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FINITE DIFFERENCE METHOD FOR SOLVING THE SPACE–TIME

FRACTIONAL WAVE EQUATION IN THE CAPUTO FORM

ELHAM AFSHARI, BEHNAM SEPEHRIAN AND ALI MOHAMAD NAZARI

Abstract. In this paper a space-time fractional wave equation on a finite domain is considered.
The time and space fractional derivative are described in the Caputo sense. We propose a finite
difference scheme to solve the space-time fractional wave equation. We discuss about stability
and convergence of the method and prove that the finite difference scheme is unconditionally
stable and convergent with (τ2 +h) , where τ and h are time and space steps respectively.

1. Introduction

Fractional calculus is becoming a useful and in some cases key tool in the analysis
of scientific problems in a broad array of field such as physics, engineering, biology and
economics. In particular fractional partial differential equations have turned out to be
especially relevant, for example fractional diffusion equations have been successfully
used to describe diffusion processes where the diffusion is anomalous, and fractional
wave equations have been proposed to deal with viscoelastic problem [4] .

A fractional wave equation is obtained from the classical wave equation by re-
placing the second-order time derivative term by a fractional derivative of order α ,
1 < α < 2, and the second space derivative by a fractional derivative of order β ,
1 < β < 2.

In this paper, the following space-time fractional wave equation is considered

∂ αu
∂ tα = bc

2 ∂ β u

∂xβ 1 < α � 2, 1 < β � 2, (1.1)

subject to the boundary and initial conditions

u(0,t) = u(L,t) = 0 0 � t � T,
u(x,0) = f (x) 0 < x < L,
∂u(x,0)

∂ t = g(x) 0 < x � L.

Where α and β are parameters describing the order of time and space fractional deriva-
tives respectively, bc denotes a constant coefficient.
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Fractional order derivatives in (1.1) are Caputo fractional derivatives of order α
and β , defined by [9]

cDα f (x) =
∂ α f
∂xα =

1
Γ(m−α)

∫ x

0
(x− t)m−α−1 f (m)(t)dt, (1.2)

where m is an integer such that m−1 < α � m .

2. The finite difference scheme

For the numerical scheme, suppose tk = kτ , k = 0,1,2, . . . ,n and xi = ih , i =
0,1, . . . ,m , where τ = T

n is the time step and h = L
m is the grid step in space. Let uk

i be
the numerical estimate of the value exact solution u(x,t) at the mesh point (xi,tk) .

For the finite difference scheme, we discretize the Caputo time fractional derivative
by L2 formula [8]

∂ αu(xi, tk+1)
∂ tα =

τ−α

Γ(3−α)

k

∑
j=0

b j(u(xi,tk− j−1)−2u(xi, tk− j)+u(xi,tk− j+1))+o(τ2),

(2.1)
where

b j = ( j +1)2−α − j2−α j = 0,1, . . .k. (2.2)

The Caputo space fractional derivative is discretized by [2]

∂ β u(x, t)
∂xβ = (0D

β
x u)(x,t)− u(0,t)

Γ(1−β )
(x)−β − u′(0,t)

Γ(2−β )
(x)1−β , (1 < β � 2) (2.3)

where (0D
β
x u)(x, t) is the Riemann-Liouville fractional partial derivative of order 1 <

β � 2 defined by [9]

(0D
β
x u)(x,t) =

1
Γ(2−β )

(
∂
∂x

)2 ∫ x

0

u(ξ , t)
(x− ξ )β−1

dξ . (2.4)

We use the shifted Grunwald formula to discretize the Riemann-Liouville fractional
derivative [5]

(0D
β
x u)(xi,tk+1) =

1

hβ

i+1

∑
j=0

wju(xi− j+1,tk+1)+o(h), (2.5)

where wk = (−1)k

(
β
k

)
, called the normalized Grunwald weights, u′(0,t) in the (2.3)

is discretized using forward difference formula. Therefore the Caputo space fractional
derivative is discretized as follows

∂ β u(xi, tk+1)
∂xβ =

1

hβ

i+1

∑
j=0

wju(xi− j+1,tk+1)− u(x1,tk+1)
hΓ(2−β )

(x1−β
i )+o(h). (2.6)
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Let μ = b2
cτα Γ(3−α)

hβ , μ ′ = b2
cτα Γ(3−α)
hΓ(2−β ) then using (2.1) and (2.6) we have the following

implicit difference method

μ
i+1

∑
j=0

wju
k+1
i− j+1−μ ′(xi)1−β uk+1

1 −uk+1
i =

k

∑
j=1

b j(uk−i−1
i −2uk− j

i +uk− j+1
i )+uk−1

i −2uk
i ,

i = 1,2, . . . ,m, k = 0,1,2, . . . ,n. (2.7)

We know ∂u(x,0)
∂ t = g(x) , therefore

u−1
i = u1

i −2τg(xi), i = 0,1, . . . ,m,

hence for k = 0 we have

−μ
2

i+1

∑
j=0, j �=1

wju
1
i− j+1 +

(
1+

μ
2

β
)

u1
i +

μ ′

2
(xi)1−β u1

1 = τg(xi)+u0
i , (2.8)

for k �= 0, equation (2.7) is rewritten as

−μ
i+1

∑
j=0, j �=1

wju
k+1
i− j+1 +(1+ β μ)uk+1

i + μ ′(xi)1−β uk+1
1

=
k−1

∑
j=1

−(b j−1−2b j+b j+1)u
k− j
i +(2bk−bk−1)u0

i +(2−b1)uk
i−bku

1
i +2τg(xi)bk. (2.9)

Equation above can be written as{
A(1)U1 = F1

A(2)Uk+1 = (2−b1)Uk +(−b0 +2b1−b2)Uk−1 + . . .+(2bk−bk−1)U0 +F2

where Uk =

⎛⎜⎜⎜⎝
uk

1
uk

2
...

uk
m−1

⎞⎟⎟⎟⎠ and

A(1) = (A(1)
i, j )(m−1),(m−1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−μ
2 wi− j+1, 1 < j � i−1

μ ′
2 (xi)1−β − μ

2 wi, j �= i and j = 1

(1+ β μ
2 ), j = i �= 1

(1+ μ
2 β )+ μ ′

2 x1−β
1 , j = i = 1

− μ
2 w0, j = i+1
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and

A(2) = (A(2)
i, j )(m−1),(m−1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−μwi− j+1, 1 < j � i−1

μ ′(xi)1−β − μwi, j �= i and j = 1

(1+ β μ), j = i �= 1

(1+ μβ )+ μ ′x1−β
1 , j = i = 1

−μw0, j = i+1

If μ ′(xi)1−β < 1 then the coefficient matrices A(1) and A(2) are strictly diagonally
dominant, therefore the matrices A(1) and A(2) are nonsingular, thus they are invertible.
Therefore the finite difference scheme for problem (1.1) is unique.

LEMMA 2.1. For j = 0,1,2, . . . the coefficients wj , satisfy

1) w0 = 1 , w1 = −β
2) wj > 0 , j = 1,2, . . . ,

3) ∑N
j=0, j �=1 wj � β ,

4) ∑∞
j=0 wj = 0.

LEMMA 2.2. The coefficient b j , j = 1,2, . . . satisfy

1) b j > 0 , j = 1,2, . . .

2) b j > b j+1

Proof. Using the properties of functions f (x) = x2−α (x � 1) and h(x) = (x +
1)2−α − x2−α (x � 0) , lemma can be obtained. �

3. Stability of finite difference scheme

Let ũk
i and uk

i (i = 0,1,2, . . . ,m ; k = 0,1,2, . . . ,n) be the solution of (2.8) and
(2.9) , the error εk

i = ũk
i −uk

i (i = 0,1,2, . . . ,m ; k = 0,1,2, . . . ,n) satisfies

− μ
2

i+1

∑
j=0, j �=1

wjε1
i− j+1 +

(
1+

μ
2

β
)

ε1
i +

μ ′

2
(xi)1−β ε1

1 = ε0
i (3.1)

−μ
i+1

∑
j=0, j �=1

wjεk+1
i− j+1 +(1+ β μ)εk+1

i + μ ′(xi)1−β εk+1
1

=
k−1

∑
j=1

−(b j−1−2b j +b j+1)εk− j
i +(2bk −bk−1)ε0

i +(2−b1)εk
i −bkε1

i ,

(i = 1, . . . ,m−1) (3.2)
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which can be written as⎧⎨⎩
A(1)E1 = E0

A(2)Ek+1 = (2−b1)Ek +(−b0 +2b1−b2)Ek−1 + . . .+(2bk−bk−1)E0

E0 given

where Ek =

⎛⎜⎜⎜⎝
εk
1

εk
2
...

εk
m−1

⎞⎟⎟⎟⎠ and

A(1) = (A(1)
i, j )(m−1),(m−1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−μ
2 wi− j+1, 1 < j � i−1

μ ′
2 (xi)1−β − μ

2 wi, j �= i and j = 1

(1+ β μ
2 ), j = i �= 1

(1+ μ
2 β )+ μ ′

2 x1−β
1 , j = i = 1

− μ
2 w0, j = i+1

and

A(2) = (A(2)
i, j )(m−1),(m−1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−μwi− j+1, 1 < j � i−1

μ ′(xi)1−β − μwi, j �= i and j = 1

(1+ β μ), j = i �= 1

(1+ μβ )+ μ ′x1−β
1 , j = i = 1

−μw0, j = i+1

Using mathematical induction, we can obtain the following result.

PROPOSITION 3.1. ‖Ek‖∞ � C‖E0‖∞ , (k = 1,2, . . . ,n) where C is a positive
number independent of τ and h.

Proof. Let |ε1
l | = max1�i<m−1 |ε1

i | , then

|ε1
l | � |ε1

l |
(
1+ β

μ
2

)
− μ

2

l+1

∑
j=0, j �=1

wj|ε1
l− j+1|+

μ ′

2
(xl)1−β |ε1

1 |

�
∣∣∣∣∣−μ

2

l+1

∑
j=0, j �=1

wjε1
l− j+1 +

(
1+

μ
2

β
)

ε1
l +

μ ′

2
(xl)1−β ε1

1

∣∣∣∣∣= |ε0
l |,

thus ‖E1‖∞ < ‖E0‖∞ .
Suppose that ‖E j‖∞ � C‖E0‖∞ , j = 1,2, . . . ,k , let |εk+1

l | = max1�i<m−1 |εk+1
i | .

Using lemma (2.2) we have 2b j − b j−1− b j+1 > 0, 2− b1 > 0 and 2bk − bk−1 > 0,
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hence

|εk+1
l | � |εk+1

l |(1+ β μ)− μ
l+1

∑
j=0, j �=1

wj|εk+1
l− j+1|+ μ ′(xl)1−β |εk+1

1 |

�
∣∣∣∣∣−μ

l+1

∑
j=0, j �=1

wjεk+1
l− j+1 +(1+ μβ )εk+1

l + μ ′(xl)1−β εk+1
1

∣∣∣∣∣
=

∣∣∣∣∣k−1

∑
j=1

−(b j−1−2b j +b j+1)ε
k− j
l +(2bk−bk−1)ε0

l +(2−b1)εk
l −bkε1

l

∣∣∣∣∣
�

k−1

∑
j=1

(2b j −b j−1−b j+1)|εk− j
l |+(2bk−bk−1)|ε0

l |+(2−b1)|εk
l |+bk|ε1

l |

� C

(
k−1

∑
j=1

(2b j −b j−1−b j+1)+ (2−b1)+ (2bk−bk−1)+bk

)
|ε0

l |

� 3C|ε0
l | = C′|ε0

l |,

hence ‖Ek+1‖∞ � C′‖E0‖∞ . �

The following theorem can be obtained by above proposition. [10,11]

THEOREM 3.1. The finite difference scheme defined by (2.8) and (2.9) is uncon-
ditionally stable.

4. Convergence analysis

THEOREM 4.1. Let u(xi,tk) be the exact solution of equation (1.1) and uk
i be the

solution of finite difference equations (2.8) and (2.9) at the mesh point (xi,tk) . There
exists the positive constant C̃ such that

|uk
i −u(xi,tk)| � C̃(τ2 +h).

Proof. First, the order of the local truncation error Tk+1
i is computed. In fact

Tk+1
i =

τ−α

Γ(3−α)

k

∑
j=0

b j(u(xi,tk− j−1)−2u(xi, tk− j)+u(xi,tk− j+1))

− bc

hβ

i+1

∑
j=0

wju(xi− j+1,tk+1)− u(x1,tk+1)
hΓ(2−β )

,

using (2.1) and (2.6) we obtain

Tk+1
i =

∂ αu(xi,tk+1)
∂ tα +o(τ2)−bc

∂ β u(xi,tk+1)
∂xβ +o(h) = o(τ2 +h).
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Define ek
i = u(xi, tk)−uk

i , i = 1,2, . . . ,m−1, k = 1,2, . . . ,n and ek = (ek
1,e

k
2, . . . ,e

k
m−1)

T .
Using e0 = 0, substitution into (2.8) and (2.9) leads to

−μ
2

i+1

∑
j=0, j �=1

wje
1
i− j+1 +

(
1+ β

μ
2

)
e1
i +

μ ′

2
(xi)1−β e1

1 = ταT 1
i . (4.1)

−μ
i+1

∑
j=0, j �=1

wje
k+1
i− j+1 +(1+ β μ)ek+1

i + μ ′(xi)1−β ek+1
1

=
k−1

∑
j=1

−(b j−1−2b j +b j+1)e
k− j
i +(2−b1)−bke

1
1 + ταΓ(3−α)Tk+1

i . (4.2)

Using mathematical induction, we will prove ‖ek‖∞ � Cταb−1
k (τ2 +h) .

For k = 0, let ‖e1‖∞ = |e1
l | = max1�i�m−1 |e1

i | . Using lemma (2.1) we have
w1 = −β , ∑N

j=0, j �=1 wj � β , hence

|e1
l | � |e1

l |
(
1+ β

μ
2

)
− μ

2

l+1

∑
j=0, j �=1

wj|e1
l− j+1|+

μ ′

2
(xl)1−β |e1

1|

�
∣∣∣∣∣−μ

2

l+1

∑
j=0, j �=1

wje
1
l− j+1 +

(
1+

μ
2

β
)

e1
l +

μ ′

2
(xl)1−β e1

1

∣∣∣∣∣
=
∣∣ταT 1

i

∣∣� Cτα(τ2 +h) = Cταb−1
0 (τ2 +h),

thus ‖e1‖∞ � Cταb−1
0 (τ2 +h) .

Suppose that ‖e j‖∞ �Cταb−1
j−1(τ

2+h) , j = 1,2, . . . ,k , and let ‖ek+1‖∞ = |ek+1
l |=

max1�i�m−1 |ek+1
i | . We can obtain ‖e j‖∞ � Cb−1

k (τ2 + h) , j = 1,2, . . . ,k , because
b−1

k � b−1
j , j = 0,1, . . . ,k . Using lemma (2.2) we have 2b j − b j−1 − b j+1 > 0 and

2−b1 > 0.
Similarly using e0

l = 0, we have

|ek+1
l | � |ek+1

l |(1+ β μ)− μ
l+1

∑
j=0, j �=1

wj|ek+1
l− j+1|+ μ ′(xl)1−β |ek+1

1 |

�
∣∣∣∣∣−μ

l+1

∑
j=0, j �=1

wje
k+1
l− j+1 +(1+ μβ )ek+1

l + μ ′(xl)1−β ek+1
1

∣∣∣∣∣
=

∣∣∣∣∣k−1

∑
j=1

−(b j−1−2b j +b j+1)e
k− j
l +(2−b1)ek

l −bke
1
l + τα Γ(3−α)Tk+1

i

∣∣∣∣∣
�

k−1

∑
j=1

(2b j −b j−1−b j+1)|ek− j
l |+(2−b1)|ek

l |+bk|e1
l |+C′τα(τ2 +h)

� Cb−1
k τα (τ2 +h)

(
bk +

k−1

∑
j=1

(2b j −b j−1−b j+1)+ (2−b1)+1

)
� 3Cb−1

k τα(τ2 +h) = C0b
−1
k τα (τ2 +h),
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thus ‖ek+1‖∞ � C0b
−1
k τα(τ2 +h) . We can prove that

lim
k→∞

b−1
k

kα = lim
k→∞

k−α

(k+1)2−α − k2−α = lim
k→∞

k−2

(1+ 1
k )2−α −1

=
1

2−α
.

Therefore, there is a constant C so that

‖ek‖∞ � Ckα τα(τ2 +h).

Because kτ � T is finite, we have

|uk
i −u(xi, tk)| � C̃(τ2 +h), i = 1,2, . . . ,m−1, k = 1,2, . . . ,n. �

5. Numerical example

In this section we consider the following space-time fractional wave equation

∂ αu
∂ tα =

∂ β u

∂xβ , 1 < α � 2, 1 < β � 2, 0 � x � 1, 0 � t � 1,

subject to the initial conditions

u(x,0) = sin(2πx),
∂u(x,0)

∂ t
= 2π sin(2πx),

and the boundary conditions u(0,t) = u(1,t) = 0, 0 � t � 1. Following figure shows
the evolution results using the finite difference scheme with h = 1

20 , τ = 0.01, α = 1.9
and β = 1.4.

Figure 1.
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6. Conclusion

In this paper, a finite difference method for the space-time fractional wave equa-
tion in a bounded domain have been described and demonstrated, we prove that this
method is unconditionally stable and convergent. The technique can be applied to solve
fractional-order differential equation.
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