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PARAMETRIC STUDY OF FRACTIONAL BIOHEAT

EQUATION IN SKIN TISSUE WITH SINUSOIDAL HEAT FLUX

R. S. DAMOR, SUSHIL KUMAR AND A. K. SHUKLA

Abstract. This paper deals with the study of fractional bioheat equation for heat transfer in skin
tissue with sinusoidal heat flux condition on skin surface. Numerical solution is obtained by
implicit finite difference method. The effect of anomalous diffusion in skin tissue has been
studied with different frequency and blood perfusion respectively, the temperature profile are
obtained for different order fractional bioheat equation.

1. Introduction

Heat transfer in biological tissue, is usually expressed as bioheat equation, it in-
volves thermal conduction, convection, perfusion of blood and metabolic heat genera-
tion in tissue. Pennes [10] bioheat model is widely used for study the heat transfer in
skin tissue due to its simplicity. In human body skin is the largest living organ, tem-
perature distribution in skin tissue is very important for medical application like skin
cancer, skin burns etc.

Recently fractional order equations drawn the attention to many researchers and
these are focused for many studies due to their frequent appearance in various applica-
tions in fluid mechanics, viescoelasticity, biology, physics and engineering etc. Fractals
and fractional calculus have been used to improve the modelling accuracy of many
phenomena in natural science. The most important advantage of using fractional differ-
ential equations in this and other applications is their non-local property. This means
that the next state of a system depends not only upon its current state but also upon all
of its historical states. These are more realistic and also easy to make the fractional
calculus popular [11]. Numerical solution of fractional diffusion equation by finite dif-
ference method are studied by many researcher, Meerschaert et al. [7], gave a second
order accurate numerical approximation for the fractional diffusion equation, Murio [8]
discussed implicit finite difference approximation for time fractional diffusion equation.

Shih et al. [12], Liu and Xu [3] gave analytic solution of pennes bio heat equa-
tion with sinusoidal heat flux condition on skin surface, Ng et al. [9] predict the para-
metric analysis of thermal profiles within heated human skin using boundary element
method. Gafiychuk and Lubashevsky [4, 5] discussed Mathematical description of the
heat transfer in living tissue. Recently Ahmadikia et al. [1] gave the analytical solu-
tion of the perabolic and hyperbolic heat transfer equation with constant and transient
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heat flux condition on skin tissue. Analytical solution of fractional bioheat equation is
difficult to find.

In this paper, we give numerical solution of fractional bioheat equation with sinu-
soidal heat flux condition on skin surface with different frequency and blood perfusion
respectively. We consider time fractional derivative of order α ∈ (0,1] , which is in
the form of Caputo fractional derivative and applying quadrature formula [8] on it. We
use implicit finite difference method to solve the fractional bioheat model. The tem-
perature profiles are obtained for different values of α , for studies the effect of α on
temperature profile in skin tissue.

2. Heat transfer model

In this study, we consider fractional Pennes bioheat heat model. Pennes bioheat
model [10] is implemented to study the heat transfer in skin tissue. In this model we
replaced time derivative by Caputo fractional derivative with sinusoidal heat flux con-
dition on skin surface and Neumann condition at the bottom of the tissue.

ρtct
∂ αT
∂ tα = k

∂ 2Ts

∂x2 + ρbwbcb(Ta−T )+qmet +qext , 0 < α � 1, (1)

where ρ , c , k , T , t and x represents density, specific heat, thermal conductivity,
temperature, time and distance respectively; the subscript t and b are for the tissue
and blood respectively. Ta and wb are artillery temperature and blood perfusion rate
respectively. qmet and qext are metabolic heat generation and external heat source in
skin tissue respectively.

Used fractional derivative

Fractional derivative is denoted as aDα
t f (t) , the subscript a and t denotes the two

limits related to the operation of fractional differentiation, which is called the terminal
of fractional differentiation. The negative values for α denoted for fractional integrals
of arbitrary order.

Caputo Fractional Derivative [11]

∂ αu(x, t)
∂ tα =

{
1

Γ(1−α)
∫ t
0

∂u(x,s)
∂ t (t− s)−αdτ, for 0 < α < 1

∂u(x,t)
∂ t , for α = 1

(2)

We introduced governing equation for fractional Penns bioheat model,

ρtct
∂ αT
∂ tα = k

∂ 2Ts

∂x2 + ρbwbcb(Ta−T )+qmet +qext , 0 < α � 1, (3)

In our study we consider constant metabolic heat generation and zero external heat
source. On setting α = 1 then equation (3) reduces to Pennes bioheat equation [10].

The initial and boundary conditions for the model are considered as,

T (x,0) = Ta (4)
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− k
∂T
∂x |x=L

= 0, (5)

2.1. Sinusoidal heat flux condition

In this section, on taking the cosine heat flux condition on skin surface,

− k
∂T
∂x |x=0

= q0 cos(ωt), (6)

where ω is the heating frequency, On making dimensionless variables, equation (3) to
(5) and (6) becomes (7) to (9) in the following form,

ζ =
√

ωρtct

k
x, η = (ω)(1/α) t, θ =

(
T −Ta

q0

)√
kωρtct ,

C1 =
wbcb

ωρt ct
, Φ =

qmet

q0

√
ωρbcb

k

∂ α θ
∂ tα =

∂ 2θ
∂ζ 2 −C1θ + Φ, 0 < α � 1, (7)

θ (ζ ,0) = 0 (8)

∂θ
∂ζ |ζ=0

= −cos(η),
∂θ
∂ζ |ζ=

√
ωρc

k L
= 0 (9)

3. Implicit finite difference scheme

For implicit finite difference scheme of equation (3) approximated the Caputo frac-
tional derivative by quadrature formula [8] as follows,

∂ α θ
∂ tα =

1
Γ(1−α)

1
1−α

1
kα

n

∑
j=1

(θ j
i −θ j−1

i )[(n− j +1)(1−α)− (n− j)(1−α)] (10)

+
1

Γ(1−α)
1

1−α

n

∑
j=1

[(n− j +1)(1−α)− (n− j)(1−α)]O(k)2−α

Considering

W (α)
j = j(1−α)− ( j−1)(1−α)

and

σα ,k =
1

Γ(1−α)
1

(1−α)
1

(kα )
,

the Caputo fractional derivative given by equation(7) become,(
∂ α θ
∂ tα

)n

= σα ,k

n

∑
j=1

W (α)
j

(
θ n− j+1

i −C1θ n− j
i

)
(11)
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Now using above approximation and central difference formulae for space derivative in
equation (7) we get,

σα ,k

n

∑
j=0

W (α)
j

(
θ n− j+1

i −θ n− j
i

)
=

1
h2

(
θ n

i−1−2θ n
i + θ n

i−1

)−C1θ n
i + Ψ (12)

On taking γ = 1
h2 and further simplification, gives

−γθ n
i−1+(σα ,k+2γ+C1)θ n

i −γθ n
i−1−θ n

i =σα ,kθ n−1
i −σα ,k

n

∑
j=2

W (α)
j

(
θ n− j+1

i −θ n− j
i

)
+Ψ

(13)
Initial condition and boundary conditions written as,

θ n
i |η=0 = 0 (14)

θ n
2 −θ n

1 = −cos(η); θ n
m+1 −θ n

m = 0; (15)

4. Stability analysis

On making the use of Fourier analysis [2], we can obtain stability of this scheme,
which shows that scheme is unconditionally stable. Consider Θn

i be the approximate
solution of (7) so error is.

εn
i = θ n

i −Θn
i

The round of error of equation (17) is given as,

−γεn
i−1 +(σα ,k +2γ +C1)εn

i − γεn
i+1

= σα ,k (1− εα
2 )−σα ,k

n−1

∑
j=2

W (α)
j

(
εn− j+1
i − εn− j

i

)
+W (α)

n ε0
i + Ψ (16)

where,
εn =

[
εn
1 ,εn

2 ,εn
1 ,−−−−−−−−−−−−−−−,εn

m−1

]
and, εn

i = ξneIϖih , where ϖ = 2πI
L , I =

√−1

−γξne
Iϖi−1h +(σα ,k +2γ +C1)ξne

Iϖih− γξne
Iϖi+1h

= σα ,k(1−W (α)
2 )ξn−1e

Iϖih−σα ,k

n−1

∑
j=2

(W (α)
j+1−W (α)

j )ξn− je
Iϖih +W (α)

n ξ0e
Iϖih (17)

(σα ,k +C1 +2γ(1− cos(ϖh)))ξn

= σα ,k(1−Wα
2 )ξn−1−σα ,k

n−1

∑
j=2

(W (α)
j+1 −W (α)

j )ξn− j +W (α)
n ξ0

on making μ = 1+ C1+2γ(1−cos(ϖh))
σα,k

, the above expression can be written as,

ξn =
(1−Wα

2 )
μ

ξn−1− 1
μ

n−1

∑
j=2

(W (α)
j+1−W (α)

j )ξn− j +
W (α)

n )
μ

ξ0
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On introducing the norm,

‖ εn ‖2=

(
m−1

∑
i=1

h | ξ n
i |2
) 1

2

Now to show the stability of the scheme we can prove | ξn |�| ξ0 | [2]

| ξn | � (1−Wα
2 )

μ
| ξn−1 | − 1

μ

n−1

∑
j=2

(W (α)
j+1−W (α)

j ) | ξn− j | +W (α)
n )
μ

| ξ0 |

� 1−Wα
2 − (W (α)

n −W (α)
2 )+Wα

n

μ
| ξ0 |� 1

μ
| ξ0 |�| ξ0 |

5. Numerical computation and analysis

In this study we consider the parameter values are L = 0.02m ω = 0.01 to 0.05,
q0 = 5000W/m2, ρ = 1050 kgm−3, ρb = 1000 kgm−3, Ta = 37◦C, qmet = 368.1Wm−3,
ω = 0.05, cb = 3770 Jkg−1C, c = 4180 Jkg−1C, K = 0.5 Wm−1C and dimensionless
blood perfusion C1 = 0.001 to 1. We investigate the effect of anomalous diffusion in
this model for different values of α (order of the time derivative).

5.1. Code verification

Figure 1 represent the temperature profile along the distance for different time.
This represents the comparison of analytic solution obtained by Shih et al. [12] and nu-
merical solution as well as numerical solution for fractional bioheat equation obtained
by us as taking α → 1. We observe that our result is very similar to the analytic solution
[12] which verified with the developed Matlab code by us.
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Figure 1: Comparison of analytic solution with numerical solution
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5.2. Effect of frequency ω

Figure 2, 3 and 4 shows the temperature response on the skin with respect to time
with frequency ω = 0.01, ω = 0.05 and ω = 0.1 respectively for different value of α .
When ω = 0.01, we see that the amplitude of temperature is lower and response cyclic
time is longer for decreasing values of α . For ω = 0.05 and ω = 0.1 the temperature
is lower and cyclic time is lower as compare to ω = 0.01. For ω = 0.05 and ω = 0.1
amplitude of temperature is lower and cyclic time is increasing as α decreases.
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Figure 2: Temperature profile for ω = 0.01 with different α
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Figure 4: Temperature profile for ω = 0.1 with different α

5.3. Effect of dimensionless blood perfusion C1

Figure 5 represents the temperature profile of different α , along time for C1 =
0.001 at different depth x = 0 meter, x = 0.001 meter and x = 0.005 meter. Figure
6 shows the temperature profile of different α , along time for C1 = 0.01 at different
depth x = 0meter, x = 0.001 meter and x = 0.005 meter. Figure 7 indicates the tem-
perature profile of different α , along time for C1 = 0.05 at different depth x = 0 meter,
x = 0.001 meter and x = 0.005 meter. Figure 8 represents the temperature profile of
different α , along time for C1 = 1 at different depth x = 0 meter, x = 0.001 meter
and x = 0.005 meter. In fig 5, 6, 7 and 8, we see that the cyclic time is increases as α ,
decreases and also amplitude is decreases as α decreases. Temperature is decreasing
as depth of the tissue increases, here the oscillation at x = 0 meter is higher and cyclic
time is lower then x = 0.001 meter and very law oscillation and cyclic time is higher at
x = 0.005 meter.
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Figure 5: Temperature profile with C1 = 0.001 for different α at different depth
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Figure 6: Temperature profile with C1 = 0.01 for different α at different depth
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Figure 7: Temperature profile with C1 = 0.5 for different α at different depth
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Figure 8: Temperature profile for C1 = 1 for different α at different depth
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Figure 9 shows the comparison of temperature profile for different C1 , along time
for different values of α at depth x = 0.001 meter. As C1 increases the temperature
and cyclic time are increasing but when α decreases the temperature is decreasing
but cyclic time increasing. Figure 10 shows the comparison of temperature profile for
different C1 , along distance for different values of α at time t = 100 seconds. We
see that the C1 , decreases temperature is decreasing and temperature is continuously
decreasing as length of the tissue increases. The temperature response after x = 0.012
meter seems to be independent of the heat flux on the heating skin.
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Figure 9: Temperature profile with different C1 for different α at x = 0.001 meter
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6. Conclusion

In present paper the temperature distribution of fractional bioheat model has been
studied with sinusoidal heat flux on skin surface. The temperature profile has been
obtained along distance and time with different frequency and dimensionless blood
perfusion C1 . The effect of the anomalous diffusion has been compared with normal
diffusion for heat transfer in skin tissue at different depth and time of the tissue with
variation in blood perfusion. This is observed that the fractional bioheat model with si-
nusoidal heat flux condition on skin surface, if frequency ω increases the temperature
decreases and also cyclic time decreases it is interesting to note that when α , decreases
the temperature is decreasing and cyclic time is increasing. Also observed that if di-
mensionless blood perfusion C1 of the tissue increases the temperature increases but
temperature is decreases as length of the tissue increases, as α , decreases cyclic time
is increases but oscillation decreases as length increases. The obtained numerical solu-
tion in this work may be useful to predict the temperature response in fractional bioheat
model with sinusoidal heat flux with different frequency and blood perfusion respec-
tively. The obtained solution may also be useful for experimental model to predict the
value of α , and applicable for thermal therapy in medical sciences.

Nomenclature

ρ – density
(

kg
m3

)
c – specific heat

(
J

kg◦C

)
k – thermal conductivity of the tissue

( W
m◦C
)

Wb – Blood perfusion rate (Kg/m3s)
q0 – volumetric heat generation

(
W
m3

)
ω – heating frequency
T – temperature (◦C)
t – time (sec)
x – space coordinate (m)
θ – Dimensionless Temperature
ζ – Dimensionless Space
η – Dimensionless Time
C1 – Dimensionless blood perfusion
t and b – tissue and blood respectively
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