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OPIAL–TYPE INEQUALITIES FOR FRACTIONAL INTEGRAL

OPERATOR INVOLVING MITTAG––LEFFLER FUNCTION

GHULAM FARID, JOSIP PEČARIĆ AND ZIVORAD TOMOVSKI

Abstract. In this paper we give generalization of Opial-type inequalities by using generalized
fractional integral operator involving generalized Mittag–Leffler function. We deduce some
results which already have been proved. Also we consider n -exponential convexity of some
non-negative differences of inequalities involving Mittag-Leffler function and deduce their ex-
ponential convexity and log-convexity.

1. Introduction and preliminaries

Fractional calculus refers to integration or differentiation of fractional order. Sev-
eral mathematicians contributed to this subject over the years. People like Liouville,
Riemann, and Weyl made major contributions to the theory of fractional calculus.
The story on the fractional calculus continued with contributions from Fourier, Abel,
Lacroix, Leibniz, Grunwald and Letnikov. For a historical survey the reader may see
[15, 16, 18].

Fractional integral inequalities are useful in establishing the uniqueness of so-
lutions for certain fractional partial differential equations. They also provide upper
and lower bounds for the solutions of fractional boundary value problems. These con-
siderations have led various researchers in the field of integral inequalities to explore
certain extensions and generalizations by involving fractional calculus operators (see,
[1, 2, 8, 6, 14, 25, 26]).

In [3, 4, 9, 10, 11] we have established Opial-type integral inequalities for different
kinds of fractional derivatives and fractional integral operators for example Riemann–
Liouville, Caputo, Canvati etc. In this paper we give Opial-type integral inequalities for
fractional integral operator containing a generalized Mittag–Leffler function in the ker-
nel [21]. Definition of this generalized fractional integral operator containing Mittag–
Leffler function is as follows.

DEFINITION 1.1. Let α,β ,k, l,γ be positive real numbers and ω ∈ R . Then the
generalized fractional integral operator containing Mittag–Leffler function εγ,δ ,k

α ,β ,l,ω,a+

for a real-valued continuous function f is defined by:

(εγ,δ ,k
α ,β ,l,ω,a+ f )(x) =

∫ x

a
(x− t)β−1Eγ,δ ,k

α ,β ,l(ω(x− t)α) f (t)dt, (1.1)
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where the function Eγ,δ ,k
α ,β ,l is generalized Mittag–Leffler function defined as

Eγ,δ ,k
α ,β ,l(t) =

∞

∑
n=0

(γ)kn

Γ(αn+ β )
tn

(δ )ln
, (1.2)

and (a)n is the Pochhammer symbol: (a)n = a(a+1) . . .(a+n−1) , (a)0 = 1.

If δ = l = 1 in (1.1), then integral operator εγ,δ ,k
α ,β ,l,ω,a+ reduces to an integral op-

erator containing generalized Mittag–Leffler function Eγ,1,k
α ,β ,1 introduced by Srivastava

and Tomovski in [22]. Along δ = l = 1 in addition if k = 1 (1.1) reduces to an integral
operator defined by Prabhakar in [25] containing Mittag–Leffler function Eγ

α ,β . Let

eγ
α ,β (t) = tβ−1Eγ

α ,β (ωtα) . For ω = 0 in (1.1), integral operator εγ,δ ,k
α ,β ,l,ω,a+ would cor-

respond essentially to the right-handed Riemann–Liouville fractional integral operator
(see, [21]),

Iβ f (x) =
1

Γ(β )

∫ x

a
(x− t)β−1 f (t)dt, β > 0.

We define a variant of Sobolev space:

Wm,1 [a,b] =
{

f ∈ L1 [a,b] :
dm

dtm
f ∈ L1 [a,b]

}
.

DEFINITION 1.2. (Prabhakar derivative [12]) Let f ∈ L1 [0,b] , 0 < t < b � ∞,
and f ∗ e−γ

α ,m−β ,ω ∈ Wm,1 [0,b] , m = [β ] then the Prabhakar derivative is defined by
following relation

(
Dγ

α ,β ,ω,0+ f
)

(t) =
dm

dtm
ε−γ

α ,m−β ,ω,0+ f (t) .

DEFINITION 1.3. (Caputo-Prabhakar derivative [12]) Let f ∈ L1 [0,b] , 0 < t <
b � ∞, and f ∗ e−γ

α ,m−β ,ω ∈Wm,1 [0,b] , m = [β ] then the Caputo-Prabhakar derivative
for f ∈ ACm [0,b] is defined by following relation

(
CDγ

α ,β ,ω,0+ f
)

(t) = ε−γ
α ,m−β ,ω,0+

dm

dtm
f (t)

=
(
Dγ

α ,β ,ω,0+ f
)

(t)−
m−1

∑
k=0

tk−αE−γ
α ,k−β+1 (ωtα) f (k) (0+) .

REMARK 1.4. Let β > 0 and f ∈ ACm [0,b] , 0 < t < b � ∞, then

(
CDγ

α ,β ,ω,0+ f
)

(t) = Dγ
α ,β ,ω,0+

(
f (t)−

m−1

∑
k=0

tk

k!
f (k) (0+)

)
.

In 1960. Opial established the following integral inequality [23].
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Let x(t) ∈C(1)[0,h] be such that x(0) = x(h) = 0, and x(t) > 0 in (0,h) .
Then ∫ h

0
|x(t)x′(t)|dt � h

4

∫ h

0

(
x′(t)

)2
dt, (1.3)

where constant h
4 is the best possible.

Opial’s inequality (1.3) is studied extensively by many researchers. It recognizes as fun-
damental result in the theory of differential equations (see the monograph [1]). Follow-
ing theorems include generalizations of Opial’s inequality and for it we need next char-
acterization: for detail see [24, page 234–238]. We say that a function u : [a,b] −→ R

belongs to the class U(v,K) if it admits the representation

u(x) =
∫ x

a
K(x,t)v(t)dt

where v is a continuous function and K is an arbitrary non-negative kernel such that
v(x) > 0 implies u(x) > 0 for every x ∈ [a,b]. We also assume that all integrals under
consideration exist and are finite. The following theorem is given in [17] (also see [1,
p. 89] and [24, p. 236]).

THEOREM 1.5. Let u1 ∈ U(v1,K) , u2 ∈ U(v2,K) and v2(x) > 0 for every x ∈
[a,b]. Further, let φ(u) be convex, non-negative and increasing for u � 0 , f (u) be
convex for u � 0 and f (0) = 0. If f is differentiable function and M = maxK(x,t),
then

M
∫ b

a
v2(t)φ

(∣∣∣∣v1(t)
v2(t)

∣∣∣∣
)

f ′
(
u2(t)φ

(∣∣∣∣u1(t)
u2(t)

∣∣∣∣
))

dt � f

(
M
∫ b

a
v2(t)φ

(∣∣∣∣v1(t)
v2(t)

∣∣∣∣
)

dt

)
.

Extension of above result stated in the following theorem [5].

THEOREM 1.6. With same assumptions as in Theorem 1.5 we have

M
∫ b

a
v2(t)φ

(∣∣∣∣v1(t)
v2(t)

∣∣∣∣
)

f ′
(
u2(t)φ

(∣∣∣∣u1(t)
u2(t)

∣∣∣∣
))

dt

� f

(
M
∫ b

a
v2(t)φ

(∣∣∣∣v1(t)
v2(t)

∣∣∣∣
)

dt

)

� 1
b−a

∫ b

a
f

(
M(b−a)v2(t)φ

(∣∣∣∣v1(t)
v2(t)

∣∣∣∣
))

dt.

In [24, p. 236]), also the following result is proved.

THEOREM 1.7. Let φ : [0,∞)−→R be a differentiable function such that for q >

1 the function φ(x
1
q ) is convex and φ(0)= 0 . Let u∈U(v,K) where (

∫ x
a (K(x,t))p dt)

1
p

� M and 1
p + 1

q = 1 . Then

∫ b

a
|u(x)|1−q φ ′(|u(x)|)|v(x)|q dx � q

Mq φ
(
M
(∫ b

a
|v(x)|q dx

) 1
q
)
. (1.4)

The reverse of above inequality holds if φ(x
1
q ) is concave.
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Properties of non-negative difference of inequality (1.4) are studied in [9]. In the
following result we have extension of inequality (1.4) (see, [4]).

THEOREM 1.8. Let φ : [0,∞)−→R be a differentiable function such that for q >

1 the function φ(x
1
q ) is convex and φ(0)= 0 . Let u∈U(v,K) where (

∫ x
a (K(x,t))p dt)

1
p

� M and 1
p + 1

q = 1 . Then

∫ b

a
|u(x)|1−q φ ′(|u(x)|)|v(x)|q dx

� q
Mq φ

(
M
(∫ b

a
|v(x)|q dx

) 1
q
)

� q
Mq (b−a)

∫ b

a
φ
(
(b−a)

1
q M|v(x)|

)
dx . (1.5)

The reverse of above inequality holds if φ(x
1
q ) is concave.

In [3] we denote the non-negative difference of extreme terms in the above in-
equality by Ψφ (u,v) , as follows:

Ψφ (u,v) =
q

Mq (b−a)

∫ b

a
φ
(
(b−a)

1
q M|v(x)|

)
dx

−
∫ b

a
|u(x)|1−q φ ′(|u(x)|)|v(x)|q dx , (1.6)

and among other properties of above functional we have proved the following results.

THEOREM 1.9. Let φ : [0,∞)−→R be a differentiable function such that for q >

1 the function φ(x
1
q ) is convex and φ(0)= 0 . Let u∈U(v,K) where (

∫ x
a (K(x,t))p dt)

1
p

� M and 1
p + 1

q = 1 . If φ ∈ C2(I), where I ⊆ (0,∞) is compact interval, then there
exists ξ ∈ I such that the following equality holds

Ψφ (u,v) =
ξ φ ′′(ξ )− (q−1)φ ′(ξ )

2qξ 2q−1

×
(

(b−a)Mq
∫ b

a
|v(x)|2q dx−2

∫ b

a
|u(x)|q |v(x)|q dx

)
. (1.7)

THEOREM 1.10. Let φ1,φ2 : [0,∞)−→R be differentiable functions such that for

q > 1 the function φi(x
1
q ) is convex and φi(0) = 0 , i = 1,2 . Let u ∈ U(v,K) where

(
∫ x
a (K(x, t))p dt)

1
p � M and 1

p + 1
q = 1 . If φ1,φ2 ∈C2(I), where I ⊆ (0,∞) is compact

interval and

(b−a)Mq
∫ b

a
|v(x)|2q dx−2

∫ b

a
|u(x)|q|v(x)|qdx �= 0 ,
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then there exists an ξ ∈ I such that we have

Ψφ1(u,v)
Ψφ2(u,v)

=
ξ φ ′′

1 (ξ )− (q−1)φ ′
1(ξ )

ξ φ ′′
2 (ξ )− (q−1)φ ′

2(ξ )
, (1.8)

provided the denominators are not equal to zero.

In Section 2 we give Opial-type integral inequalities and related results using gen-
eralized fractional integral operator involving generalized Mittag–Leffler function. As
special cases some results of [3, 4, 5] are deduced. In Section 3 exponential convexity
of non-negative differences of last term in (1.5) with other two terms is given.

2. Inequalities for generalized fractional integral involving generalized
Mittag–Leffler function

We need the following lemma [21].

LEMMA 2.1. Series given in (1.2) is absolutely convergent for all values of t pro-
vided k < l + α .

The following results appear as generalizations of Opial-type integral inequalities
for Riemann–Liouville fractional integral.

THEOREM 2.2. Let u1,u2 and φ , f be same as in Theorem 1.5, also let α,β ,k, l,
γ,ω > 0 such that k < l + α and β > 1 , then we have

Eγ,δ ,k
α ,β ,l(ω(b−a)α)(b−a)β−1

×
∫ b

a
v2(x)φ

(∣∣∣∣v1(x)
v2(x)

∣∣∣∣
)

f ′
⎛
⎝(εγ,δ ,k

α ,β ,l,ω,a+v2)(x)φ

⎛
⎝
∣∣∣∣∣∣
(εγ,δ ,k

α ,β ,l,ω,a+v1)(x)

(εγ,δ ,k
α ,β ,l,ω,a+v2)(x)

∣∣∣∣∣∣
⎞
⎠
⎞
⎠dx

� f

(
Eγ,δ ,k

α ,β ,l(ω(b−a)α)(b−a)β−1
∫ b

a
v2(x)φ

(∣∣∣∣v1(x)
v2(x)

∣∣∣∣
)

dx

)
. (2.1)

Proof. Let us define the followings

K(x,t) :=

{
(x− t)β−1Eγ,δ ,k

α ,β ,l(ω(x− t)α), a � t � x ;
0, x < t � b ,

u1(x) := (εγ,δ ,k
α ,β ,l,ω,a+v1)(x) =

∫ x

a
(x− t)β−1Eγ,δ ,k

α ,β ,l(ω(x− t)α)v1(t)dt , (2.2)

u2(x) := (εγ,δ ,k
α ,β ,l,ω,a+v2)(x) =

∫ x

a
(x− t)β−1Eγ,δ ,k

α ,β ,l(ω(x− t)α)v2(t)dt . (2.3)

One can observe that
∞

∑
n=0

(γ)knωn(x− t)nα

Γ(αn+ β )(δ )nl
�

∞

∑
n=0

(γ)knωn(b−a)nα

Γ(αn+ β )(δ )nl
= Eγ,δ ,k

α ,β ,l(ω(b−a)α)
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and Lemma 2.1 ensure the existence of Eγ,δ ,k
α ,β ,l(ω(b− a)α) for k < l + α , further

(x− t)β−1 � (x−a)β−1 � (b−a)β−1 for β > 1. Then

K(x, t) � Eγ,δ ,k
α ,β ,l(ω(b−a)α)(b−a)β−1, β > 1, k < l + α. (2.4)

Therefore we can take M = Eγ,δ ,k
α ,β ,l(ω(b−a)α)(b−a)β−1 , functions u1, u2 as in (2.2)

and (2.3), in Theorem 1.5 to get (2.1). �
In the following we give the extension of Theorem 2.2.

THEOREM 2.3. With same assumptions as in Theorem 2.2 we have

Eγ,δ ,k
α ,β ,l(ω(b−a)α)(b−a)β−1

×
∫ b

a
v2(x)φ

(∣∣∣∣v1(x)
v2(x)

∣∣∣∣
)

f ′
(
(εγ,δ ,k

α ,β ,l,ω,a+v2)(x)φ

⎛
⎝
∣∣∣∣∣∣
(εγ,δ ,k

α ,β ,l,ω,a+v1)(x)

(εγ,δ ,k
α ,β ,l,ω,a+v2)(x)

∣∣∣∣∣∣
⎞
⎠)dx

� f

(
Eγ,δ ,k

α ,β ,l(ω(b−a)α)(b−a)β−1
∫ b

a
v2(x)φ

(∣∣∣∣v1(x)
v2(x)

∣∣∣∣
)

dx

)

� 1
b−a

∫ b

a
f

(
Eγ,δ ,k

α ,β ,l(ω(b−a)α)(b−a)β−1v2(x)φ
(∣∣∣∣v1(x)

v2(x)

∣∣∣∣
))

dx. (2.5)

Proof. Proof is similar to the proof of Theorem 2.2, here we use Theorem 1.6
instead of Theorem 1.5. �

REMARK 2.4. If k = l = δ = 1, then we get Opial-type inequalities for integral
operator introduced by Prabharkar in [25]. If k = l = 1 and ω = 0 in (2.1), then we
get result for Reimann–Liouville fractional integral and using it in (2.5) we get [5,
Corollary 3.2].

THEOREM 2.5. Let u and φ be same as in Theorem 1.7. Also, let α,β ,k, l,γ,ω >
0 such that k < l + α and β > 1 , with q > 1 . Then we have

∫ b

a
|(εγ,δ ,k

α ,β ,l,ω,a+v)(x)|1−q φ ′(|(εγ,δ ,k
α ,β ,l,ω,a+v)(x)|)|v(x)|q dx

� q(b−a)1−qβ

(Eγ,δ ,k
α ,β ,l(ω(b−a)α))q

×φ

(
Eγ,δ ,k

α ,β ,l(ω(b−a)α)(b−a)β− 1
q

(∫ b

a
|v(x)|qdx

) 1
q
)

� q(b−a)−qβ

(Eγ,δ ,k
α ,β ,l(ω(b−a)α))q

∫ b

a
φ
(
Eγ,δ ,k

α ,β ,l(ω(b−a)α)(b−a)β |v(x)|
)

dx,

the reverse of above inequality holds if φ(x
1
q ) is concave.
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Proof. Let us define the followings

K(x,t) :=

{
(x− t)β−1Eγ,δ ,k

α ,β ,l(ω(x− t)α), a � t � x ;
0, x < t � b ,

u(x) := (εγ,δ ,k
α ,β ,l,ω,a+v)(x) =

∫ x

a
(x− t)β−1Eγ,δ ,k

α ,β ,l(ω(x− t)α)v(t)dt . (2.6)

From (2.4), for α > 0 and β > 1, k < l + α we have

K(x,t) � Eγ,δ ,k
α ,β ,l(ω(b−a)α)(b−a)β−1,

from which we can have

(∫ x

a
(K(x,t))p dt

) 1
p

� Eγ,δ ,k
α ,β ,l(ω(b−a)α)(b−a)β− 1

q ,

here we use 1
p + 1

q = 1. Therefore we can take M = Eγ,δ ,k
α ,β ,l(ω(b−a)α)(b−a)β− 1

q and
function u defined by (2.6) in Theorem 1.8 and get required inequality. �

REMARK 2.6. If k = l = δ = 1, then we get Opial-type inequalities for integral
operator introduced by Prabharkar in [25]. If k = l = 1 and ω = 0 in Theorem 2.5,
then we get extension of (1.4) for Riemann–Liouville fractional integral given in [4,
Theorem 3.1].

By using φ(x) = xp+q we have the following result.

COROLLARY 2.7. Let α,β ,k, l,γ,ω > 0 such that k < l + α and β > 1 , with
1
p + 1

q = 1 and v ∈ L1[a,b] . Then following inequalities hold

∫ b

a
|(εγ,δ ,k

α ,β ,l,ω,a+v)(x)|p |v(x)|q dx

� q(b−a)p
(

β− 1
q

)
(Eγ,δ ,k

α ,β ,l(ω(b−a)α))p
(∫ b

a
|v(x)|qdx

) p+q
q

� q(b−a)pβ(Eγ,δ ,k
α ,β ,l(ω(b−a)α))p

∫ b

a
|v(x)|p+qdx.

REMARK 2.8. If k = l = δ = 1, then we get result for integral operator introduced
by Prabharkar in [25]. If k = l = 1 and ω = 0 in above inequality, then we get [4,
Corollary 3.2].
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COROLLARY 2.9. Let v∈ ACm [0,x] , x ∈ [a,b] , u and φ be same as in Theorem
1.7. Let α > 0 , m−β > 1, m = [β ], γ ∈ R, ω > 0, with q > 1. Then we have

b∫
a

∣∣∣(CDγ
α ,β ,ω,0+v

)
(x)
∣∣∣1−q

φ ′
(∣∣∣(CDγ

α ,β ,ω,0+v
)

(x)
∣∣∣) |v(x)|q dx

� q

(b−a)q(m−β )−1 E−γ
α ,m−β

(
ω (b−a)α)

×φ

⎛
⎜⎝(b−a)(m−β )− 1

q E−γ
α ,m−β

(
ω (b−a)α)

⎛
⎝ b∫

a

∣∣∣v(m) (x)
∣∣∣q dx

⎞
⎠

1/q
⎞
⎟⎠

� q

(b−a)q(m−β ) E−γ
α ,m−β

(
ω (b−a)α)

×
b∫

a

φ
(
(b−a)(m−β ) E−γ

α ,m−β
(
ω (b−a)α)∣∣∣v(m) (x)

∣∣∣)dx,

the reverse of above inequality holds if φ(x
1
q ) is concave.

Following Remark 1.4 we obtain the following inequalities for Prabhakar deriva-
tive.

COROLLARY 2.10. Let v ∈ ACm [0,x] , x ∈ [a,b] , u and φ be same as in Theo-
rem 1.7. Let α > 0 , m−β > 1, m = [β ], γ ∈ R, ω > 0, with q > 1. If v(k) (0+) = 0,
k = 0,1,2, . . .m−1, then we have

b∫
a

∣∣∣(Dγ
α ,β ,ω,0+v

)
(x)
∣∣∣1−q

φ ′
(∣∣∣(Dγ

α ,β ,ω,0+v
)

(x)
∣∣∣) |v(x)|q dx

� q

(b−a)q(m−β )−1 E−γ
α ,m−β

(
ω (b−a)α)

×φ

⎛
⎜⎝(b−a)(m−β )− 1

q E−γ
α ,m−β

(
ω (b−a)α)

⎛
⎝ b∫

a

∣∣∣v(m) (x)
∣∣∣q dx

⎞
⎠

1/q
⎞
⎟⎠

� q

(b−a)q(m−β ) E−γ
α ,m−β

(
ω (b−a)α)

×
b∫

a

φ
(
(b−a)(m−β ) E−γ

α ,m−β
(
ω (b−a)α)∣∣∣v(m) (x)

∣∣∣)dx.

The reverse of the above inequalities hold when φ
(
x

1
q

)
is concave.
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Now we give generalizations of Theorem 1.9 and Theorem 1.10.

THEOREM 2.11. With same assumptions as in Theorem 1.9, let α,β ,k, l,γ,ω > 0
such that k < l+α and β > 1 , with 1

p + 1
q = 1 and v∈ L1[a,b] . Then there exists ξ ∈ I

such that the following equality holds

Ψφ ((εγ,δ ,k
α ,β ,l,ω,a+v)(x),v(x))

=
ξ φ ′′(ξ )− (q−1)φ ′(ξ )

2qξ 2q−1 (Eγ,δ ,k
α ,β ,l(ω(b−a)α))q

×(b−a)qβ
∫ b

a
|v(x)|2q dx−2

∫ b

a
|(εγ,δ ,k

α ,β ,l,ω,a+v)(x)|q |v(x)|q dx.

Proof. From the proof of Theorem 2.5 we have for β > 1,k < l + α

(∫ x

a
(K(x,t))p dt

) 1
p

� Eγ,δ ,k
α ,β ,l(ω(b−a)α)(b−a)β− 1

q .

Using the function u = (εγ,δ ,k
α ,β ,l,ω,a+v)(x) and M = Eγ,δ ,k

α ,β ,l(ω(b−a)α)(b−a)β− 1
q in The-

orem 1.9 we get required equality. �

THEOREM 2.12. With same assumptions as in Theorem 1.10, let α,β ,k, l,γ,ω >
0 such that k < l + α and β > 1 , with 1

p + 1
q = 1 and v ∈ L1[a,b] . Then there exists

ξ ∈ I such that the following equality holds

Ψφ1((ε
γ,δ ,k
α ,β ,l,ω,a+v)(x),v(x))

Ψφ2((ε
γ,δ ,k
α ,β ,l,ω,a+v)(x),v(x))

=
ξ φ ′′

1 (ξ )− (q−1)φ ′
1(ξ )

ξ φ ′′
2 (ξ )− (q−1)φ ′

2(ξ )
, (2.7)

provided the denominators are not equal to zero.

Proof. Proof is similar to the poof of Theorem 2.11, here we use Theorem 1.10
instead of Theorem 1.9. �

REMARK 2.13. If k = l = δ = 1, then we get results for integral operator intro-
duced by Prabharkar in [25]. If k = l = 1 and ω = 0, then we get results for Riemann–
Liouville fractional integral given in [3, Theorem 3.1, Theorem 3.2].
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3. Method of exponential convexity

Following definitions and properties of exponentially convex functions comes from
[7], also [13, 19]. Throughout we consider I is an interval in R .

DEFINITION 3.1. A function ψ : I → R is n -exponentially convex in the Jensen
sense on I if

n

∑
i, j=1

ξi ξ j ψ
(

xi + x j

2

)
� 0

holds for all choices ξi ∈ R and xi ∈ I , i = 1, . . . ,n .
A function ψ : I → R is n -exponentially convex if it is n -exponentially convex in

the Jensen sense and continuous on I .

REMARK 3.2. It is clear from the definition that 1-exponentially convex func-
tions in the Jensen sense are in fact nonnegative functions. Also, n -exponentially con-
vex functions in the Jensen sense are k -exponentially convex in the Jensen sense for
every k ∈ N , k � n .

By definition of positive semi-definite matrices and some basic linear algebra we
have the following proposition.

PROPOSITION 3.3. If ψ is an n-exponentially convex in the Jensen sense, then

the matrix

[
ψ
(

xi + x j

2

)]k

i, j=1
is a positive semi-definite matrix for all k ∈ N , k � n.

Particularly, det

[
ψ
(

xi + x j

2

)]k

i, j=1
� 0 for all k ∈ N , k � n.

DEFINITION 3.4. A function ψ : I → R is exponentially convex in the Jensen
sense on I if it is n -exponentially convex in the Jensen sense for all n ∈ N .

A function ψ : I → R is exponentially convex if it is exponentially convex in the
Jensen sense and continuous.

REMARK 3.5. It is known (and easy to show) that ψ : I → (0,∞) is a log-convex
in the Jensen sense if and only if

α2ψ(x)+2αβ ψ
(

x+ y
2

)
+ β 2ψ(y) � 0

holds for every α,β ∈ R and x,y ∈ I . It follows that a function is log-convex in the
Jensen-sense if and only if it is 2-exponentially convex in the Jensen sense.

Also, using basic convexity theory it follows that a function is log-convex if and
only if it is 2-exponentially convex.

Next we need divided differences, commonly used when dealing with functions
that have different degree of smoothness.
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DEFINITION 3.6. The second order divided difference of a function f : I → R at
mutually different points y0,y1,y2 ∈ I is defined recursively by

[yi; f ] = f (yi) , i = 0,1,2

[yi,yi+1; f ] =
f (yi+1)− f (yi)

yi+1− yi
, i = 0,1

[y0,y1,y2; f ] =
[y1,y2; f ]− [y0,y1; f ]

y2 − y0
. (3.1)

REMARK 3.7. The value [y0,y1,y2; f ] is independent of the order of the points
y0 , y1 and y2 . This definition may be extended to include the case in which some or
all the points coincide. Namely, taking the limit y1 → y0 in (3.1) , we get

lim
y1→y0

[y0,y1,y2; f ] = [y0,y0,y2; f ] =
f (y2)− f (y0)− f ′(y0)(y2 − y0)

(y2 − y0)2 , y2 �= y0

provided that f ′ exists, and furthermore, taking the limits yi → y0 , i = 1,2 in (3.1) ,
we get

lim
y2→y0

lim
y1→y0

[y0,y1,y2; f ] = [y0,y0,y0; f ] =
f ′′(y0)

2

provided that f ′′ exists.

Motivated by inequalities in (1.5) we define the following functionals, non-negative
differences of last term with other two terms as follows:

Ψ1φs(u,v) =
q

Mq (b−a)

∫ b

a
φ
(
(b−a)

1
q M|v(x)|

)
dx− q

Mq φ
(
M
(∫ b

a
|v(x)|q dx

) 1
q
)

(3.2)

Ψ2φs(u,v)=
q

Mq (b−a)

∫ b

a
φ
(
(b−a)

1
q M|v(x)|

)
dx−

∫ b

a
|u(x)|1−q φ ′(|u(x)|)|v(x)|q dx.

(3.3)
We use a method of producing n -exponentially convex and exponentially con-

vex functions given in [19], to prove the n -exponential convexity for the functionals
Ψiφ (u,v) , i = 1,2 defined in (3.2), (3.3).

THEOREM 3.8. Let J be an interval in R and ϒ = {φs : s ∈ J} be a family of
functions defined on an interval I in R , such that the function s �→ [y0,y1,y2;Fφs ] is n-
exponentially convex in the Jensen sense on J for every three mutually different points

y0,y1,y2 ∈ I , where Fφs(y) = φs(y
1
q ) . Let Ψiφ (u,v) , i = 1,2 be functionals defined in

(3.2), (3.3). Then s �→ Ψiφs(u,v) , i = 1,2 are n-exponentially convex functions in the
Jensen sense on J . If the functions s �→ Ψiφs(u,v) , i = 1,2 are also continuous on J ,
then are n-exponentially convex on J .

Proof. See the proof of Theorem 5.11 in [3]. �
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COROLLARY 3.9. Let J be an interval in R and ϒ = {φs : s ∈ J} be a family of
functions defined on an interval I in R , such that the function s �→ [y0,y1,y2;Fφs ] is
exponentially convex in the Jensen sense on J for every three mutually different points

y0,y1,y2 ∈ I , where Fφs(y) = φs(y
1
q ) . Let Ψiφ (u,v) , i = 1,2 be functionals defined in

(3.2), (3.3). Then functions s �→ Ψiφs(u,v) , i = 1,2 are exponentially convex function
in the Jensen sense on J . If the functions s �→ Ψiφs(u,v) , i = 1,2 are continuous on J ,
then are exponentially convex on J .

Let us denote means for φs,φp ∈ Ω by

μs,p(Ψi,Ω) =

⎧⎪⎪⎨
⎪⎪⎩
(

Ψiφs (u,v)
Ψiφp(u,v)

) 1
s−p

, s �= p ,

exp

(
d
ds Ψiφs (u,v)
Ψiφs (u,v)

)
, s = p ,

(3.4)

for i = 1,2.

THEOREM 3.10. Let J be an interval in R and Ω = {φs : s ∈ J} be a family of
functions defined on an interval I in R , such that the function s �→ [y0,y1,y2;Fφs ] is 2 -
exponentially convex in the Jensen sense on J for every three mutually different points

y0,y1,y2 ∈ I , where Fφs(y) = φs(y
1
q ) . Let Ψiφ (u,v) , i = 1,2 be functionals defined in

(3.2), (3.3). Then the following statements hold:

(i) If the functions s �→ Ψiφ (u,v) , i = 1,2 are continuous on J , then are 2 -exponen-
tially convex functions on J . If the functions s �→ Ψiφs(u,v) , i = 1,2 are ad-
ditionally positive, then are also log-convex on J , and for r,s,t ∈ J such that
r < s < t , we have(

Ψiφs(u,v)
)t−r �

(
Ψiφr(u,v)

)t−s (Ψiφt (u,v)
)s−r

i = 1,2. (3.5)

(ii) If the functions s �→ Ψiφs(u,v) , i = 1,2 are positive and differentiable on J , then
for every s, p,r,t ∈ J , such that s � r and p � t , we have

μs,p(Ψi,Ω) � μr,t(Ψi,Ω) , i = 1,2. (3.6)

Proof. See the proof of Theorem 5.13 in [3]. �

REMARK 3.11. The results from Theorem 3.8, Corollary 3.9 and Theorem 3.10
still hold when two of the points y0,y1,y2 ∈ I coincide, for a family of differentiable
functions φs such that the function s �→ [y0,y1,y2;Fφs ] is n -exponentially convex in
the Jensen sense (exponentially convex in the Jensen sense, log-convex in the Jensen
sense). Furthermore, they still hold when all three points coincide for a family of twice
differentiable functions with the same property. The proofs can be obtained by recalling
Remark 3.7 and suitable characterization of convexity.
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4. Concluding remarks

In this last section we are interested to give remarks on proved results in the sense
that they are extended results to fractional calculus, and also similar results can be
obtained taking other non negative differences as functionals.

REMARK 4.1. Opial and Opial-type inequalities have many applications in dif-
ferential calculus (see references), of course have equal importance in fractional dif-
ferential calculus. Here in this paper given results are generalizations of Opial-type
inequalities for fractional differential calculus.

REMARK 4.2. As we prove the n -exponential convexity of the functionals
Ψiφs(u,v), i = 1,2 obtained from the inequalities given in (1.5), similarly we can de-
fine and prove the n -exponential convexity of functionals obtained from the inequalities
given for fractional integral operators involving ML-functions but here we omit the de-
tails.

Some of the estimates can be applied for proving existence and uniqueness of
some linear and nonlinear fractional differential equations containing Caputo, Prab-
hakar, Caputo-Prabhakar derivative operators [12] which is a focus of our next research.
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function, Revista Técnica de la Facultad de Ingenieria Universidad del Zulia, 19 (1) (1996), 17–22.
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