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Abstract. In this paper we give generalization of Opial-type inequalities by using generalized
fractional integral operator involving generalized Mittag–Leffler function. We deduce some
results which already have been proved. Also we consider n -exponential convexity of some
non-negative differences of inequalities involving Mittag-Leffler function and deduce their ex-
ponential convexity and log-convexity.
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