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AN OPIAL–TYPE INTEGRAL INEQUALITY

AND EXPONENTIALLY CONVEX FUNCTIONS

MAJA ANDRIĆ, ANA BARBIR, SAJID IQBAL AND JOSIP PEČARIĆ

Abstract. In this paper a certain class of convex functions in an Opial-type integral inequality is
considered. Cauchy type mean value theorems are proved and used in studying Stolarsky type
means defined by the observed integral inequality. Also, a method of producing n -exponentially
convex and exponentially convex functions is applied. Some new Opial-type inequalities are
given for different types of fractional integrals and fractional derivatives as applications.

1. Introduction and preliminaries

We consider a particular class of convex functions in an Opial-type integral in-
equality from which we construct functionals Φi (i = 1,2) . Our object is to give
Cauchy type mean value theorems and use them for Stolarsky type means, all defined
by the observed integral inequality, and also, to prove the n -exponential convexity for
the functionals. Also we produce new Opial-type inequalities for fractional integrals
(of function with respect to an increasing function, the Riemann–Liouville and the
Hadamard fractional integrals) and fractional derivatives (the Riemann–Liouville, the
Canavati and the Caputo fractional derivatives).

We say that a function u : [a,b] → � belongs to the class U(v,K) if it admits the
representation

u(x) =
x∫

a

K(x,t)v(t)dt , (1)

where v is a continuous function and K is an arbitrary nonnegative kernel such that
v(x) > 0 implies u(x) > 0 for every x ∈ [a,b] . We also assume that all integrals under
consideration exist and are finite.

The following inequality is given by Mitrinović and Pečarić in [9] (also see [1, p.
89] and [11, p. 236]).

THEOREM 1.1. Let u1 ∈ U(v1,K) , u2 ∈ U(v2,K) and v2(x) > 0 for every x ∈
[a,b] . Further, let φ(u) and f (u) be convex and increasing for u � 0 and f (0) = 0 . If
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f is a differentiable function and M = maxK(x,t) , then

M

b∫
a

v2 (t)φ
(∣∣∣∣v1 (t)

v2 (t)

∣∣∣∣
)

f ′
(

u2 (t)φ
(∣∣∣∣u1 (t)

u2 (t)

∣∣∣∣
))

dt

� f

⎛
⎝M

b∫
a

v2 (t)φ
(∣∣∣∣v1 (t)

v2 (t)

∣∣∣∣
)

dt

⎞
⎠ . (2)

The rest of the paper is organized in the following way: in Section 2 we give
some new generalized Opial-type inequalities from which we construct functionals and
prove Cauchy type mean value theorems. Next, in Section 3, we prove some new Opial-
type inequalities for fractional integrals and fractional derivatives as an application of
our main results. In Section 4 we produce the n -exponentially convex functions by
applying an elegant method of exponential convexity. At the end of the paper, we
use Cauchy mean value theorems for Stolarsky type means defined by the observed
functionals to give the related examples (see Section 5).

2. Main results

In the following theorem we give the generalization of the inequality (2).

THEOREM 2.1. Let u1 ∈ U(v1,K) , u2 ∈ U(v2,K) and v2(x) > 0 for every x ∈
[a,b] . Further, let φ(u) be convex, nonnegative and increasing for u � 0, f (u) be
convex for u � 0, and f (0) = 0 . If f is a differentiable function and M = maxK(x,t) ,
then these inequalities are valid:

M

b∫
a

v2 (t)φ
(∣∣∣∣v1 (t)

v2 (t)

∣∣∣∣
)

f ′
(

u2 (t)φ
(∣∣∣∣u1 (t)

u2 (t)

∣∣∣∣
))

dt

� f

⎛
⎝M

b∫
a

v2 (t)φ
(∣∣∣∣v1 (t)

v2 (t)

∣∣∣∣
)

dt

⎞
⎠ (3)

� 1
b−a

b∫
a

f

(
M(b−a)v2 (t)φ

(∣∣∣∣v1 (t)
v2 (t)

∣∣∣∣
))

dt. (4)

Proof. On the right hand side of the inequality (3), if we multiply and divide by
the factor (b− a) inside and outside the integral and use Jensen’s inequality for the
function f , then we obtain the inequality (4).

The condition of Theorem 1.1 that the function f is increasing is actually un-
needed. From the proof of the theorem [11, p. 236] one can see that this property is
never used, therefore we omit it here. Also, a condition that is missing in Theorem 1.1
is that φ has to be nonnegative, which we add. �
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Motivated by the inequalities given in Theorem 2.1, we define two functionals as:

Φ1( f ) = f

⎛
⎝M

b∫
a

v2 (t)φ
(∣∣∣∣v1 (t)

v2 (t)

∣∣∣∣
)

dt

⎞
⎠

− M

b∫
a

v2 (t)φ
(∣∣∣∣v1 (t)

v2 (t)

∣∣∣∣
)

f ′
(

u2 (t)φ
(∣∣∣∣u1 (t)

u2 (t)

∣∣∣∣
))

dt (5)

Φ2( f ) =
1

b−a

b∫
a

f

(
M(b−a)v2 (t)φ

(∣∣∣∣v1 (t)
v2 (t)

∣∣∣∣
))

dt

− f

⎛
⎝M

b∫
a

v2 (t)φ
(∣∣∣∣v1 (t)

v2 (t)

∣∣∣∣
)

dt

⎞
⎠ , (6)

where f is a differentiable function with f (0) = 0, and M , φ , ui , vi (i = 1,2) are as
in Theorem 1.1.

If f is a convex function, then Theorem 2.1 implies that Φi( f ) � 0 (i = 1,2) .
Now, we give mean value theorems for the functionals Φi (i = 1,2) .
Let 0 < m2 � v2 � M2 , 0 � |v1|� M1 and φ � 0. Then 0 �

∣∣∣ v1
v2

∣∣∣� M1
m2

. It follows

m2 M (b−a) min[
0,

M1
m2

]φ � M

b∫
a

v2(t)φ
(∣∣∣∣v1(t)

v2(t)

∣∣∣∣
)

dt � M2 M (b−a) max[
0,

M1
m2

]φ .

Also

0 �
∣∣∣∣u1(t)
u2(t)

∣∣∣∣ � M1
∫ t
a K(x,τ)dτ

m2
∫ t
a K(x,τ)dτ

=
M1

m2
.

Since obviously |u2(t)| � MM2 (b−a), we have

0 � u2(t)φ
(∣∣∣∣u1(t)

u2(t)

∣∣∣∣
)

� MM2 (b−a) max[
0,

M1
m2

]φ .

Hence, from now on let f : I →� where

I =

⎡
⎣0,MM2 (b−a) max[

0,
M1
m2

]φ

⎤
⎦ . (7)

THEOREM 2.2. Let u1 ∈ U(v1,K), u2 ∈ U(v2,K) and v2(x) > 0 for every x ∈
[a,b]. Further, let φ(u) be convex, nonnegative and increasing for u � 0 . Let f ∈C2(I)
and f (0) = 0 . Then there exists ξ ∈ I such that

Φi( f ) =
f ′′(ξ )

2
Φi( f0), (i = 1,2), (8)

where f0(x) = x2 .
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Proof. Since f ∈C2(I) , there exist real numbers m = min
x∈I

f ′′(x) and M = max
x∈I

f ′′(x) .
Hence, the functions f1 and f2 defined by

f1(x) =
M
2

x2− f (x),

f2(x) = f (x)− m
2

x2

are convex. Therefore Φi( f1) � 0, Φi( f2) � 0 (i = 1,2) , and we get

m
2

Φi( f0) � Φi( f ) � M
2

Φi( f0) .

If Φi( f0) = 0, then there is nothing to prove. Suppose Φi( f0) > 0. We have

m � 2Φi( f )
Φi( f0)

� M .

Hence, there exists ξ ∈ I such that

Φi( f ) =
f ′′(ξ )

2
Φi( f0) , (i = 1,2).

This completes the proof. �

THEOREM 2.3. Let u1 ∈ U(v1,K) , u2 ∈ U(v2,K) and v2(x) > 0 for every x ∈
[a,b]. Further, let φ(u) be convex, nonnegative and increasing for u � 0 . Let f ,g ∈
C2(I) and f (0) = g(0) = 0 . Then there exists ξ ∈ I such that

Φi( f )
Φi(g)

=
f ′′(ξ )
g′′(ξ )

, (i = 1,2), (9)

provided that the denominators are non-zero.

Proof. Define h ∈C2(I) by h = c1 f − c2g , where

c1 = Φi(g) , c2 = Φi( f ), (i = 1,2).

Now using Theorem 2.2 with f = h there exists ξ ∈ I such that(
c1

f ′′(ξ )
2

− c2
g′′(ξ )

2

)
Φi( f0) = 0, (i = 1,2).

Since Φi( f0) �= 0 (otherwise we have a contradiction with Φi(g) �= 0 by Theorem 2.2),
we get

Φi( f )
Φi(g)

=
f ′′(ξ )
g′′(ξ )

, (i = 1,2).

This completes the proof. �
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3. Opial-type inequalities for fractional integrals and fractional derivatives

Here we present some new Opial-type inequalities involving fractional integrals
and fractional derivatives. For more details on the fractional integrals of a function
with respect to another function, the Riemann–Liouville and the Hadamard fractional
integrals, see e.g. [8, Section 2.1, 2.5 and 2.7].

Let (a,b) , −∞ � a < b � ∞ , be a finite or infinite interval of the real line R

and α > 0. Also let g be an increasing function on (a,b) and g′ be a continuous
function on (a,b) . The left-sided and right-sided fractional integrals of a function f
with respect to another function g in [a,b] are given by

Iα
a+;g f (x) =

1
Γ(α)

x∫
a

g′(t) f (t)dt
[g(x)−g(t)]1−α , x > a ,

Iα
b−;g f (x) =

1
Γ(α)

b∫
x

g′(t) f (t)dt
[g(t)−g(x)]1−α , x < b ,

respectively. Here Γ is the gamma function Γ(α) =
∫ ∞
0 e−t tα−1 dt .

THEOREM 3.1. Let α � 1 , φ(u) be convex, nonnegative and increasing for u � 0
and let f (u) be convex for u � 0 with f (0) = 0. If f is a differentiable function, then
these inequalities are valid:

(g(b)−g(a))α−1 max
x∈[a,b]

g′(x)

Γ(α)

b∫
a

u2 (t)φ
(∣∣∣∣u1 (t)

u2 (t)

∣∣∣∣
)

f ′
(

Iα
a+;gu2 (t)φ

(∣∣∣∣∣ I
α
a+;gu1 (t)
Iα
a+;gu2 (t)

∣∣∣∣∣
))

dt

� f

⎛
⎜⎝

(g(b)−g(a))α−1 max
x∈[a,b]

g′(x)

Γ(α)

b∫
a

u2 (t)φ
(∣∣∣∣u1 (t)

u2 (t)

∣∣∣∣
)

dt

⎞
⎟⎠

� 1
b−a

b∫
a

f

⎛
⎜⎝

(b−a)(g(b)−g(a))α−1 max
x∈[a,b]

g′(x)

Γ(α)
u2 (t)φ

(∣∣∣∣u1 (t)
u2 (t)

∣∣∣∣
)⎞
⎟⎠dt. (10)

Proof. We use Theorem 2.1 with the following kernel,

K(x,t) =

⎧⎪⎨
⎪⎩

g′(t)
Γ(α)(g(x)−g(t))1−α , a < t � x ;

0, x < t � b .

For α � 1, we get

M = maxK(x,t) =
(g(b)−g(a))α−1 max

x∈[a,b]
g′(x)

Γ(α)
.
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If we replace ui by Iα
a+;gui and vi by ui (i = 1,2) in inequalities given in (3) an (4) ,

then the inequality (10) follows. �

Let [a,b] , −∞ < a < b < ∞ , be a finite interval on the real axis R. For f ∈ L1[a,b]
the left-sided and right-sided Riemann–Liouville fractional integrals of order α > 0 are
defined by

Iα
a+ f (x) =

1
Γ(α)

x∫
a

(x− t)α−1 f (t)dt, x > a ,

Iα
b− f (x) =

1
Γ(α)

b∫
x

(t− x)α−1 f (t)dt, x < b .

If g(x) = x , then Iα
a+;x f (x) reduces to Iα

a+ f (x) , i.e. left-sided Riemann–Liouville
fractional integral. Same follows for the right-sided fractional integral. This gives us
the next result.

COROLLARY 3.2. Let α � 1 , φ(u) be convex, nonnegative and increasing for
u � 0 and let f (u) be convex for u � 0 with f (0) = 0 . If f is a differentiable function,
then these inequalities are valid:

(b−a)α−1

Γ(α)

b∫
a

u2 (t)φ
(∣∣∣∣u1 (t)

u2 (t)

∣∣∣∣
)

f ′
(

Iα
a+u2 (t)φ

(∣∣∣∣ Iα
a+u1 (t)
Iα
a+u2 (t)

∣∣∣∣
))

dt

� f

⎛
⎝ (b−a)α−1

Γ(α)

b∫
a

u2 (t)φ
(∣∣∣∣u1 (t)

u2 (t)

∣∣∣∣
)

dt

⎞
⎠

� 1
b−a

b∫
a

f

(
(b−a)α

Γ(α)
u2 (t)φ

(∣∣∣∣u1 (t)
u2 (t)

∣∣∣∣
))

dt. (11)

Let (a,b) be a finite or infinite interval of R
+ and α > 0. The left-sided and

right-sided Hadamard fractional integrals of order α > 0 are given by

Jα
a+ f (x) =

1
Γ(α)

x∫
a

(
log

x
t

)α−1 f (t)dt
t

, x > a ,

Jα
b− f (x) =

1
Γ(α)

b∫
x

(
log

t
x

)α−1 f (t)dt
t

, x < b .

Notice that Hadamard fractional integrals of order α are special cases of the left-
sided and right-sided fractional integrals of a function f with respect to a function
g(x) = logx in (a,b) , where 0 � a < b � ∞.
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COROLLARY 3.3. Let α � 1 , φ(u) be convex, nonnegative and increasing for
u � 0 and let f (u) be convex for u � 0 with f (0) = 0 . If f is a differentiable function,
then these inequalities are valid:

(logb− loga)α−1

aΓ(α)

b∫
a

u2 (t)φ
(∣∣∣∣u1 (t)

u2 (t)

∣∣∣∣
)

f ′
(

Jα
a+u2 (t)φ

(∣∣∣∣Jα
a+u1 (t)

Jα
a+u2 (t)

∣∣∣∣
))

dt

� f

⎛
⎝ 1

aΓ(α)
(logb− loga)α−1

b∫
a

u2 (t)φ
(∣∣∣∣u1 (t)

u2 (t)

∣∣∣∣
)

dt

⎞
⎠

� 1
b−a

b∫
a

f

(
(b−a)(logb− loga)α−1

aΓ(α)
u2 (t)φ

(∣∣∣∣u1 (t)
u2 (t)

∣∣∣∣
))

dt. (12)

REMARK 3.4. Similarly we can give analogous results for the right-sided frac-
tional integrals but here we omit the details.

Next we follow with definitions of the Riemann–Liouville, Canavati and Caputo
fractional derivatives (see [8, Section 2.1 and 2.4] and [6]) and obtain results.

Let α > 0 and n = [α]+1 ( [·] is the integral part). For f : [a,b]→R the left-sided
and right-sided Riemann–Liouville fractional derivatives of order α are defined by

Dα
a+ f (x) =

1
Γ(n−α)

dn

dxn

∫ x

a
(x− t)n−α−1 f (t)dt =

dn

dxn In−α
a+ f (x) ,

Dα
b− f (x) =

(−1)n

Γ(n−α)
dn

dxn

∫ b

x
(t− x)n−α−1 f (t)dt = (−1)n dn

dxn In−α
b− f (x) .

The following lemma summarizes conditions in the composition identity for the
left-sided Riemann–Liouville fractional derivative. For details see [2, Section 3].

LEMMA 3.5. Let β > α � 0 , n = [β ]+1 , m = [α]+1 . The composition identity

Dα
a+ f (x) =

1
Γ(β −α)

x∫
a

(x− t)β−α−1Dβ
a+ f (t)dt , x ∈ [a,b], (13)

is valid if one of the following conditions holds:

(i) f ∈ Iβ
a+ (L1(a,b)) .

(ii) In−β
a+ f ∈ ACn[a,b] and Dβ−k

a+ f (a) = 0 for k = 1, . . .n.

(iii) Dβ−k
a+ f ∈C[a,b] for k = 1, . . . ,n, Dβ−1

a+ f ∈ AC[a,b] and Dβ−k
a+ f (a) = 0 for k =

1, . . .n.

(iv) f ∈ ACn[a,b] , Dβ
a+ f ∈ L1(a,b) , Dα

a+ f ∈ L1(a,b) , β −α /∈ N , Dβ−k
a+ f (a) = 0

for k = 1, . . . ,n and Dα−k
a+ f (a) = 0 for k = 1, . . . ,m.
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(v) f ∈ACn[a,b] , Dβ
a+ f ∈ L1(a,b) , Dα

a+ f ∈ L1(a,b) , β −α = l ∈N , Dβ−k
a+ f (a) = 0

for k = 1, . . . , l .

(vi) f ∈ ACn[a,b] , Dβ
a+ f ∈ L1(a,b) , Dα

a+ f ∈ L1(a,b) and f (a) = f ′(a) = · · · =
f (n−2)(a) = 0 .

(vii) f ∈ ACn[a,b] , Dβ
a+ f ∈ L1(a,b) , Dα

a+ f ∈ L1(a,b) , β /∈N and Dβ−1
a+ f is bounded

in a neighborhood of t = a.

THEOREM 3.6. Let β > α +1 and let the assumptions of Lemma 3.5 be satisfied.

Let Dβ
a+u2(x) > 0 for every x ∈ [a,b] . Further, let φ(u) be convex, nonnegative and

increasing for u � 0 and let f (u) be convex for u � 0 with f (0) = 0 . Then these
inequalities are valid:

(b−a)β−α−1

Γ(β −α)

b∫
a

Dβ
a+u2 (t)φ

(∣∣∣∣∣D
β
a+u1 (t)

Dβ
a+u2 (t)

∣∣∣∣∣
)

f ′
(

Dα
a+u2 (t)φ

(∣∣∣∣Dα
a+u1 (t)

Dα
a+u2 (t)

∣∣∣∣
))

dt

� f

⎛
⎝ (b−a)β−α−1

Γ(β −α)

b∫
a

Dβ
a+u2 (t)φ

(∣∣∣∣∣D
β
a+u1 (t)

Dβ
a+u2 (t)

∣∣∣∣∣
)

dt

⎞
⎠

� 1
b−a

b∫
a

f

(
(b−a)β−α

Γ(β −α)
Dβ

a+u2 (t)φ

(∣∣∣∣∣D
β
a+u1 (t)

Dβ
a+u2 (t)

∣∣∣∣∣
))

dt. (14)

Proof. We use Theorem 2.1 with the following kernel,

K(x,t) =

⎧⎪⎨
⎪⎩

(x− t)β−α−1

Γ(β −α)
, a < t � x ;

0, x < t � b .

For β > α +1, we get

M = maxK(x,t) =
(b−a)β−α−1

Γ(β −α)
.

If we replace ui by Dα
a+ui and vi by Dβ

a+ui (i = 1,2) in inequalities given in (3) and
(4) , then the inequality (14) follows. �

Next we consider subspaces Cα
a+[a,b] and Cα

b−[a,b] of Cn−1[a,b] defined by

Cα
a+[a,b] =

{
f ∈Cn−1[a,b] : In−α

a+ f (n−1) ∈C1[a,b]
}

,

Cα
b−[a,b] =

{
f ∈Cn−1[a,b] : In−α

b− f (n−1) ∈C1[a,b]
}

.
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For f ∈Cα
a+[a,b] and g ∈ Cα

b−[a,b] the left-sided and right-sided Canavati fractional
derivatives of order α are defined by

CDα
a+ f (x) =

1
Γ(n−α)

d
dx

∫ x

a
(x− t)n−α−1 f (n−1)(t)dt =

d
dx

In−α
a+ f (n−1)(x) ,

CDα
b−g(x) =

(−1)n

Γ(n−α)
d
dx

∫ b

x
(t− x)n−α−1 g(n−1)(t)dt = (−1)n d

dx
In−α
b− g(n−1)(x) .

The following lemma gives conditions in the composition rule for the left-sided
Canavati fractional derivative. For details see [4, Section 2].

LEMMA 3.7. Let β > α > 0 , n = [β ]+1 , m = [α]+1 . Let f ∈Cβ
a+[a,b] be such

that f (i)(a) = 0 for i = m−1, . . . ,n−2. Then f ∈Cα
a+[a,b] and

CDα
a+ f (x) =

1
Γ(β −α)

x∫
a

(x− t)β−α−1CDβ
a+ f (t)dt , x ∈ [a,b] .

THEOREM 3.8. Let β > α +1 and let the assumptions of Lemma 3.7 be satisfied.

Let CDβ
a+u2(x) > 0 for every x ∈ [a,b] . Further, let φ(u) be convex, nonnegative and

increasing for u � 0 and let f (u) be convex for u � 0 with f (0) = 0 . Then these
inequalities are valid:

(b−a)β−α−1

Γ(β −α)

b∫
a

CDβ
a+u2 (t)φ

(∣∣∣∣∣
CDβ

a+u1 (t)
CDβ

a+u2 (t)

∣∣∣∣∣
)

f ′
(

CDα
a+u2 (t)φ

(∣∣∣∣CDα
a+u1 (t)

CDα
a+u2 (t)

∣∣∣∣
))

dt

� f

⎛
⎝(b−a)β−α−1

Γ(β −α)

b∫
a

CDβ
a+u2 (t)φ

(∣∣∣∣∣
CDβ

a+u1 (t)
CDβ

a+u2 (t)

∣∣∣∣∣
)

dt

⎞
⎠

� 1
b−a

b∫
a

f

(
(b−a)β−α

Γ(β −α)
CDβ

a+u2 (t)φ

(∣∣∣∣∣
CDβ

a+u1 (t)
CDβ

a+u2 (t)

∣∣∣∣∣
))

dt. (15)

Proof. The proof of this theorem is a similar to the proof of Theorem 3.6. �
Let α � 0 and n= [α]+1. For f ∈ACn[a,b] the left-sided and right-sided Caputo

fractional derivatives of order α are defined by

CDα
a+ f (x) =

1
Γ(n−α)

∫ x

a
(x− t)n−α−1 f (n)(t)dt = In−α

a+ f (n)(x) ,

CDα
b− f (x) =

(−1)n

Γ(n−α)

∫ b

x
(t − x)n−α−1 f (n)(t)dt = (−1)nIn−α

b− f (n)(x) .

The final composition identity for the left-sided Caputo fractional derivative is
given in [3, Section 2].
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LEMMA 3.9. Let β > α � 0, n= [β ]+1 , m = [α]+1 , f ∈ACn[a,b] and CDβ
a+ f ,

CDα
a+ f ∈ L1[a,b] . Suppose that one of the following conditions hold:

(i) β ,α �∈ N0 and f (i)(a) = 0 for i = m, . . . ,n−1.

(ii) β ∈ N0 , α �∈ N0 and f (i)(a) = 0 for i = m, . . . ,n−2.

(iii) β �∈ N0 , α ∈ N0 and f (i)(a) = 0 for i = m−1, . . . ,n−1.

(iv) β ∈ N0 , α ∈ N0 and f (i)(a) = 0 for i = m−1, . . . ,n−2.

Then

CDα
a+ f (x) =

1
Γ(β −α)

x∫
a

(x− t)β−α−1CDβ
a+ f (t)dt , x ∈ [a,b] .

THEOREM 3.10. Let β > α + 1 and let the assumptions of Lemma 3.9 be satis-

fied. Let CDβ
a+u2(x) > 0 for every x ∈ [a,b] . Further, let φ(u) be convex, nonnegative

and increasing for u � 0 and let f (u) be convex for u � 0 with f (0) = 0 . Then these
inequalities are valid:

(b−a)β−α−1

Γ(β −α)

b∫
a

CDβ
a+u2 (t)φ

(∣∣∣∣∣
CDβ

a+u1 (t)
CDβ

a+u2 (t)

∣∣∣∣∣
)

f ′
(

CDα
a+u2 (t)φ

(∣∣∣∣∣
CDα

a+u1 (t)
CDα

a+u2 (t)

∣∣∣∣∣
))

dt

� f

⎛
⎝ (b−a)β−α−1

Γ(β −α)

b∫
a

CDβ
a+u2 (t)φ

(∣∣∣∣∣
CDβ

a+u1 (t)
CDβ

a+u2 (t)

∣∣∣∣∣
)

dt

⎞
⎠

� 1
b−a

b∫
a

f

(
(b−a)β−α

Γ(β −α)
CDβ

a+u2 (t)φ

(∣∣∣∣∣
CDβ

a+u1 (t)
CDβ

a+u2 (t)

∣∣∣∣∣
))

dt. (16)

Proof. The proof of this theorem is similar to the proof of Theorem 3.6. �

REMARK 3.11. As we define the functionals Φ1 and Φ2 from the inequalities
given in (3) and (4) , similarly we can define the functionals from the inequalities
given in (10), (11), (12), (14), (15) and (16) and analogously we obtain the mean
value theorems for our defined functionals.

4. Method of exponential convexity

Following definitions and properties of exponentially convex functions comes from
[5], also [10]. Let I be an interval in � .

DEFINITION 4.1. A function ψ : I →� is n -exponentially convex in the Jensen
sense on I if

n

∑
i, j=1

ξi ξ j ψ
(

xi + x j

2

)
� 0
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holds for all choices ξi ∈� and xi ∈ I , i = 1, . . . ,n .
A function ψ : I →� is n -exponentially convex if it is n -exponentially convex in

the Jensen sense and continuous on I .

REMARK 4.2. It is clear from the definition that 1-exponentially convex func-
tions in the Jensen sense are in fact nonnegative functions. Also, n -exponentially con-
vex functions in the Jensen sense are k -exponentially convex in the Jensen sense for
every k ∈� , k � n .

By definition of positive semi-definite matrices and some basic linear algebra we
have the following proposition.

PROPOSITION 4.3. If ψ is an n-exponentially convex in the Jensen sense, then

the matrix

[
ψ
(

xi + x j

2

)]k

i, j=1
is a positive semi-definite matrix for all k ∈� , k � n.

Particularly, det

[
ψ
(

xi + x j

2

)]k

i, j=1
� 0 for all k ∈� , k � n.

DEFINITION 4.4. A function ψ : I → � is exponentially convex in the Jensen
sense on I if it is n -exponentially convex in the Jensen sense for all n ∈� .

A function ψ : I →� is exponentially convex if it is exponentially convex in the
Jensen sense and continuous.

REMARK 4.5. It is known (and easy to show) that ψ : I → (0,∞) is log-convex
in the Jensen sense if and only if

α2ψ(x)+2αβ ψ
(

x+ y
2

)
+ β 2ψ(y) � 0

holds for every α,β ∈ � and x,y ∈ I . It follows that a function is log-convex in the
Jensen-sense if and only if it is 2-exponentially convex in the Jensen sense.

Also, using basic convexity theory it follows that a function is log-convex if and
only if it is 2-exponentially convex.

We will also need following results (see for example [11]).

PROPOSITION 4.6. If x1,x2,x3 ∈ I are such that x1 < x2 < x3 , then the function
f : I →� is convex if and only if the inequality

(x3− x2) f (x1)+ (x1− x3) f (x2)+ (x2− x1) f (x3) � 0

holds.

PROPOSITION 4.7. If f is a convex function on an interval I and if x1 � y1 ,
x2 � y2 , x1 �= x2 , y1 �= y2 , then the following inequality is valid

f (x2)− f (x1)
x2− x1

� f (y2)− f (y1)
y2− y1

.
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If the function f is concave, then the inequality reverses.

Next we need divided differences, commonly used when dealing with functions
that have different degree of smoothness.

DEFINITION 4.8. The second order divided difference of a function f : I →� at
mutually different points y0,y1,y2 ∈ I is defined recursively by

[yi; f ] = f (yi) , i = 0,1,2

[yi,yi+1; f ] =
f (yi+1)− f (yi)

yi+1− yi
, i = 0,1

[y0,y1,y2; f ] =
[y1,y2; f ]− [y0,y1; f ]

y2 − y0
. (17)

REMARK 4.9. The value [y0,y1,y2; f ] is independent of the order of the points
y0 , y1 and y2 . This definition may be extended to include the case in which some or
all the points coincide. Namely, taking the limit y1 → y0 in (17) , we get

lim
y1→y0

[y0,y1,y2; f ] = [y0,y0,y2; f ] =
f (y2)− f (y0)− f ′(y0)(y2 − y0)

(y2− y0)2 , y2 �= y0

provided that f ′ exists, and furthermore, taking the limits yi → y0 , i = 1,2 in (17) , we
get

lim
y2→y0

lim
y1→y0

[y0,y1,y2; f ] = [y0,y0,y0; f ] =
f ′′(y0)

2

provided that f ′′ exists.

An elegant method of producing n -exponentially convex and exponentially convex
functions is given in [7]. We use this to prove the n -exponential convexity for the
functionals Φi (i = 1,2) . The next theorem is analogous to the one given in [10,
Theorem 3.9] and we give a proof for the reader’s convenience.

Note here that for the functionals Φi ( i = 1,2) interval I is defined by (7) .

THEOREM 4.10. Let ϒ = { fs : s ∈ J} , where J is an interval in � , be a family
of functions defined on an interval I in � , such that the function s �→ [y0,y1,y2; fs]
is n-exponentially convex in the Jensen sense on J for every three mutually different
points y0,y1,y2 ∈ I . Let Φi (i = 1,2) be linear functionals defined as in (5) and (6) .
Then s �→ Φi( fs) is n-exponentially convex function in the Jensen sense on J . If the
function s �→ Φi( fs) is also continuous on J , then it is n-exponentially convex on J .

Proof. For ξi ∈� , si ∈ J , i = 1, . . . ,n , we define the function

g(y) =
n

∑
i, j=1

ξiξ j f si+s j
2

(y) .



AN OPIAL-TYPE INEQUALITY AND EXPONENTIAL CONVEXITY 37

Using the assumption that the function s �→ [y0,y1,y2; fs] is n -exponentially convex in
the Jensen sense, we have

[y0,y1,y2;g] =
n

∑
i, j=1

ξiξ j[y0,y1,y2; f si+s j
2

] � 0,

which in turn implies that g is a convex function on I . Therefore we have Φi(g) � 0
(i = 1,2) . Hence

n

∑
i, j=1

ξiξ jΦi( f si+s j
2

) � 0.

We conclude that the function s �→ Φi( fs) is n -exponentially convex on J in the Jensen
sense. If the function s �→ Φi( fs) is also continuous on J , then s �→ Φi( fs) is n -
exponentially convex by definition. �

COROLLARY 4.11. Let ϒ = { fs : s ∈ J} , where J is an interval in � , be a family
of functions defined on an interval I in � , such that the function s �→ [y0,y1,y2; fs] is
exponentially convex in the Jensen sense on J for every three mutually different points
y0,y1,y2 ∈ I . Let Φi (i = 1,2) be linear functionals defined as in (5) and (6) . Then
s �→ Φi( fs) is exponentially convex function in the Jensen sense on J . If the function
s �→ Φi( fs) is continuous on J , then it is exponentially convex on J .

Let us denote a mean for fs, fq ∈ Ω by

μs,q(Φi,Ω) =

⎧⎪⎪⎨
⎪⎪⎩

(
Φi( fs)
Φi( fq)

) 1
s−q

, s �= q ,

exp

(
d
ds Φi( fs)
Φi( fs)

)
, s = q .

(18)

THEOREM 4.12. Let Ω = { fs : s ∈ J} , where J is an interval in � , be a family
of functions defined on an interval I in � , such that the function s �→ [y0,y1,y2; fs]
is 2 -exponentially convex in the Jensen sense on J for every three mutually different
points y0,y1,y2 ∈ I . Let Φi (i = 1,2) be linear functionals defined as in (5) and (6) .
Then the following statements hold:

(i) If the function s �→ Φi( fs) is continuous on J , then it is 2 -exponentially convex
function on J . If the function s �→ Φi( fs) is additionally positive, then it is also
log-convex on J , and for r,s,t ∈ J such that r < s < t , we have

(Φi( fs))t−r � (Φi( fr))t−s (Φi( ft ))s−r , i = 1,2 . (19)

(ii) If the function s �→ Φi( fs) is strictly positive and differentiable on J , then for
every s,q,r, t ∈ J , such that s � r and q � t , we have

μs,q(Φi,Ω) � μr,t(Φi,Ω) , i = 1,2. (20)
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Proof. (i) The first part is an immediate consequence of Theorem 4.10 and in
second part log-convexity on J follows from Remark 4.5. Since s �→ Φi( fs) is positive,
for r,s, t ∈ J such that r < s < t , with f (s) = logΦi( fs) in Proposition 4.6, we have

(t− s) logΦi( fr)+ (r− t) logΦi( fs)+ (s− r) logΦi( ft) � 0 .

This is equivalent to inequality (19) .
(ii) The function s �→ Φi( fs) is log-convex on J by (i) , that is, the function

s �→ logΦi( fs) is convex on J . Applying Proposition 4.7 we get

logΦi( fs)− logΦi( fq)
s−q

� logΦi( fr)− logΦi( ft )
r− t

(21)

for s � r , q � t , s �= q , r �= t , and therefore we have

μs,q(Φi,Ω) � μr,t(Φi,Ω) .

Cases s = q and r = t follows from (21) as limit cases. �

REMARK 4.13. The results from Theorem 4.10, Corollary 4.11 and Theorem
4.12 still hold when two of the points y0,y1,y2 ∈ I coincide, for a family of differen-
tiable functions fs such that the function s �→ [y0,y1,y2; fs] is n -exponentially convex
in the Jensen sense (exponentially convex in the Jensen sense, log-convex in the Jensen
sense). Furthermore, they still hold when all three points coincide for a family of twice
differentiable functions with the same property. The proofs can be obtained by recalling
Remark 4.9 and suitable characterization of convexity.

REMARK 4.14. As we prove the n -exponential convexity of the functionals Φ1

and Φ2 obtained from the inequalities given in (3) and (4) , similarly we can define
the functionals from the inequalities given in (10), (11), (12), (14), (15) and (16)
and prove the n -exponential convexity of our defined functionals but here we omit the
details.

5. Applications to Stolarsky type means

In this section, we use Cauchy type mean value Theorem 2.2 and Theorem 2.3
for Stolarsky type means, defined by the functional Φi (i = 1,2) . Several families
of functions which fulfil the conditions of Theorem 4.10, Corollary 4.11 and Theorem
4.12 (and Remark 4.13) that we present here, enable us to construct large families of
functions which are exponentially convex.

EXAMPLE 5.1. Consider a family of functions

Ω1 = { fs :�→� : s ∈�}
defined by

fs(x) =

{
esx−1

s2
, s �= 0 ,

x2

2 , s = 0 .
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Since d2 fs
dx2 (x) = esx > 0, then fs is convex on � for every s ∈� , and s �→ d2 fs

dx2 (x) is
exponentially convex by definition.

Analogously as in the proof of Theorem 4.10 we conclude that s �→ [y0,y1,y2; fs]
is exponentially convex (and so exponentially convex in the Jensen sense).

Notice that fs(0) = 0. By Corollary 4.11 we have that s �→ Φi( fs) (i = 1,2)
is exponentially convex in the Jensen sense. It is easy to verify that this mapping is
continuous (althoughmapping s �→ fs is not continuous for s = 0), so it is exponentially
convex.

For this family of functions, μs,q(Φi,Ω1) (i = 1,2) from (18) is equal to

μs,q(Φi,Ω1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
Φi( fs)
Φi( fq)

) 1
s−q

, s �= q ,

exp
(

Φi(id· fs)
Φi( fs)

− 2
s

)
, s = q �= 0 ,

exp
(

Φi(id· f0)
3Φi( f0)

)
, s = q = 0 ,

and using (20) it is a monotonous in parameters s and q .
If Φi is positive, (i = 1,2) , then Theorem 2.3 applied for f = fs ∈ Ω1 and g =

fq ∈ Ω1 yields that there exists ξ ∈ I =
[
0,MM2 (b−a)max[

0,
M1
m2

] φ
]

such that

e(s−q)ξ =
Φi( fs)
Φi( fq)

.

It follows that
Ms,q(Φi,Ω1) = logμs,q(Φi,Ω1)

satisfy 0 � Ms,q(Φi,Ω1) � MM2 (b−a)max[
0,

M1
m2

] φ , which shows that Ms,q(Φi,Ω1) is

a mean, and by (20) it is a monotonous mean, i = 1,2.

EXAMPLE 5.2. Consider a family of functions

Ω2 = {gs : [0,∞) →� : s ∈�}

defined by

gs(x) =

⎧⎪⎪⎨
⎪⎪⎩

(x+1)s−1
s(s−1) , s �= 0,1 ,

− log(x+1) , s = 0 ,

(x+1) log(x+1) , s = 1 .

Here, d2gs
dx2 (x) = (x+1)s−2 = e(s−2) log(x+1) > 0 which shows that gs is convex for x > 0

and s �→ d2gs
dx2 (x) is exponentially convex by definition. Also, gs(0) = 0. Arguing as

in Example 5.1 we get that the mapping s �→ Φi(gs) is exponentially convex and also
log-convex.
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For this family of functions, μs,q(Φi,Ω2) from (18) is equal to

μs,q(Φi,Ω2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Φi(gs)
Φi(gq)

) 1
s−q

, s �= q ,

exp
(

1−2s
s(s−1) − Φi(g0gs)

Φi(gs)
− 1

s(s−1)
Φi(g0)
Φi(gs)

)
, s = q �= 0,1 ,

exp
(
1− Φi(g2

0)
2Φi(g0)

)
, s = q = 0 ,

exp
(
−1− Φi(g0g1)

2Φi(g1)

)
, s = q = 1 ,

and by (20) it is monotonous in parameters s and q .
Using Theorem 2.3 it follows that there exists ξ ∈ I such that

(ξ +1)s−q =
Φi(gs)
Φi(gq)

.

Since the function ξ �→ (ξ +1)s−q is invertible for s �= q , we have

0 �
(

Φi(gs)
Φi(gq)

) 1
s−q

� MM2 (b−a) max[
0,

M1
m2

]φ

which together with the fact that μs,q(Φi,Ω2) is continuous, symmetric and monotonous,
shows that μs,q(Φi,Ω2) is a mean, i = 1,2.

EXAMPLE 5.3. Consider a family of functions

Ω3 = {hs : [0,∞) →� : s > 0}

defined by

hs(x) =

⎧⎨
⎩

s−x−1
log2 s

, s �= 1 ,

x2

2 , s = 1 .

Since s �→ d2hs
dx2 (x) = s−x is the Laplace transform of a non-negative function ([12]),

that is s−x =
1

Γ(x)

∫ ∞

0
e−st tx−1 dt , it is exponentially convex on (0,∞) . Obviously hs

are convex functions for every s > 0 and hs(0) = 0.
For this family of functions, μs,q(Φi,Ω3) from (18) is equal to

μs,q(Φi,Ω3) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
Φi(hs)
Φi(hq)

) 1
s−q

, s �= q ,

exp
(
−Φi(id·hs)

sΦi(hs)
− 2

s logs

)
, s = q �= 1 ,

exp
(
−Φi(id·h1)

3Φi(h1)

)
, s = q = 1 ,
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and it is monotonous in parameters s and q by (20) .
Using Theorem 2.3 it follows that there exists ξ ∈ I such that(

s
q

)−ξ
=

Φi(hs)
Φi(hq)

.

Hence,
Ms,q(Φi,Ω3) = −L(s,q) logμs,q(Φi,Ω3),

satisfies 0 � Ms,q(Φi,Ω3) � MM2 (b−a)max[
0,

M1
m2

] φ , which shows that Ms,q(Φi,Ω3)

is a mean, i = 1,2.
L(s,q) is the logarithmic mean defined by

L(s,q) =

{
s−q

logs−logq , s �= q ,

s , s = q .

EXAMPLE 5.4. Consider a family of functions

Ω4 = {ks : [0,∞) →� : s > 0}
defined by

ks(x) =
e−x

√
s−1
s

.

Again we conclude, since s �→ d2ks
dx2 (x) = e−x

√
s is the Laplace transform of a non-

negative function ([12]), that is e−x
√

s =
s

2
√

π

∞∫
0

e−ste−x2/4t

t
√

t
dt it is exponentially con-

vex on (0,∞) . For every s > 0, ks are convex functions and ks(0) = 0.
For this family of functions, μs,q(Φi,Ω4) from (18) is equal to

μs,q(Φi,Ω4) =

⎧⎪⎨
⎪⎩

(
Φi(ks)
Φi(kq)

) 1
s−q

, s �= q ,

exp
(
− Φi(id·ks)

2
√

sΦi(ks)
− 1

s

)
, s = q ,

and by (20) it is monotonous in parameters s and q .
Using Theorem 2.3 it follows that there exists ξ ∈ I such that

e−ξ(√s−√
q) =

Φi(ks)
Φi(kq)

.

Hence,
Ms,q(Φi,Ω4) = −(√

s+
√

q
)
logμs,q(Φi,Ω4)

satisfies 0 � Ms,q(Φi,Ω4) � MM2 (b−a)max[
0,

M1
m2

] φ , which shows that Ms,q(Φi,Ω4)

is a mean, i = 1,2.
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[7] J. JAKŠETIĆ AND J. PEČARIĆ, Exponential Convexity Method, J. Convex Anal., 20 (1) (2013), 181–

197.
[8] A. A. KILBAS, H. M. SRIVASTAVA AND J. J. TRUJILLO, Theory and Application of Fractinal Dif-

ferential Equations, North-Holland Mathematics Studies, 204, Elsevier, New York-London, 2006.
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