Close-to-convex functions with positive
coefficients, Studia Univ. Babes-Balyai, Mathematica, XL4, (1995), 25-31.

(Received March 12, 2013) Saurabh Porwal
Department of Mathematics, U.LE.T.

C.S.J.M. University

Kanpur-208024, (U.P.), India

e-mail: saurabhjcb@rediffmail.com

Fractional Differential Calculus
www.ele-math.com
fdc@ele-math.com



