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NONLOCAL BOUNDARY VALUE PROBLEMS

FOR HYBRID FRACTIONAL DIFFERENTIAL

EQUATIONS AND INCLUSIONS OF HADAMARD TYPE

BASHIR AHMAD AND SOTIRIS K. NTOUYAS

Abstract. This paper investigates the existence of solutions for nonlocal boundary value prob-
lems of nonlinear hybrid fractional differential equations and inclusions of Hadamard type. We
make use of fixed point theorems due to Dhage [7], [8] to obtain the existence results. We also
discuss some examples for illustration of the main results.

1. Introduction

In this paper, we study the existence of solutions for boundary value problems of
hybrid fractional differential equations and inclusions of Hadamard type with nonlocal
conditions. As a first problem, we consider

⎧⎪⎨
⎪⎩

Dα
(

x(t)
f (t,x(t))

)
= g(t,x(t)), 1 � t � e, 1 < α � 2,

x(1) = 0, x(e) = m(x),

(1)

where Dα is the Hadamard fractional derivative, f ∈C([1,e]×R,R\{0}), g :C([1,e]×
R,R) and m : C([1,e],R) → R .

The second problem is concerned with the case when hybrid part of Hadamard
type fractional differential equation involves Hadamard integral for a given nonlinear
function, and is given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dα

⎛
⎜⎜⎝ x(t)

f (t,x(t))+
1

Γ(β )

∫ t

1

(
ln

t
s

)β−1 q(s,x(s))
s

ds

⎞
⎟⎟⎠= g(t,x(t)), 1 � t � e,

x(1) = 0, x(e) = m(x),

(2)

Mathematics subject classification (2010): 34A08, 34B18.
Keywords and phrases: Hadamard fractional derivative, nonlocal boundary conditions, existence, fixed

point theorem.

c© � � , Zagreb
Paper FDC-05-10

107

http://dx.doi.org/10.7153/fdc-05-10


108 B. AHMAD AND S. K. NTOUYAS

where 1 < α � 2, β > 0, f , g ∈C([1,e]×R,R) are such that

f (t,x(t))+
1

Γ(β )

∫ t

1

(
ln

t
s

)β−1 g(s,x(s))
s

ds �= 0, ∀(t,x) ∈ [1,e]×R.

Here we emphasize that the integral in (2) is known as Hadamard integral to be defined
later. In the third problem, we study the multivalued case of the problem (1) given by

⎧⎪⎨
⎪⎩

Dα
(

x(t)
f (t,x(t))

)
∈ F(t,x(t)), 1 � t � e, 1 < α � 2,

x(1) = 0, x(e) = m(x),

(3)

where F : [1,e]×R→P(R) is a multivaluedmap, P(R) is the family of all nonempty
subsets of R.

It is well known that the nonlocal conditions are regarded as more plausible than
the standard initial conditions for the description of some physical phenomena. In the
above problems, m(x) may be understood as m(x) = ∑p

ν=1 ανx(tν ) where αν ,ν =
1, . . . , p, are given constants and 0 < t1 < .. . < tp � 1. For more details we refer to the
work by Byszewski [5].

Fractional differential equations have attracted the attentions of many researchers
working in a variety of disciplines, due to the development and applications of these
equations in many fields such as engineering, mathematics, physics, chemistry, etc. For
more details, see ([3, 12]). However, it has been noticed that most of the work on
the topic is concerned with Riemann-Liouville or Caputo type fractional differential
equations. Besides these fractional derivatives, another kind of fractional derivatives
found in the literature is the fractional derivative due to Hadamard introduced in 1892
[10], which differs from the aforementioned derivatives in the sense that the kernel
of the integral in the definition of Hadamard derivative contains logarithmic function
of arbitrary exponent. A detailed description of Hadamard fractional derivative and
integral can be found in [11, 12].

In [9], the authors initiated the study on hybrid differential equations. Sun et al.
[14] studied the existence of solutions for a Riemann-Liouville type fractional bound-
ary value problem. Recently, an initial-value problem for hybrid Hadamard fractional
differential equations is discussed in [1].

This paper is organized as follows: in Section 2 we recall some preliminary facts
that we need in the sequel. In Section 3, we present the existence theorems for the
problems (1) and (2) while the existence of solutions for the problem (3) is discussed
in Section 3. Our results rely on fixed point theorems in Banach algebras due to Dhage
[7], [8] under Lipschitz and Carathéodory conditions.

For some recent work on hybrid fractional differential equations, we refer to [2],
[4], [15] and the references cited therein.
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2. Preliminaries

This section is devoted to the preliminary concepts of fractional calculus and mul-
tivalued maps.

2.1. Fractional calculus

DEFINITION 2.1. [12] The Hadamard fractional integral of order q for a function
g : (1,∞) → R is defined as

Iqg(t) =
1

Γ(q)

∫ t

1

(
ln

t
s

)q−1 g(s)
s

ds, q > 0, t > 1.

DEFINITION 2.2. [12] The Hadamard derivative of fractional order q for a func-
tion g : (1,∞) → R is defined as

Dqg(t) =
1

Γ(n−q)

(
t
d
dt

)n ∫ t

1

(
ln

t
s

)n−q−1 g(s)
s

ds, n−1 < q < n, n = [q]+1,

where [q] denotes the integer part of the real number q.

LEMMA 2.3. Given y∈C([1,e],R), the integral solution of boundary value prob-
lem ⎧⎨

⎩Dα
(

x(t)
f (t,x(t))

)
= y(t), 0 < t < 1,

x(1) = 0, x(e) = m(x)
(4)

is given by

x(t) = f (t,x(t))

(
1

Γ(α)

∫ t

1

(
ln

t
s

)α−1 y(s)
s

ds

+(ln t)α−1

[
m(x)

f (e,m(x))
− 1

Γ(α)

∫ e

1

(
ln

e
s

)α−1 y(s)
s

ds

])
, t ∈ [1,e].

Proof. As argued in [12], the solution of Hadamard differential equation in (4) can
be written as

x(t) = f (t,x(t))

(
1

Γ(α)

∫ t

1

(
ln

t
s

)α−1 y(s)
s

ds+ c1(ln t)α−1 + c2(ln t)α−2

)
, (5)

where c1,c2 ∈ R are arbitrary constants. Using the boundary conditions given in (4),
we find that

c2 = 0, c1 =
m(x)

f (e,m(x))
− 1

Γ(α)

∫ e

1

(
ln

e
s

)α−1 y(s)
s

ds.
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Substituting the values of c1,c2 in (5), we get

x(t) = f (t,x(t))

(
1

Γ(α)

∫ t

1

(
ln

t
s

)α−1 y(s)
s

ds

+(lnt)α−1

[
m(x)

f (e,m(x))
− 1

Γ(α)

∫ e

1

(
ln

e
s

)α−1 y(s)
s

ds

])
, t ∈ [1,e]. �

2.2. Multi-valued analysis

Let us recall some basic definitions on multi-valued maps [6].
For a normed space (X ,‖ ·‖) , let Pcl(X) = {Y ∈P(X) :Y is closed} , Pb(X) =

{Y ∈P(X) :Y is bounded} , Pcp(X) = {Y ∈P(X) :Y is compact} , and Pcp,cv(X) =
{Y ∈ P(X) : Y is compact and convex} . A multi-valued map G : X → P(X) is con-
vex (closed) valued if G(x) is convex (closed) for all x ∈ X . The map G is bounded
on bounded sets if G(B) = ∪x∈BG(x) is bounded in X for all B ∈ Pb(X) (i.e.
supx∈B{sup{|y| : y ∈ G(x)}} < ∞). G is called upper semi-continuous (u.s.c.) on X
if for each x0 ∈ X , the set G(x0) is a nonempty closed subset of X , and if for each
open set N of X containing G(x0), there exists an open neighborhood N0 of x0 such
that G(N0) ⊆ N. G is said to be completely continuous if G(B) is relatively com-
pact for every B ∈ Pb(X) . If the multi-valued map G is completely continuous with
nonempty compact values, then G is u.s.c. if and only if G has a closed graph, i.e.,
xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗). G has a fixed point if there is x ∈ X
such that x ∈ G(x) . The fixed point set of the multivalued operator G will be denoted
by FixG . A multivalued map G : [0;1]→ Pcl(R) is said to be measurable if for every
y ∈ R , the function

t 
−→ d(y,G(t)) = inf{|y− z| : z ∈ G(t)}
is measurable.

Let C([1,e],R) denote a Banach space of continuous functions from [1,e] into R

with the norm ‖x‖ = supt∈[1,e] |x(t)|. Let L1([1,e],R) be the Banach space of measur-
able functions x : [1,e] → R which are Lebesgue integrable and normed by ‖x‖L1 =∫ e
1 |x(t)|dt.

For each y ∈C([1,e],R) , define the set of selections of F by

SF,y := {v ∈ L1([1,e],R) : v(t) ∈ F(t,y(t)) for a.e. t ∈ [1,e]}.

DEFINITION 2.4. A multivalued map F : [1,e]×R → P(R) is said to be Cara-
théodory if

(i) t 
−→ F(t,x) is measurable for each x ∈ R ;

(ii) x 
−→ F(t,x) is upper semicontinuous for almost all t ∈ [1,e] ;

Further a Carathéodory function F is called L1 -Carathéodory if
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(iii) there exists a function g ∈ L1([1,e],R+) such that

‖F(t,x)‖ = sup{|v| : v ∈ F(t,x)} � g(t)

for all x ∈ R and for a.e. t ∈ [1,e].

2.3. Fixed point theorems and a useful lemma

The following fixed point theorems due to Dhage [7], [8] are fundamental in the
proof of our main results for single and multivalued cases respectively.

LEMMA 2.5. ([7]) Let S be a non-empty, closed convex and bounded subset of
the Banach algebra X ; let A : X → X and B : S → X be two operators such that:

(a) A is Lipschitzian with a Lipschitz constant k,

(b) B is completely continuous,

(c) x = AxBy ⇒ x ∈ S for all y ∈ S, and

(d) Mk < 1, where M = ‖B(S)‖ = sup{‖B(x)‖ : x ∈ S}.
Then the operator equation x = AxBx has a solution.

LEMMA 2.6. ([8]) Let X be a Banach algebra and let A : X → X be a single
valued and B : X → Pcp,cv(X) be a multi-valued operator satisfying:

(a) A is single-valued Lipschitz with a Lipschitz constant k,

(b) B is compact and upper semi-continuous,

(c) 2Mk < 1, where M = ‖B(X)‖.
Then either

(i) the operator inclusion x ∈ AxBx has a solution, or

(ii) the set E = {u ∈ X |μu ∈ AuBu, μ > 1} is unbounded.

We also use the following lemma in the sequel.

LEMMA 2.7. ([13]) Let X be a Banach space. Let F : [1,e]×R→Pcp,cv(X) be
an L1 -Carathéodory multivalued map and let Θ be a linear continuous mapping from
L1([1,e],X) to C([1,e],X) . Then the operator

Θ ◦ SF : C([1,e],X) → Pcp,cv(C([1,e],X)), x 
→ (Θ ◦ SF)(x) = Θ(SF,x)

is a closed graph operator in C([1,e],X)×C([1,e],X).



112 B. AHMAD AND S. K. NTOUYAS

3. Existence results-the single valued case

THEOREM 3.1. Assume that

(H1) the function f : [1,e]×R → R \ {0} is continuous and there exists a bounded
function φ , with bound ‖φ‖, such that φ(t) > 0, for t ∈ [1,e] and

| f (t,x(t))− f (t,y(t))| � φ(t)|x(t)− y(t)|, for t ∈ [1,e] and for all x,y ∈ R;

(H2) there exists a constant M1 > 0 such that

∣∣∣∣ m(x)
f (e,m(x))

∣∣∣∣� M1;

(H3) there exist a function p ∈C([1,e],R+) and a continuous nondecreasing function
Ω : [0,∞) → (0,∞) such that

|g(t,x(t))| � p(t)Ω(‖x‖), t ∈ [1,e], and for all x ∈ R;

(H4) there exists a number r > 0 such that

r �
F0

[
2

Γ(α +1)
‖p‖Ω(r)+M1

]

1−‖φ‖
[

2
Γ(α +1)

‖p‖Ω(r)+M1

] , (6)

where

‖φ‖
[

2
Γ(α +1)

‖p‖Ω(r)+M1

]
< 1,

and F0 = supt∈[1,e] | f (t,0)|.
Then the boundary value problem (1) has at least one solution on [1,e].

Proof. Set X = C([1,e],R) and define a subset S of X as follows:

S = {x ∈ X : ‖x‖ � r},

where r satisfies the inequality (6).
Clearly S is closed, convex and bounded subset of the Banach space X . By

Lemma 2.3, the boundary value problem (1) is equivalent to the integral equation

x(t) = f (t,x(t))

(
1

Γ(α)

∫ t

1

(
ln

t
s

)α−1 g(s,x(s))
s

ds

+(lnt)α−1

[
m(x)

f (e,m(x))
− 1

Γ(α)

∫ e

1

(
ln

e
s

)α−1 g(s,x(s))
s

ds

])
, t ∈ [1,e].

(7)
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Define two operators A : X → X by

A x(t) = f (t,x(t)), t ∈ [1,e], (8)

and B : S → X by

Bx(t) =
1

Γ(α)

∫ t

1

(
ln

t
s

)α−1 g(s,x(s))
s

ds

+(lnt)α−1

[
m(x)

f (e,m(x))
− 1

Γ(α)

∫ e

1

(
ln

e
s

)α−1 g(s,x(s))
s

ds

]
, t ∈ [1,e].

(9)
Then x = A xBx. We shall show that the operators A and B satisfy all the conditions
of Lemma 2.5. For the sake of clarity, we split the proof into a sequence of steps.

Step 1. We first show that A is Lipschitz on X , i.e. (a) of Lemma 2.5 holds.

Let x,y ∈ X . Then by (H1) we have

|A x(t)−A y(t)| = | f (t,x(t))− f (t,y(t))|
� φ(t)|x(t)− y(t)|
� ‖φ‖‖x− y‖

for all t ∈ [1,e]. Taking the supremum over the interval [1,e], we obtain

‖A x−A y‖ � ‖φ‖‖x− y‖

for all x,y ∈ X . So A is a Lipschitz on X with Lipschitz constant ‖φ‖.

Step 2. The operator B is completely continuous on S, i.e. (b) of Lemma 2.5 holds.

First we show that B is continuous on S. Let {xn} be a sequence in S converging
to a point x ∈ S. Then by Lebesgue dominated convergence theorem,

lim
n→∞

Bxn(t) = lim
n→∞

(
1

Γ(α)

∫ t

1

(
ln

t
s

)α−1 g(s,xn(s))
s

ds

+(lnt)α−1

[
m(x)

f (e,m(x))
− 1

Γ(α)

∫ e

1

(
ln

e
s

)α−1 g(s,xn(s))
s

ds

])

=
1

Γ(α)

∫ t

1

(
ln

t
s

)α−1 lim
n→∞

g(s,xn(s))

s
ds

+(lnt)α−1

[
m(x)

f (e,m(x))
− 1

Γ(α)

∫ e

1

(
ln

e
s

)α−1 lim
n→∞

g(s,xn(s))

s
ds

]
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=
1

Γ(α)

∫ t

1

(
ln

t
s

)α−1 g(s,x(s))
s

ds

+(lnt)α−1

[
m(x)

f (e,m(x))
− 1

Γ(α)

∫ e

1

(
ln

e
s

)α−1 g(s,x(s))
s

ds

]

= Bx(t),

for all t ∈ [1,e]. This shows that B is continuous os S. It is enough to show that B(S)
is a uniformly bounded and equicontinuous set in X . First we note that

|Bx(t)| =

∣∣∣∣∣ 1
Γ(α)

∫ t

1

(
ln

t
s

)α−1 g(s,x(s))
s

ds

+(ln t)α−1

[
m(x)

f (e,m(x))
− 1

Γ(α)

∫ e

1

(
ln

e
s

)α−1 g(s,x(s))
s

ds

]∣∣∣∣∣
�
[
‖p‖Ω(r)

Γ(α)

∫ t

1

(
ln

t
s

)α−1 1
s
ds+M1 +

‖p‖Ω(r)
Γ(α)

∫ e

1

(
ln

e
s

)α−1 1
s
ds

]

=
2

Γ(α +1)
‖p‖Ω(r)+M1,

for all t ∈ [1,e]. Taking supremum over the interval [1,e], the above inequality becomes

‖Bx‖ � 2
Γ(α +1)

‖p‖Ω(r)+M1,

for all x ∈ S. This shows that B is uniformly bounded on S.
Next we show that B is an equicontinuous set in X . Let τ1,τ2 ∈ [1,e] with τ1 < τ2

and x ∈ S. Then we have

|(Bx)(τ2)− (Bx)(τ1)| � ‖p‖Ω(r)
Γ(α)

∣∣∣∣∣
∫ τ1

1

(
ln

τ1

s

)α−1 1
s
ds−

∫ τ2

1

(
ln

τ2

s

)α−1 1
s
ds

∣∣∣∣∣
+
‖p‖Ω(r)|(lnτ2)α−1− (lnτ1)α−1|

Γ(α)

∫ e

1

(
ln

e
s

)α−1 1
s
ds

� ‖p‖Ω(r)
Γ(α)

∣∣∣∣∣
∫ τ1

1

[(
ln

τ1

s

)α−1
−
(
ln

τ2

s

)α−1
]

1
s
ds

∣∣∣∣∣
+
‖p‖Ω(r)

Γ(α)

∣∣∣∣∣
∫ τ2

τ1

(
ln

τ2

s

)α−1 1
s
ds

∣∣∣∣∣
+
‖p‖Ω(r)|(lnτ2)α−1− (lnτ1)α−1|

Γ(α)

∫ e

1

(
ln

e
s

)α−1 1
s
ds.

Obviously the right hand side of the above inequality tends to zero independently of
x ∈ S as t2− t1 → 0. Therefore, it follows from the Arzelá-Ascoli theorem that B is a
completely continuous operator on S.
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Step 3. Next we show that hypothesis (c) of Lemma 2.5 is satisfied. Let x ∈ X and y∈ S
be arbitrary elements such that x = A xBy. Then we have

|x(t)| = |A x(t)||By(t)|

= | f (t,x(t))|
∣∣∣∣∣
(

1
Γ(α)

∫ t

1

(
ln

t
s

)α−1 g(s,y(s))
s

ds

+(ln t)α−1

[
m(y)

f (e,m(y))
− 1

Γ(α)

∫ e

1

(
ln

e
s

)α−1 g(s,y(s))
s

ds

])∣∣∣∣∣
� [| f (t,x(t))− f (t,0)|+ | f (t,0)|]×

∣∣∣∣∣
(

1
Γ(α)

∫ t

1

(
ln

t
s

)α−1 g(s,y(s))
s

ds

+(ln t)α−1

[
m(y)

f (e,m(y))
− 1

Γ(α)

∫ e

1

(
ln

e
s

)α−1 g(s,y(s))
s

ds

])∣∣∣∣∣
� [φ(t)|x(t)|+F0]

[
M1 +

‖p‖Ω(r)
Γ(α)

∫ t

1

(
ln

t
s

)α−1 1
s
ds

+
‖p‖Ω(r)

Γ(α)

∫ e

1

(
ln

e
s

)α−1 1
s
ds

]

� [‖φ‖|x(t)|+F0]

[
2

Γ(α +1)
‖p‖Ω(r)+M1

]
.

Thus

|x(t)| � ‖φ‖|x(t)|
[

2
Γ(α +1)

‖p‖Ω(r)+M1

]
+F0

[
2

Γ(α +1)
‖p‖Ω(r)+M1

]

or

|x(t)| �
F0

[
2

Γ(α +1)
‖p‖Ω(r)+M1

]

1−‖φ‖
[

2
Γ(α +1)

‖p‖Ω(r)+M1

] .

Taking supremum for t ∈ [1,e], we obtain

‖x‖ �
F0

[
2

Γ(α +1)
‖p‖Ω(r)+M1

]

1−‖φ‖
[

2
Γ(α +1)

‖p‖Ω(r)+M1

] � r,

that is, x ∈ S.
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Step 4. Now we show that Mk < 1, that is, (d) of Lemma 2.5 holds.

This is obvious by (H3), since we have k = ‖φ‖ and M = ‖B(S)‖ = sup{‖Bx‖ :

x ∈ S} � 2
Γ(α +1)

‖p‖Ω(r)+M1.

Thus all the conditions of Lemma 2.5 are satisfied and hence the operator equation
x = A xBx has a solution in S. In consequence, the problem (1) has a solution on [1,e].
This completes the proof. �

EXAMPLE 3.2. Consider the boundary value problem⎧⎪⎪⎨
⎪⎪⎩

D3/2
(

x(t)
|x(t)|sin t +1

)
=

1
4

cosx(t), 1 < t < e,

x(1) = 0, x(e) =
1
16

sinx(η), η ∈ (0,1).

(10)

Let f (t,x) = |x|sin t +1,g(t,x)=
1
4

cosx. Then (H1) and (H2) hold with φ(t) = 1

and p(t)=
1
4

, Ω(r) = 1 respectively. Since
2

Γ(α +1)
‖p‖Ω(r)+M1 =

2
3
√

π
+

1
16

< 1,

the boundary value problem (10) has a solution.

In the next we give a result for the boundary value problem (2). For simplicity we
consider m = 0.

THEOREM 3.3. Assume that (H2) and the following conditions hold:

(H5) the functions f ,q : [1,e]×R → R are continuous and there exist bounded func-
tions φ and ψ with bounds ‖φ‖ and ‖ψ‖ such that φ(t) > 0,ψ(t) > 0 for
t ∈ [1,e] and | f (t,x(t))− f (t,y(t))| � φ(t)|x(t)− y(t)|, |q(t,x(t))−q(t,y(t))|�
ψ(t)|x(t)− y(t)|, for t ∈ [1,e] and for all x, y ∈ R;

(H6) there exists a number r > 0 such that

r � 2(F0Γ(β +1)+H0)‖p‖Ω(r)
[Γ(α +1)Γ(β +1)−2(‖φ‖Γ(β +1)+‖ψ‖)‖p‖Ω(r)]

, (11)

where [Γ(α +1)Γ(β +1)−2(‖φ‖Γ(β +1)+‖ψ‖)‖p‖Ω(r)] > 0,
F0 = supt∈[1,e] | f (t,0)| and H0 = supt∈[1,e] |q(t,0)|.

Then the boundary value problem (2) has at least one solution on [1,e].

Proof. Setting the operator A : X → X as

A x(t) = f (t,x(t))+
1

Γ(β )

∫ t

1

(
ln

t
s

)β−1 q(s,x(s))
s

ds, t ∈ [1,e], (12)

the proof is similar to that of Theorem 3.1. So we omit it. �
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EXAMPLE 3.4. Consider the problem (2) with α = 3/2, f (t,x) = (sinx + x +
1)/

√
t +3, β = 3, q(t,x) = (tan−1 x + π)/

√
1+ t, g(t,x) = cosx/(3+ t), 1 < t < e.

Then φ(t) = 2/
√

t +3, ψ(t) = 1/
√

t +1, p(t) = 1/(3 + t). With ‖φ‖ = 1, ‖ψ‖ =
1/

√
2, ‖p‖ = 1/4, Ω(r) = 1 and

Γ(α +1)Γ(β +1)−2(‖φ‖Γ(β +1)+‖ψ‖)‖p‖Ω(r)� 4.622489,

all the conditions of Theorem 3.3 are satisfied. Hence the problem (2) with given data
has at least one solution on [1,e].

4. Existence result-the multivalued case

DEFINITION 4.1. A function x ∈C2([1,e],R) is called a solution of the problem
(3) if there exists a function v ∈ L1([1,e],R) with v(t) ∈ F(t,x(t)), a.e. on [1,e] such

that Dα
(

x(t)
f (t,x(t))

)
= v(t), a.e. on [1,e] and x(1) = 0, x(e) = m(x).

THEOREM 4.2. Assume that (H1),(H2) and the following conditions hold:

(A1) F : [1,e]×R → Pcp,cv(R) is L1 -Carathéodory multivalued map;

(A2) there exists a continuous function ζ ∈C([1,e],R+) such that

‖F(t,x)‖P := sup{|y| : y ∈ F(t,x)} � ζ (t) for each (t,x) ∈ [1,e]×R;

(A3) there exists a positive real number R such that

R >

F0

[
2

Γ(α +1)
‖ζ‖+M1

]

1−‖φ‖
[

2
Γ(α +1)

‖ζ‖+M1

] , (13)

where ‖φ‖
[

2
Γ(α +1)

‖ζ‖+M1

]
<

1
2
, F0 = sup

t∈[1,e]
|F(t,0)|.

Then the boundary value problem (3) has at least one solution on [1,e].

Proof. Set X =C([1,e],R). To transform the problem (3) into a fixed point prob-
lem, define an operator F : X → P(X) as

F (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

h ∈C([1,e],R) :

h(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (t,x(t))

(
1

Γ(α)

∫ t

1

(
ln

t
s

)α−1 v(s)
s

ds

+(ln t)α−1

[
m(x)

f (e,m(x))
− 1

Γ(α)

∫ e

1

(
ln

e
s

)α−1 v(s)
s

ds

])
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
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for v ∈ SF,x. Now we define two operators A : X → X by

A x(t) = f (t,x(t)), t ∈ [1,e], (14)

and B : X → P(X) by

B(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

h ∈C([1,e],R) :

h(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
Γ(α)

∫ t

1

(
ln

t
s

)α−1 v(s)
s

ds

+(ln t)α−1

[
m(x)

f (e,m(x))
− 1

Γ(α)

∫ e

1

(
ln

e
s

)α−1 v(s)
s

ds

]
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
(15)

Observe that F (x) = A xBx. We shall show that the operators A and B satisfy
all the conditions of Lemma 2.5. For the sake of convenience, we split the proof into
several steps.

Step 1. A is Lipschitz on X (see Step 1 of Theorem 3.1), so (a) of Lemma 2.6 holds.

Step 2. The multi-valued operator B is compact and upper semicontinuous on X , i.e.
(b) of Lemma 2.6 holds.

First we show that B has convex values. Let u1,u2 ∈Bx. Then there are v1,v2 ∈
SF,x such that

ui(t) =
1

Γ(α)

∫ t

1

(
ln

t
s

)α−1 vi(s)
s

ds

+(ln t)α−1

[
m(x)

f (e,m(x))
− 1

Γ(α)

∫ e

1

(
ln

e
s

)α−1 vi(s)
s

ds

]
,

i = 1,2, t ∈ [1,e]. For any θ ∈ [0,1], we have

θu1(t)+ (1−θ )u2(t)

=
1

Γ(α)

∫ t

1

(
ln

t
s

)α−1 [θu1(s)+ (1−θ )u2(s)]
s

ds

+(lnt)α−1

[
m(x)

f (e,m(x))
− 1

Γ(α)

∫ e

1

(
ln

e
s

)α−1 [θu1(s)+ (1−θ )u2(s)]
s

ds

]

=
1

Γ(α)

∫ t

1

(
ln

t
s

)α−1 v(s)
s

ds

+(lnt)α−1

[
m(x)

f (e,m(x))
− 1

Γ(α)

∫ e

1

(
ln

e
s

)α−1 v(s)
s

ds

]
,

where v(t) = θv1(t)+ (1−θ )v2(t) ∈ F(t,x(t)) for all t ∈ [1,e]. Hence θu1(t)+ (1−
θ )u2(t) ∈ Bx and consequently Bx is convex for each x ∈ X . As a result B defines a
multi valued operator B : X → Pcv(X).
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Next we show that B maps bounded sets into bounded sets in X . To see this, let
Q be a bounded set in X . Then there exists a real number r > 0 such that ‖x‖ � r ,
∀x ∈ Q.

Now for each h ∈ Bx, there exists a v ∈ SF,x such that

h(t) =
1

Γ(α)

∫ t

1

(
ln

t
s

)α−1 v(s)
s

ds

+(ln t)α−1

[
m(x)

f (e,m(x))
− 1

Γ(α)

∫ e

1

(
ln

e
s

)α−1 v(s)
s

ds

]
.

Then for each t ∈ [1,e], we have

|Bx(t)| =

∣∣∣∣∣ 1
Γ(α)

∫ t

1

(
ln

t
s

)α−1 v(s)
s

ds

+(ln t)α−1

[
m(x)

f (e,m(x))
− 1

Γ(α)

∫ e

1

(
ln

e
s

)α−1 v(s)
s

ds

]∣∣∣∣∣
� 2

Γ(α +1)
‖ζ‖+M1.

This further implies that

‖h‖ � 2
Γ(α +1)

‖ζ‖+M1,

and so B(X) is uniformly bounded.
Next we show that B maps bounded sets into equicontinuous sets. Let Q be, as

above, a bounded set and h ∈ Bx for some x ∈ Q. Then there exists a v ∈ SF,x such
that

h(t) =
1

Γ(α)

∫ t

1

(
ln

t
s

)α−1 v(s)
s

ds

+(ln t)α−1

[
m(x)

f (e,m(x))
− 1

Γ(α)

∫ e

1

(
ln

e
s

)α−1 v(s)
s

ds

]
,

t ∈ [1,e]. Then for any τ1,τ2 ∈ [1,e] we have

|h(τ2)−h(τ1)| � ‖ζ‖
Γ(α)

∣∣∣∣∣
∫ τ1

1

(
ln

τ1

s

)α−1 1
s
ds−

∫ τ2

1

(
ln

τ2

s

)α−1 1
s
ds

∣∣∣∣∣
+
‖ζ‖|(lnτ2)α−1− (lnτ1)α−1|

Γ(α)

∫ e

1

(
ln

e
s

)α−1 1
s
ds
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� ‖ζ‖
Γ(α)

∣∣∣∣∣
∫ τ1

1

[(
ln

τ1

s

)α−1
−
(
ln

τ2

s

)α−1
]

1
s
ds

∣∣∣∣∣
+

‖ζ‖
Γ(α)

∣∣∣∣∣
∫ τ2

τ1

(
ln

τ2

s

)α−1 1
s
ds

∣∣∣∣∣
+
‖ζ‖|(lnτ2)α−1− (lnτ1)α−1|

Γ(α)

∫ e

1

(
ln

e
s

)α−1 1
s
ds.

Obviously the right hand side of the above inequality tends to zero independently
of x ∈ Q as t2 − t1 → 0. Therefore it follows by the Arzelá-Ascoli theorem that B :
X → P(X) is completely continuous.

In our next step, we show that B is upper semicontinuous. It is known [6, Propo-
sition 1.2] that B will be upper semicontinuous if we establish that it has a closed
graph, since B is already shown to be completely continuous. Thus we will prove that
B has a closed graph.

Let xn → x∗,hn ∈B(xn) and hn → h∗. Then we need to show that h∗ ∈ B. Asso-
ciated with hn ∈ B(xn), there exists vn ∈ SF,xn such that for each t ∈ [1,e],

hn(t) =
1

Γ(α)

∫ t

1

(
ln

t
s

)α−1 vn(s)
s

ds

+(ln t)α−1

[
m(x)

f (e,m(x))
− 1

Γ(α)

∫ e

1

(
ln

e
s

)α−1 vn(s)
s

ds

]
.

Thus it suffices to show that there exists v∗ ∈ SF,x∗ such that for each t ∈ [1,e],

h∗(t) =
1

Γ(α)

∫ t

1

(
ln

t
s

)α−1 v∗(s)
s

ds

+(ln t)α−1

[
m(x)

f (e,m(x))
− 1

Γ(α)

∫ e

1

(
ln

e
s

)α−1 v∗(s)
s

ds

]
.

Let us consider the linear operator Θ : L1([1,e],R) →C([1,e],R) given by

f 
→ Θ(v)(t) =
1

Γ(α)

∫ t

1

(
ln

t
s

)α−1 v(s)
s

ds

+(lnt)α−1

[
m(x)

f (e,m(x))
− 1

Γ(α)

∫ e

1

(
ln

e
s

)α−1 v(s)
s

ds

]
.

Observe that

‖hn(t)−h∗(t)‖ =

∥∥∥∥∥ 1
Γ(α)

∫ t

1

(
ln

t
s

)α−1 (vn(s)− v∗(s))
s

ds

−(ln t)α−1 1
Γ(α)

∫ e

1

(
ln

e
s

)α−1 (vn(s)− v∗(s))
s

ds

∥∥∥∥∥→ 0,as n → ∞.
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Thus, it follows by Lemma 2.7 that Θ◦SF is a closed graph operator. Further, we
have hn(t) ∈ Θ(SF,xn). Since xn → x∗, therefore, we have

h∗(t) =
1

Γ(α)

∫ t

1

(
ln

t
s

)α−1 v∗(s)
s

ds

+(ln t)α−1

[
m(x)

f (e,m(x))
− 1

Γ(α)

∫ e

1

(
ln

e
s

)α−1 v∗(s)
s

ds

]
,

for some v∗ ∈ SF,x∗ .
As a result we have that the operator B is compact and upper semicontinuous

operator on X .

Step 3. Now we show that 2Mk < 1, i.e. (c) of Lemma 2.6 holds.

This is obvious by (A3) since we have k = ‖φ‖ and M = ‖B(X)‖ = sup{|Bx :

x ∈ X} � 2
Γ(α +1)

‖ζ‖+M1.

Thus all the conditions of Lemma 2.6 are satisfied and a direct application of it
yields that either the conclusion (i) or the conclusion (ii) holds. We show that the
conclusion (ii) is not possible.

Let u ∈ E be arbitrary. Then we have for λ > 1, λu ∈ A u(t)Bu(t). Then there
exists v ∈ SF,x such that for any λ > 1, one has

u(t) = λ−1[ f (t,u(t)]

(
1

Γ(α)

∫ t

1

(
ln

t
s

)α−1 v(s)
s

ds

+(ln t)α−1

[
m(u)

f (e,m(u))
− 1

Γ(α)

∫ e

1

(
ln

e
s

)α−1 v(s)
s

ds

]
,

for all t ∈ [1,e]. Then we have

|u(t)| � λ−1| f (t,u(t)|
(

1
Γ(α)

∫ t

1

(
ln

t
s

)α−1 |v(s)|
s

ds

+(ln t)α−1

[∣∣∣∣∣ m(u)
f (e,m(u))

∣∣∣∣∣+ 1
Γ(α)

∫ e

1

(
ln

e
s

)α−1 |v(s)|
s

ds

])

� [| f (t,u(t)− f (t,0)|+ | f (t,0)|]
(

1
Γ(α)

∫ t

1

(
ln

t
s

)α−1 |v(s)|
s

ds

+(ln t)α−1

[∣∣∣∣∣ m(u)
f (e,m(u))

∣∣∣∣∣+ 1
Γ(α)

∫ e

1

(
ln

e
s

)α−1 |v(s)|
s

ds

])

� [‖φ‖‖u‖+F0]

[
2

Γ(α +1)
‖ζ‖+M1

]
.
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Then we have

‖u‖ �
F0

[
2

Γ(α +1)
‖ζ‖+M1

]

1−‖φ‖
[

2
Γ(α +1)

‖ζ‖+M1

] � R.

Thus the condition (ii) of Theorem 2.6 does not hold by (13). Therefore the operator
equation A xBx and consequently problem (3) has a solution on [1,e]. This completes
the proof. �

EXAMPLE 4.3. Consider the boundary value problem⎧⎪⎪⎨
⎪⎪⎩

D3/2

[
x(t)

1
12e1−t tan−1 x+2

]
∈ F(t,x(t)), 1 < t < e,

x(1) = 0, x(e) =
1
16

sinx(η), 0 < η < 1,

(16)

where F : [1,e]×R → P(R) is a multivalued map given by

t → F(t,x) =
[ |x|3
10(|x|3 +3)

,
|sinx|

3(|sinx|+1)
+

1
3

]
.

By the condition (H1) , φ(t) = e1−t/12 with ‖φ‖ = 1/12. For f̃ ∈ F, we have

| f̃ | � max

( |x|3
10(|x|3 +3)

,
|sinx|

3(|sinx|+1)
+

1
3

)
� 2

3
, x ∈ R

and

‖F(t,x)‖ = sup{|y| : y ∈ F(t,x)} � 2
3

= ζ (t), x ∈ R.

Clearly

‖φ‖
[

2
Γ(α +1)

‖ζ‖+M1

]
=

1
12

[
16

9
√

π
+

1
16

]
� 0.088131 < 1/2

and R > 0.3898789. Hence all the conditions of Theorem 4.2 are satisfied and accord-
ingly, the problem (16) has a solution on [1,e].
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