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LIE SYMMETRY ANALYSIS TO GENERAL

TIME–FRACTIONAL KORTEWEG–DE VRIES EQUATIONS

YOUWEI ZHANG

Abstract. In present paper, two class of the general time-fractional Korteweg-de Vries equations
(KdVs) are considered, a systematic investigation to derive Lie point symmetries of the equations
are presented and compared. Each of them has been transformed into a nonlinear ordinary differ-
ential equation with a new independent variable are investigated. The derivative corresponding
to time-fractional in the reduced formula is known as the Erdélyi-Kober fractional derivative.

1. Introduction

In recent years, physics and mathematics fields have devoted considerable effort
to the study of solutions to partial differential equations (PDEs). Among PDEs, the
KdV equation is an important mathematical model with wide applications in solid state
physics, plasma physics, fluid physics and quantum field theory [11, 12]. More specifi-
cally, KdV equation generically describes the dynamics near long-wave-length primary
instabilities in the presence of appropriate symmetries [18], it has attracted a great deal
of interest as a model for complex temporal-spatio physics in spatially extended sys-
tems [5], as a model pattern formations on unstable flame fronts and thin hydrodynamic
films [29], and as a paradigm for finite-dimensional physics [20], such as the model
of Kaup-Kupershmidt equation arises in the study of the capillary-gravity waves, see
[1, 19]. In many methods for solving the equation, Lie symmetry analysis method
[3, 13, 14, 21, 31] can provide an effective procedure for conservations laws, explicit
and numerical solutions of a wide and general class of differential systems representing
real physical problems.

Although Lie symmetry analysis plays a significant role in the analysis of PDEs, it
has not been widely applied for studying the invariance properties of fractional partial
differential equation (FPDE). During the past three decades or so, fractional calculus
has obtained considerable popularity and importance as generalizations of integer-order
evolution equations, and used to model problems in neurons, hydrology, viscoelasticity
and rheology, image processing, mechanics, mechatronics, physics, finance and control
theory, see [2, 10, 16, 17, 23, 24, 27, 28]. Gazizov et al [8] adapted the methods of Lie
continuous groups for symmetry analysis, the equations with the derivative of the order
α (0 < α < 1) have finite-dimensional groups of admissible transformations, exam-
ples of constructing symmetries of FPDE and using these symmetries for constructing
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exact solutions of equations under consideration are also presented. Liu [15] has made
complete group classifications on the fractional fifth-order KdV type of equation and
investigated the symmetry reductions and exact solutions by the Lie symmetry analysis
method. It is worth to mention that in [4] a symmetry group of scaling transforma-
tions is determined for a PDE of fractional order α , containing among particular cases
the diffusion equation, the wave equation, and the fractional diffusion-wave equation.
For its group-invariant solutions, an ordinary differential equation of fractional order
with the new independent variable z = xtα/2 is derived. Sahadevan and Bakkyaraj [25]
have derived Lie point symmetries to time-fractional generalized Burgers and KdVs,
and have shown that each of equation has been transformed into a nonlinear ordinary
differential equation of fractional order with a new independent variable by using of the
obtained Lie point symmetries. Other results we can refer to the literature [7, 9, 30]. The
purpose of this paper is to investigate Lie symmetry analysis is useful in the analysis of
general time-fractional KdVs. Taking the advantage of Riemann-Liouville’s approach
that the initial conditions for fractional differential equation take on the traditional form
as for integer-order differential equation, the time-fractional KdVs are considered and
extent Lie symmetry analysis to derive their infinitesimals.

We provide some background material of the fractional calculus used throughout
the remaining sections of the present paper. The books [6, 22, 26] develop fractional
calculus and various definitions of fractional integration and differentiation.

DEFINITION 1. The Riemann-Liouville fractional derivative Dα
t u(x,t) with re-

spect to t is defined as

Dα
t u(x, t) =

{
1

Γ(m−α)D
m
t
∫ t
t1
(t− τ)m−α−1u(τ,x)dτ,

Dm
t u(x,t),

m−1 < α < m,
α = m ∈ N,

t1 < t < t2,

where Dp
q(·) = ∂ p

∂qp (·) , p ∈ N
+ .

Note that
i) Leibnitz’ formula for the Riemann-Liouville fractional derivative takes the form

Dα
t

(
μ(x,t)ν(x,t)

)
=

∞

∑
n=0

(α
n

)
Dα−n

t μ(x,t)Dn
t ν(x,t), α > 0,

where
(α

n

)
= (−1)n−1αΓ(n−α)

Γ(1−α)Γ(n+1) .

ii) Faà di Bruno’s formula for the integer-order derivative is

Dn
t

(
ψ(φ(t))

)
=

n

∑
m=0

m

∑
l=0

(m
l

) 1
m!

(−φ(t))lDn
t (φ(t))m−lDm

φ ψ(φ).

2. Lie symmetry analysis to FPDE

We present brief details of Lie symmetry analysis for FPDE with two independent
variables. Consider a scalar TFPDE having the form

Dα
t u+F(x,t,u,ux,u2x,u3x,u4x,u5x, . . .) = 0, t1 < t < t2, (1)
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with 0 < α < 1, where ukx = ∂ k/∂xk .
Let us assume that the above TFPDE, (1) is invariant under a one parameter ε

continuous transformations

t = t + ετ(x, t,u)+O(ε2), x = x+ εξ (x,t,u)+O(ε2), u = u+ εη(x, t,u)+O(ε2),

Dα
t u = Dα

t u+ εζ 0
α +O(ε2), Dxu = Dxu+ εζ 1

1 +O(ε2), D2
x u = D2

xu+ εζ 1
2 +O(ε2),

D3
x u = D3

xu+ εζ 1
3 +O(ε2), D4

x u = D4
xu+ εζ 1

4 +O(ε2), D5
x u = D5

xu+ εζ 1
5 +O(ε2),

. . . ,

(2)

where τ , ξ and η are infinitesimals and ζ 1
1 , ζ 1

2 , . . . , ζ 1
5 and ζ 0

α are extended in-
finitesimals of orders 1,2, . . . ,5 and α , respectively. The explicit expression for ζ 1

1 ,
ζ 1

2 , . . . , ζ 1
5 are

ζ 1
1 = ηx+(ηu−ξx)ux−τxut−ξuu

2
x−τuuxut ,

ζ 1
2 = ηxx+(2ηxu−ξxx)ux−τxxut+(ηuu−2ξxu)u2

x−2τxuuxut−ξuuu
3
x−τuuu

2
xut−2τxuxt

+(ηu−2ξx)uxx−τuuxxut−2τuuxtux−3ξuuxuxx,

ζ 1
3 = ηxxx+(3ηxxu−ξxxx)ux−τxxxut+(3ηxuu−3ξxxu)u2

x−3τxxuuxut+(ηuuu−3ξxuu)u3
x

−τuutuxxx+(3ηxu−3ξxx)uxx−3τxxuxt−3τxuuutu
2
x+(3ηuu−9ξxu)uxuxx−3τxuutuxx

−6τxuuxuxt−3τxuxxt+(ηu−3ξx)uxxx−ξuuuu
4
x−6ξuuu

2
xuxx−3τuuu

2
xuxt−τuuuutu

3
x

−3ξuu
2
xx−3τuuxuxxt−3τuuxtuxx−3τuuuxutuxx−4ξuuxuxxx,

ζ 1
4 = ηxxxx+(4ηxxxu−ξxxxx)ux+(6ηxxu−4ξxxx−3τxxu)uxx+(4ηxu−6ξxx)uxxx−4τxxxuxt

−τxxxxut−6τxxuxxt−4τxuxxxt+(ηu−4ξx)uxxxx+(6ηxxuu−4ξxxxu)u2
x−4τxxxuuxut

+(ηuuuu−4ξxuuu)u4
x+(12ηxuu−12ξxxu)uxuxx−6τxxuuu

2
xut−12τxxuuxutx−4τxuutuxxx

+(6ηuuu−24ξxuu)u2
xuxx−4τuuutuxuxxx−4τuutxuxxx−τuutuxxxx−4τxuuuutu

3
x

−12τxuuutxu
2
x−12τxuuutuxuxx+(3ηuu−12ξxu)u2

xx+(4ηuu−16ξxu)uxuxxx−3τxxuutuxx

−12τxuutxuxx−12τxuuxuxxt−ξuuuuu
5
x−10ξuuuu

3
xuxx−15ξuuuxu

2
xx−10ξuuu

2
xuxxx

−4τuuxuxxxt−12τuuuxuxtuxx−6τuuu
2
xuxxt−τuuuuu

4
xut−6τuuuutu

2
xuxx−10ξuuxxuxxx

−6τuuxxuxxt−3τuuutu
2
xx−4τuuuu

3
xuxt+(4ηxuuu−6ξxxuu)u3

x−5ξuuxuxxxx,

ζ 1
5 = ηxxxxx+(5ηxxxxu−ξxxxxx)ux+(10ηxxxuu−5ξxxxxu)u2

x−3τxxuuxxx−5τuuxuxxxxt

+(30ηxxuu−24ξxxxu−3τxxuu)uxuxx+(10ηxxxu−5ξxxxx−3τxxxu)uxx−10τxxuxxxt

+(5ηxu−10ξxx)uxxxx−5τxxxxuxt−10τxxxuxxt−τxxxxxut−5τxxxxuuxut−30τxxuuxuxxt

−5τxuxxxxt+(ηu−5ξx)uxxxxx+(10ηxxuuu−10ξxxxuu)u3
x+(30ηxuuu−54ξxxuu)u2

xuxx

+(5ηxuuuu−10ξxxuuu)u4
x+(ηuuuuu−5ξxuuuu)u5

x+(10ηuuuu−50ξxuuu)u3
xuxx

−20τxxxuuxuxt+(15ηxuu−24ξxxu)u2
xx−10τxxuuuu

3
xut−27τxxuuuxutuxx−30τxxuuu

2
xuxt

−27τxxuuxxuxt+(15ηuuu−75ξxuu)uxu
2
xx+(10ηuuu−50ξxuu)u2

xuxxx−7τxxuutuxxx

−20τxuuuxutuxxx−20τxuuxtuxxx−5τxuutuxxxx−10τuuuu
2
xutuxxx−20τuuuxuxtuxxx
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−10τuuutuxxuxxx−5τuuuxutuxxxx−10τuuxxtuxxx−5τuuxtuxxxx−τuutuxxxxx

−20τxuuuuxtu
3
x−30τxuuuxxtu

2
x−60τxuuuxtuxuxx−15τxuuutu

2
xx+(10ηuu−50ξxu)uxxuxxx

−7τxxxuutuxx−30τxuuxxtuxx−20τxuuxuxxxt−ξuuuuuu
6
x−15ξuuuuu

4
xuxx−20ξuuuu

3
xuxxx

−45ξuuuu
2
xu

2
xx−15ξuuu

3
xx−50ξuuuxuxxuxxx−15ξuuu

2
xuxxxx−5τxuuuu

4
xuxt

−30τuuuu
2
xuxxuxt−10τuuuu

3
xuxxt−15τuuuxtu

2
xx−30τuuuxuxxuxxt−10τuuu

2
xuxxxt

−10τuuuuutu
3
xuxx−15τuuuuxutu

2
xx−10ξuu

2
xxx−15ξuuxxuxxxx−10τuuxxuxxxt

+(5ηuu−25ξxu)uxuxxxx+(20ηxuu−34ξxxu)uxuxxx−5τxuuuuutu
4
x−τuuuuuu

5
xut

+(10ηxxu−10ξxxx)uxxx−10τxxxuuu
2
xut−30τxuuuutu

2
xuxx−6ξuuxuxxxxx,

. . . ,

with infinitesimal generator

G = τ(x,t,u)Dt + ξ (x,t,u)Dx + η(x,t,u)Du. (3)

If the vector field (3) generates a symmetry of (1), then G must satisfy Lie’s symmetry
condition

Pr(n)G(Δ)|Δ=0 = 0,

where Δ = Dα
t u+F(x,t,u,ux,u2x,u3x,u4x,u5x, . . .) .

Since the lower terminal of the integral in Riemann-Liouville time-fractional deriva-
tive is fixed and, therefore it should be invariant with respect to the transformations (2).
Such invariance condition yields

τ(x,t,u)|t=0 = 0. (4)

DEFINITION 2. A solution u = υ(x,t) is said to be an invariant solution of TF-
PDE (1) if and only if

(i) u = υ(x, t) is an invariant surface, i.e.

Gυ(x, t) = 0 ⇐⇒ (τ(x,t,u)Dt + ξ (x,t,u)Dx + η(x,t,u)Du)υ = 0,

(ii) u = υ(x, t) satisfies TFPDE (1).

The α -th extended infinitesimal related to the Riemann-Liouville time-fractional
derivative with (4) reads

ζ 0
α = Dα

t (η)+ ξDα
t ux−Dα

t (ξux)+Dα
t

(
Dt(τ)u

)−Dα+1
t (τu)+ τDα+1

t u. (5)

Using the Leibnitz’ formula for the Riemann-Liouville fractional derivative, the form
(5) can be presented as

ζ 0
α = Dα

t (η)−αDtτDα
t u−

∞

∑
n=1

(α
n

)
Dn

t ξDα−n
t ux−

∞

∑
n=1

( α
n+1

)
Dn+1

t τDα−n
t u. (6)
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Further, using Faà di Bruno’s formula along with the Leibnitz’ formula for the Riemann-
Liouville fractional derivative with f (x,t) = 1, one can written the first term Dα

t (η) in
(6) as

Dα
t (η) = Dα

t η + ηuD
α
t u−uDα

t ηu +
∞

∑
n=1

(α
n

)
Dn

t ηuD
α−n
t u+ ω ,

where

ω =
∞

∑
n=2

n

∑
m=2

m

∑
k=2

k−1

∑
r=0

(α
n

)( n
m

)( k
r

) 1
k!

tn−α

Γ(n+1−α)
(−u)rDm

t (uk−r)Dn−m+kη ,

and Dn−m+kη = ∂ n−m+k

∂ tn−m∂uk η . As a consequence the α -th extended infinitesimal pre-
sented in (6) becomes

ζ 0
α = Dα

t η+(ηu−αDtτ)Dα
t u−uDα

t ηu+ω+
∞

∑
n=1

((α
n

)
Dn

t ηu−
( α

n+1

)
Dn+1

t τ
)
Dα−n

t u

−
∞

∑
n=1

(α
n

)
Dn

t (ξ )Dα−n
t ux.

For the invariance of TFPDE (1) under transformations (2), we obtain

Dα
t u +F(x , t , u, ux, u2x, u3x, u4x, u5x, . . .) = 0, (7)

for any solution u = u(x,t) of TFPDE (1). Taking into account the higher order of
the nonlinear TFPDEs, expanding (7) about ε = 0 and making use of infinitesimals
and their extensions (2) and equating the coefficients of ε , and neglecting the terms of
higher powers of ε , we give the revised invariant equation (see [25]) of TFPDE

ζ 0
α+ξ

∂F
∂x

+τ
∂F
∂ t

+η
∂F
∂u

+ζ 1
1

∂F
∂ux

+ζ 1
2

∂F
∂u2x

+ζ 1
3

∂F
∂u3x

+ζ 1
4

∂F
∂u4x

+ζ 1
5

∂F
∂u5x

+ · · · = 0,

(8)

which is known as the invariant equation of TFPDE (1). Now solving the invariant
equation (8) with (1), we can determine τ,ξ ,η explicitly. Notice that the expression
for ω given in (7) vanishes when the infinitesimal η is linear in u .

3. Time-fractional KdV equation (I)

The general forth-order time-fractional KdV equation

Dα
t u+au5 +bu3ux + cuu2

x +du2u2x + euxu2x + f uu3x +u4x = 0, (9)

with 0 < α < 1 and six constant parameters a,b,c,d,e, f are invariant under a one
parameter transformations (2), and so the transformed equation is read as

Dα
t u +au5 +bu3ux + cuu2

x +du2u2x + eux u2x + f uu3x + u4x = 0. (10)
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Making use of transformations (2) in (10), we obtain the invariant equation of (9)

ζ 0
α +(bu3 +2cuux + eu2x)ζ 1

1 +(du2 + eux)ζ 1
2 + f uζ 1

3 + ζ 1
4

+ η(5au4 +3bu2ux + cu2
x +2duu2x + f u3x) = 0.

(11)

Such a structure of (11) allows one to reduce it to a system of infinitely many linear
TFPDEs. Substituting the expressions for ζ 1

k (k = 1,2, . . . ,4) and ζ 0
α into (11) and

equating various powers of derivatives of u to zero, we obtain an over determined
system of linear equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξu = ξt = τu = τx = ηuu = 0,

4ξx −ατt = 0,(α
n

)
Dn

t ηu −
( α

n+1

)
Dn+1

t τ = 0 for n = 1,2, . . . ,

Dα
t η −uDα

t ηu +bu3ηx +du2ηxx + f uηxxx + ηxxxx +5aηu4 = 0,

bu3(ατt − ξx)+2cuηx +du2(2ηxu − ξxx)+ eηxx + f u(3ηxxu− ξxxx)

+(4ηxxxu − ξxxxx)+3bηu2 = 0.

(12)

Solving system (12) consistently, we obtain the explicit forms of infinitesimals

ξ = a1x+b1, τ =
4a1

α
t, η = −a1u,

where a1 �= 0, b1 are constants. Hence the infinitesimal operator becomes

G = (a1x+b1)Dx +
4a1

α
tDt −a1uDu,

and so the underlying Lie algebra of the time-fractional KdV equation is two dimen-
sional with basis

G1 = Dx, G2 = xDx +
4
α

tDt −uDu. (13)

It is easy to check that the symmetry generators found in (13) form a closed Lie algebra

[G1,G1] = [G2,G2] = 0, [G1,G2] = [G2,G1] = −G1.

The similarity variable and similarity transformation corresponding to the infinites-
imal generator G2 can be obtained by solving the associated characteristic equation
given by

dx
x

=
αdt
4t

= −du
u

,

which take the forms

u = t−
α
4 ϕ(z), z = xt−

α
4 . (14)
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THEOREM 1. The similarity transformation u = t−
α
4 ϕ(z) along with the similar-

ity variable z = xt−
α
4 reduces the time-fractional KdV equation (9) to the nonlinear

constant coefficient ordinary differential equation with variable z(
P

1− 5α
4 ,α

4
α

ϕ
)
(z)+aϕ(z)5 +bϕ(z)3ϕ ′(z)+ cϕ(z)ϕ ′(z)2 +dϕ(z)2ϕ ′′(z)

+ eϕ ′(z)ϕ ′′(z)+ fϕ(z)ϕ ′′′(z)+ ϕ ′′′′(z) = 0,
(15)

where ′ = d
dz , with the Erdélyi-Kober fractional differential operator

(
Pτ,α

δ χ
)
(z) :=

m−1

∏
j=0

(
τ + j− 1

δ
z

d
dz

)(
Kτ+α ,m−α

δ χ
)
(z), z > 0, α > 0, δ > 0, (16)

m =
{

[α]+1,
α,

α /∈ N,
α ∈ N,

and

(
Kτ,α

δ χ
)
(z) :=

{
1

Γ(α)
∫ ∞
1 (v−1)α−1v−τ−α χ(zv

1
δ )dv,

χ(z),

α > 0,
α = 0,

is the Erdélyi-Kober fractional integral operator.

Proof. Let n−1 � α � n , n = 1,2, . . . . Thus the Riemann-Liouville time-fractional
derivative for the similarity transformation (14) becomes

Dα
t u = Dn

t

( 1
Γ(n−α)

∫ t

0
(t− s)n−α−1s−

α
4 ϕ(xs−

α
4 )ds

)
.

Set v = t
s . Then the above equation can be written as

Dα
t u = Dn

t

(
tn−

5α
4

1
Γ(n−α)

∫ ∞

1
(v−1)n−α−1v−(n+1− 5α

4 )ϕ(zv
α
4 )dv

)
.

Following the definition of the Erdélyi-Kober fractional integral operator given in (16),
we have

Dα
t u = Dn

t

(
tn−

5α
4

(
K

1− α
4 ,n−α

4
α

ϕ
)
(z)
)
. (17)

In order to simplify (17), we consider the relation (z = xt−
α
4 , φ ∈C1(0,∞)) ,

tDtφ(z) = tx
(
−α

4

)
t−

α
4 −1Dzφ(z) = −α

4
zDzφ(z),

and so, we have

Dn
t

(
tn−

5α
4

(
K

1− α
4 ,n−α

4
α

))
= Dn−1

t

(
Dt

(
tn−

5α
4

(
K

1− α
4 ,n−α

4
α

ϕ
)
(z)
))

= Dn−1
t

(
tn−1− 5α

4

(
n− 5α

4
− α

4
zDz

)(
K

1− α
4 ,n−α

4
α

ϕ
)
(z)

)
.
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Repeating the similar procedure for n−1 times, we get

Dn
t

(
tn−

5α
4

(
K

1− α
4 ,n−α

4
α

))
= t−

5α
4

n−1

∏
j=0

(
1+ j− 5α

4
− α

4
zDz

)(
K

1− α
4 ,n−α

4
α

ϕ
)
(z).

Then the above equation can be written as

Dn
t

(
tn−

5α
4

(
K

1− α
4 ,n−α

4
α

))
= t−

5α
4

(
P

1− 5α
4 ,α

4
α

ϕ
)
(z),

and so we obtain an expression for the time-fractional derivative

Dα
t u = t−

5α
4

(
P

1− 5α
4 ,α

4
α

ϕ
)
(z).

Continuing further we find that the time-fractional KdV equation (9) reduces into an
ordinary differential equation of fractional order(
P

1− 5α
4 ,α

4
α

f
)
(z) = −aϕ(z)5−bϕ(z)3ϕ ′(z)− cϕ(z)ϕ ′(z)2 −dϕ(z)2ϕ ′′(z)− eϕ ′(z)ϕ ′′(z)

− fϕ(z)ϕ ′′′(z)−ϕ ′′′′(z). �

4. Time-fractional KdV equation (II)

The general fifth-order time-fractional KdV equation

Dα
t u+au6 +bu4ux + cu2u2

x +du3u2x + eu2
2x + f u2u3x +guxu3x +huu4x +u5x = 0,

(18)

with 0 < α < 1 and eight constant parameters a,b,c,d,e, f ,g,h are invariant under a
one parameter transformations (2), and so the transformed equation is read as

Dα
t u +au6 +bu4ux + cu2u2

x +du3u2x + eu2
2x + f u2u3x +gux u3x +huu4x + u5x = 0.

(19)

Making use of transformations (2) in (19), we obtain the invariant equation of (18)

ζ 0
α +(bu4 +2cu2ux +gu3x)ζ 1

1 +(du3 +2eu2x)ζ 1
2 +( f u2 +gux)ζ 1

3 +huζ 1
4 + ζ 1

5

+ η(6au5 +4bu3ux +2cuu2
x +3du2u2x +2 f uu3x +gu4x) = 0.

(20)

Substituting the expressions for ζ 1
k (k = 1,2, . . . ,5) and ζ 0

α into (20) and equating
various powers of derivatives of u to zero, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξu = ξt = τu = τx = ηuu = 0,

5ξx −ατt = 0,(α
n

)
Dn

t ηu−
( α

n+1

)
Dn+1

t τ = 0 for n = 1,2, . . . ,

Dα
t η −uDα

t ηu +bu4ηx +du3ηxx + f u2ηxxx +huηxxxx + ηxxxxx +6aηu5 = 0,

bu4(ατt − ξx)+2cu2ηx +du3(2ηxu− ξxx)+gηxxx + f u2(3ηxxu − ξxxx)

+hu(4ηxxxu − ξxxxx)+5ηxxxxu − ξxxxxx +4bηu3 = 0.

(21)
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Solving linear system (21) consistently, it yields the explicit forms of infinitesimals

ξ = a1x+b1, τ =
5a1t

α
, η = −a1u,

where a1 �= 0,b1 are constants. Hence the infinitesimal operator is

G = (a1x+b1)Dx +
5a1t

α
Dt −a1uDu,

and so the underlying Lie algebra of the time-fractional KdV equation is two dimen-
sional with basis

G1 = Dx, G2 = xDx +
5t
α

Dt −uDu. (22)

It is easy to check that the symmetry generators found in (22) form a closed Lie
algebra

[G1,G1] = [G2,G2] = 0, [G1,G2] = [G2,G1] = −G1.

The similarity variable and similarity transformation corresponding to the infinites-
imal generator G2 can be obtained by solving the associated characteristic equation
given by

dx
x

=
αdt
5t

= −du
u

,

which take the forms

u = t−
α
5 ϕ(z), z = xt−

α
5 .

THEOREM 2. The similarity transformation u = t−
α
5 ϕ(z) along with the similar-

ity variable z = xt−
α
5 reduces the time-fractional KdV equation (18) to the nonlinear

constant coefficient ordinary differential equation with variable z(
P

1− 6α
5 ,α

5
α

ϕ
)
(z)+aϕ(z)6 +bϕ(z)4ϕ ′(z)+ cϕ(z)2ϕ ′(z)2 +dϕ(z)3ϕ ′′(z)

+ eϕ ′′(z)2 + fϕ2ϕ ′′′(z)+gϕ ′(z)ϕ ′′′′(z)+hϕ(z)ϕ ′′′′(z)+ ϕ ′′′′′(z) = 0.

(23)

Proof. The proof is similar to Theorem 1. �

REMARK 1. We reduce the time-fractional KdV equation (9) and (18) to the non-
linear constant coefficient ordinary differential equation (15) and (23), respectively.
Unfortunately, the above nonlinear ordinary differential equations with fractional order
α (0 < α < 1) is not solvable generally. However, for some special cases, such as the
linear equations and the initial value problems, the exact analytic solutions to the non-
linear equations can be solved by the power series method with Mittag-Leffler function.
The details are omitted in this paper.
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5. Discussion

Using Lie point symmetries, the presented analysis we illustrate the application of
Lie symmetry approach to study two class of the general time-fractional KdVs, and de-
rived their Lie point symmetries. All of the geometric vector fields of the equations are
obtained, which including the two class of nonlinear evolution equations as its special
cases. In view of the angle of geometry, the vector fields of such equations are all sym-
metries (point symmetries or point transformations). Then the symmetry reductions are
considered. The reduction of dimension in the symmetry algebra is due to the fact that
each of the time FPDEs is not invariant under time translation symmetry, and can be
transformed into a nonlinear ordinary differential equation of fractional order. How to
get the exact solutions to the nonlinear equation is a difficult problem. In particular, for
the equations (15) and (23) with arbitrary fractional order α (0 < α < 1) , there is no
general method for dealing with exact explicit solutions to the equations as far as we
know. We hope to investigate it in the future.
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