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POSITIVE SOLUTIONS TO ITERATIVE SYSTEMS OF
FRACTIONAL ORDER THREE-POINT BOUNDARY VALUE
PROBLEMS WITH RIEMANN-LIOUVILLE DERIVATIVE

K. R. PRASAD AND B. M. B. KRUSHNA

Abstract. In this paper, we determine the eigenvalues A;, 1 <i < n, for which there exist positive
solutions for the iterative system of fractional order three-point boundary value problems by
applying fixed point theorem.

1. Introduction

The theory of fractional order differential equations is important due to its demon-
strated applications in various fields of science and engineering such as physics, chem-
istry, control systems, flow in porous media, electromagnetics, mechanics, and so forth
[13, 14,3, 11,2, 10]. The positive solutions of boundary value problems associated with
ordinary differential equations were studied by many authors [4, 8, 7]. Establishing pos-
itive solutions to fractional order boundary value problems are gained momentum, for
some recent developments on the topic, see [1, 5, 9, 15, 16] and the references therein.

This paper is concerned with determining the eigenvalues A;, 1 <i < n, for which
there exist positive solutions to the iterative system of fractional order three-point bound-
ary value problems

Dgus(r) + Aipi ()i (w41 (0)) =0, 1< i <m, 0 <1 < 1,

(D
tny1(2) = w1 (1),
BDG: ui(1) = aD ui(§),

where g1 € (n—1,n], n>2, £ €(0,1), g2 € (1,q1), o, are positive real numbers
and Dg'+ ,Dgi are the standard Riemann-Liouville fractional order derivatives.
We assume that the following conditions hold throughout the paper:

(A1) f;:RT —R" is continuous, for 1 <i < n,
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(A2) p;:[0,1] — R" is continuous and p; does not vanish identically on any closed
subinterval of [0,1], for 1 <i< n,

(A3) M =B —alD— 27150,

(A4) each of
and fi — lim filx) )

X—>00 X

fir) |

0= lim
fio Lim,
for 1 < i< n, exists as positive real numbers.

By a positive solution of the fractional order boundary value problem (1)—(2), we
mean <u1(t),u2(t),-~-,un(t)> € (C[‘H]H[O, 1]>n satisfying (1)—(2) with u;(¢) > 0,i =
1,2,3,--+,n, forall r € [0,1] and (uy,uz,---,u,) # (0,0,---,0).

The rest of the paper is organized as follows. In Section 2, we construct the Green’s
function for the fractional order boundary value problem and estimate the bounds for
the Green’s function. Later, we express the solution of the boundary value problem (1)—
(2) into an equivalent integral equation. In Section 3, we establish criteria to determine
the eigenvalues for which the fractional order boundary value problem (1)—(2) has at
least one positive solution in a cone by using Guo—Krasnosel’skii fixed point theorem.
In Section 4, as an application, we illustrate our results with an example.

2. Green’s function and bounds

In this section, we constructed an equivalent integral equation for the fractional
order boundary value problem (1)—(2) and the kernel involved in the integral equation
is named as the Green’s function and bounds for the Green’s function are estimated.

LEMMA 1. Let A=T(q).# #0. If h(t) € C[0, 1], then the fractional order dif-
ferential equations,

Dq+u1()+h(l)20,l‘€(0,l), (3)
satisfying the boundary conditions
u(0)=0, j=0,1,2,--n -2, W
ﬁDqH/‘l(l) Dq+”l(é)

has a unique solution

1= /0 LGt 5)h(s)ds

where G(t,s) is the Green’s function for the problem (3), (4) and is given by

Glrs) _ [ Gult,s),0<t<s<E<,

t€l0.8] 7| Graft,s), 0 < s <min{r,&} < 1,
G(Z,S)Z (3)
Glis) _ {Gzl(t,s), 0<max{r,E} <s< 1

t€[&.1] Gn(t,s), 0<&E<s<r<,
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Gii(t,s) :% :ﬂt‘ﬂ’l(l _ gl gpnl(g _S)q|7q271:|,

Gialt,5) =5 [ B (1 =) () — e g -y,
G (t,s) =% :Bt%*l(l —s)‘ﬂ"ﬁ’l},

Gn(t,5) =% :Bt‘“”(l —s)heTl (s _S)qu}

Proof. Let ui(r) € Cl9F1[0, 1] be the solution of fractional order boundary value
problem given by (3) and (4). An equivalent integral equation for (3) is given by

_1 t
u(t) = =— / (t =) h(s)ds + it et T2 T
T(q1) Jo
Using the conditions (4), we can determine ¢, =c¢,—1 =---=c¢, =0 and

cr=x lB/Ol(l — 5) 12 p(5)ds — O‘/Og(é _s)‘fl‘leh(s)ds] '

Thus, the unique solution of (3), (4) is

1—1 g
w() =" —[p /0 "= e (s)ds — /0 (& 5y h(s)as]
A t(t — )12 (s)ds
A Jo

- /0 Gl s)h(s)ds. O

LEMMA 2. Assume that the condition (A3) is satisfied. Then the Green’s function

G(t,s) givenin (5) satisfies the following inequalities
(i) G(t,s) =2 0, forall (t,s) €]0,1] x [0,1],
(ii) G(t,5) < G(1,s), forall (t,s) €[0,1] x [0,1],
(iii) G(t,5) = 11 'G(1,s), forall (t,s) € [t,1] x [0,1],

where T € (0,1).

Proof. The Green’s function G(z,s) is given in (5).
Let 0 <7 <s< & < 1. Then, we have

1
Gii(t,s) = n [ﬁt‘h—l(l _S)ql_‘IZ—l _ aZQI—l(é _ s)ql—qz—l]

> % [B’ql_l(l — )l — g (E - gs)ql—qz—l]

t‘h*l

— _ )2 _ i1
== [#(1-5)7](1-5)
t‘h*l

= ——[#(1+as+o6)|a-917 >0,
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Let 0 < s < min{z,&} < 1. Then, we have

Glg(t,s) = % [l}tql—l(l _s)th—l]z—l —///(t—s)ql_l o at‘“‘l(g _5)111—112—1}

> %{ﬁtql_l(l_s)‘h—lh—l_%(t_ts)lh—l_at‘h_l(g_gs)ql_‘h_l}
-1

:th (1 =5y = )] (1 -y

= ”“: (@25 +0()] (1 =517 >0,

Let 0 < max{s,&} < s < 1. Then, we have

1
Gault,s) = £ [ﬁﬂl—l(l —s)ql—qz—l] > 0.

Let 0 < & < s <1< 1. Then, we have

Golt5) = 5 [ B (1 =)t — o=y

2 %{ﬁl’“_l(l — )21 —//(t—ts)’“_l]
-1
:th {ﬁ(l—s)f‘“—///}(l—s)‘“*l
1
= [Bas+agne L o) (1-5)1 7 0.

Now we prove the inequality (if).

Let 0 <t <s< &< 1. Then, we have

8G181t(t,S) _ (CllA— 1) {&41—2(1 _s)th—qz—l _ atq1_2(§ _S)ql_‘IZ—l]

> (611; D |:ﬁt111_2(1 — gyl gpn=2(E és)ql—42_1:|

S DM ] (g
(g — D!

< [///(1+q2s+ 0(s2)>}(1 —s)nl 0.

Therefore, G11(¢,s) is increasing in ¢, which implies Gy (,s) < G11(L,s).
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Let 0 < s < min{z,&} < 1. Then, we have

dG(t,s)
ot
— (qlA_ D [B,ql—Z(l _S)ql—‘IZ_l — (1 _5)41—2 _ a,q1—2(§ _S)ql—qz—l}
> (CUA_ 1) [B,qr2(1 — )N ()2 — T2 (E gs)qrqu}
_ 1-2
_ g =i i)’q [ ((1=s) e = 1)] (1= 52
_ 1—2
= s+ 0()] (1 -5y
> 0.

Therefore, G»(¢,s) is increasing in ¢, which implies G12(z,s) < G12(1,s).
Let 0 < max{r,&} < s < 1. Then, we have

Gy (t,s)
ot

_ (CIIA_ 1) [ﬁtq1—2(1 _S)ql_42_1:| > 0.

Therefore, Gy (¢,s) is increasing in ¢, which implies G (z,s) < Ga1(1,s).
Let 0 < & <s <t < 1. Then, we have

dGn(t,s) _ (q1—1) [ﬁtql—Z(l _s)ql—qz—l —///(t—s)‘“_z}

a A
> (qlA_ 1) {ﬁtq172(1 _s)fh*%*l —.//(Z‘—Z‘S)qliﬂ
_ (q1 —i)fql_z [B(l _s)—(qz—l) _//4 (1 —s)’“_z
(g1 — )2

= [ﬁ(qz —1)s+0(s%) + aéql—qz—l} (1—s)n=2

> 0.

Therefore, G, (¢,s) is increasing in ¢, which implies Gy (z,s) < G (1, s).
Finally we can establish the inequality (iii).
Let 0<7r<s< &< 1andre]r,1]. Then

1
Gii(t,s) = n [B,ql—l(l — )l gpnl(E — s)‘ll—qZ_l]

t‘ll—l

X [[3(1 — s)th—qz—l e — s)‘ll—qZ_l]
= l‘milGl](l,S)
> 117Gy (1,s).
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Let 0 <s<min{r,§} <1 and 7 € [1,1]. Then
1
Gia(t,s) = 0 [ﬁtql—l(l _s)ql—qz—l _//(t_s)ql—l _ atql_l(é _s)th—tIz—l}
1
> 0 [ﬁtql—l(l _s)ql—qz—l _//(t_ts)ql—l _ atql_l(é _S)ql—‘IZ—l}

= ﬂIA*l {ﬁ(l )2l (1 — )Nl (€ _S)qrqul}

ZlqlilGlz(l,S) > quilGlz(l,s).

Let 0 < max{r,£} <s <1 and ¢ €[r,1]. Then

1
G (t,s) = A Br (1 —s)‘11*‘12*1]
:tql_lel(l,S)

> 171Gy (1,5).

Let 0< & <s<r<1landre|r,1]. Then

Gnalt,5) = 5 [Brn (1) (e =5y

t‘]l—l

> n |:ﬁ(1_S)ql_‘IZ_l_%(l_s)‘Il_l}

thl_lez(LS) > Tq1_1G22(1,S).

1
where 7 € (0,1) satisfies / G(1,5)pi(s)ds >0,1 <i<n. O
T

An n-tuple (ul (t),un (1), uy (t)) is a solution of the three-point boundary value
problem (1)—(2) if and only if u;(t) € C la1]+1 [0,1] satisfies

up (1) ZM/OIG(hSl)Pl(Sl)fl (lz/OlG(Sl,Sz)Pz(Sz)” :

Jn—1 (ln/ol G(Sn—1,51)Pn(n) fn (ul(Sn)>dSn> "'d52> dsy,

and .
wilt) = x,-/ Gle,9)pi(s)fi (w1 () ds, 0 <1 <1, 2< i<,
0
where
up1(1) =u1(t), 0<tr<l.

In establishing our main result, we will employ the following fixed point theorem
due to Guo—Krasnosel’skii [6, 12].
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THEOREM 1. [0, 12] Let X be a Banach Space, _P C X be a cone and suppose
that Qy,L are open subsets of X with 0 € Q and Q; C Q. Suppose further that
T : PN (2\Q)) — P is completely continuous operator such that either

(D) |Tul|<||u|l, ue PNIQ and || Tu |[|Z||u ||, u € PNIQy, or
(i) |Tu||=|ull, uce PNIQ and || Tu ||<| u||, u € PN Iy holds.
Then T has a fixed point in PN (Q2\Q).

3. Positive solutions in a cone

In this section, we establish criteria to determine the eigenvalues for which the
fractional order boundary value problem (1)—(2) has at least one positive solution.

Let X = {x :x € CJ0, l}} be the Banach space equipped with the norm

= t)].
[ x| max. (1)

Define a cone P C X by

P— {x €X |x(t)>0o0n[0,1] and min x(r) > rqunxu}.
elr,

t€[z.1]

Now, we define an integral operator 7 : P — X, for u; € P, by
1 1
Tu (1) 211/0 G(t,s1)p1(s1) fi 12/0 G(s1,82)pa(s2) -

Jn—1 (A"/OI G(sn—lasn)pn(sn)fn (ul(sn)>dsn> - 'dS2> dsy.

Notice from (A1), (A2) and Lemma 2 that, for u; € P, Tu;(t) > 0 on [0,1]. Also, we
have

(6)

Tul(t) <A /01 G(l,sl)pl(sl)fl (Az/ol G(S17S2)p2(sz) e

fn1 (ln/ol G($n—1,50)Pn(Sn) fn (ul(sn))dsn> '--dS2> ds;

so that

1 1
| Tuy | Sll/o G(1,s1)p1(s1)fi (lz/o G(s1,52)pa(s2) -

(7
1
fa-1 (ln/o G(Sn—1,52)Pn(Sn) [ (ul(sn)>dsn> ---dSz> ds.
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Next, if u; € P, we have from Lemma 2 and (7) that

1
min Tu;(f) = min 7L1/ G(t,s1)p1(s1)fi 1(&2/ G(s1,82)pal(sa) -
0

te(r,1] te[rl

fn1 (ln/olG(snl,sn)pn(sn)fn (ul(sn))dsn> "'dSQ) ds;

1 1
>7L1Tq1_1/0 G(L,s1)pi(s1)fi (M/O G(s1,52)pa(s2) -

Sn—1 (ln/olG(Sn—l,Sn)Pn(Sn)fn (ul(sn)>dsn> "'d52> dsy

> | Tuy |

: -1
Therefore, tg[lf}] Tuy(t) 2 v |Turll. Hence, Tu; € P and so T : P — P. Further,

the operator T is completely continuous operator by an application of the Arzela—
Ascoli Theorem.

Now, we seek suitable fixed point of T belonging to the cone P. For our first
result, define positive numbers 4] and .43, by

1 —1
N = 112?2,,{ [qu_l/r G(Ls)pi(s)dsfioo] }
| -1
4= m{ |, et nsn) }

THEOREM 2. Assume that the conditions (A1)—(A4) are satisfied. Then, for each
Ay A2y, Ay satisfying

and

M<A <M, 1<i<n, (8

there exists an n-tuple (uy,uy,---,uy) satisfying (1)—(2) suchthat u;(t) >0, 1 <i<n
n (0,1).

Proof. Let A;, 1 <i< n,be given as in (8). Now, let € > 0 be chosen such that

1<isn 1<i<n

max { [141—1A1G(1,s)pi(s)ds(ﬁw—8)}1} < min 4;

and

1 —1
. < 1 . .
112%7% = ggn{ [/0 G(1,5)pi(s)ds(fio +£)] } .
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We seek fixed point of the completely continuous operator 7 : P — P defined by (6).
Now, from the definitions of fiy, 1 < i< n, there exists an H; > 0 such that, for each
1<i<n,

fi(x) < (fio+€)x, 0<x< H.

Let uy € P with ||uy|| = Hy . We first have from Lemma 2 and the choice of €, for
0 < Sp—1 < 1’

1
An/o G(Sn—lasn)pn(sn)fn<u1(5n)>dsn
1
<An/0 G(175n)pn(sn)(fn0+3)u1(sn)dsn

1
<o /0 G(1,50)pa(su)dsu(fro+ )| |
<l | = Hy.

It follows in a similar manner from Lemma 2 and the choice of € that, for 0 <s,_» <1,

1
Afnfl‘/o G(sn72asn71)pn71(snfl)
1
X fut (xn | GGnrspasnls (ul(sn>)dsn> s,

1
<7Ln—1/0 G(1,8p-1)pn—1(sn—1)dsp—1(fn—10+€)|lu1 |
< lw || = Hi.

Continuing with this bootstrapping argument, we have
1 1
A /0 G(t,51)p1(s1)fi 12/0 G(s1,52)p2(s2) - -
fo(w1(50) ) dsn) ~-~ds2>ds1 <Hy, for0<r <1,

so that, Tuy (1) < Hy, for0 <7 < 1. If we set Q) = {x€X| I|x]| <H1}, then

HTulH < ||l/tl||7 foru; € PNoQ,. 9)

Next, from the definitions of fi., 1 < i < n, there exists H> > 0 such that, for
each 1 <i<n,
fi(x) = (fio —€)x, x = H>.

H
Let H, = max{2H17 qu_21} Let u; € P and ||u;|| = H,. Then,

min ul(t) > qu_lHulH = Ez.
re(t,1]
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Then, from Lemma 2 and choice of €, for 0 <s,_; < 1, we have that
1
2fn/o G(snfl ,Sn)Pn (sn)fn (ul (sn)>dsn
1
> 1‘11*11,1/ G(1,52)u(50) (foe — €)1 (52)
T

1

> Tfh*l)tn/ G(L,83)pu(sn)dsu(free — €)]|ur|
T
> ||ur|| = Ha.

It follows in a similar manner from Lemma 2 and choice of €, for 0 <s,_» <1,
1
Afnfl/‘o G(Sn727sn71)pn71(sn71)
1
<ot 20 [ Glsaris)pa(sn)f (11 s2) ) s, |y

1

>, / G(Lysn1)Pnt (5n 1)1 (fot.c0— €)1
T

> [|uy || = Ho.

Again, using a bootstrapping argument, we have

M /()IG(I7S1)p1(Sl)f1 (M/OIG(SI»S2)P2(S2)'“

Jn (m (sn)>dsn) - -dSz> ds; > Ha,

so that Tuy(t) > Hy = |juy||. Hence, ||Tu;|| > ||ui||. So if we set
Q= {reX ||l < H},

then
HTMIH > ||l/tl||7 foru; € PNoy. (10)

Applying Theorem 1 to (9) and (10), we obtain that 7' has a fixed point u; €
PN (2\Q1). As such, setting u; = u,+1, we obtain a positive solution (uy,uz,- -, uy)
of (1)—~(2) given iteratively by

ui(t) = 7L,-/01 G(1,5)pi(s)fi (u,-H(s))ds, i=nn—1,--- 1

The proof is completed. [J

Prior to our next result, we define the positive numbers .43 and .44 by

1 —1
_ q1—1 . .
N = max { [T ! /T G(l,S)pz(S)dezo} }
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and
1 _1
«/V4=gg,.ign{[ / G(l,S)pi(S)deim] }

THEOREM 3. Assume that the conditions (A1)—(A4) are satisfied. Then, for each
Ay Ay, Ay satisfying
N <A <My, 1<i<n, (11)
there exists an n-tuple (uy,uy,---,uy,) satisfying (1)—(2) such that u;(t) >0, 1 <i<n
on (0,1).

Proof. Let A;, 1 <i< n begivenasin (11). Now, let € > 0 be chosen such that

max { {r‘ﬂlfrlG(Ls)Pi(s)ds(ﬁo —e)] _1} < min A

1<i<n 1<i<n

and

1 —1
. < mi . y
max A, < m{ [ ctsmisiastr ) } .

Let T be the cone preserving, completely continuous operator that was defined
by (6). From the definition of fijy, 1 < i< n there exists H3 > 0 such that, for each
1<i<n,

filx) = (fio—€)x, 0<x<Hs.

Also, from the definitions of fjy, it follows that f;p(0) =0, 1< i< n, and so there
exist 0 < K, < K,_| < --- < K> < H3 such that

Mfi(l) < e (0K, 3<i<n, and
Jo G(1,5)pi(s)ds
a
Mafa(t) - , 1€[0,K].

<—"2
Jo G(L,5)p2(s)ds

Choose u; € P with |ju;|| = K. Then, we have

o [ Gl rssa)palontf (1150 ) s < 2 [ G s pa(s0) o (10 ) )

< fOl G(17sn)pn(5n)Kn—ldsn _ |
f()l G(17Sn)pn(sn)dsn

Continuing with this bootstrapping argument, it follows that

/lz/olG(LSz)Pz(Sz)fz </13/01G(S2»S3)P3(S3)“'

fr <u1 (sn))ds,,> . -dS3> ds, < Hs.
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Then,
1
Tuy(r M/ G(t,s1)p1(s1)f 1(12/0 G(s1,52)p2(s2) - -

In (ul(s,,)>dsn> . -dsz> ds;

1
> o120 [ G(Ls)pi(s1) o= &)l dsi = .
T
So, ||Tus || = ||uy . If we put ©; = {x ex ||« < Kn}, then

HTMIH > ||l/tl||7 foru; € PNoQ,. (12)

Since each fi. is assumed to be a positive real number, it follows that f;, 1 <i <
n, is unbounded at co.
For each 1 <i < n, set f{(x) = sup fi(s). Then, it is straightforward that, for

0<s<x
each 1 <i<n, f{ is a nondecreasing real-valued function, f; < f;* and
)
L = i
x—nx) X
Next, by definition of fie, 1 < n, there exists Ha such that, for each 1 <i <n,

PO < Unt e +5 T
It follows that there exists Hs > max {2H3,H4} such that, foreach 1 <i < n,

fi(x) < ff(Hy), 0<x<Hy.

Choose u; € P with ||u|| = Hs. Then, using the usual bootstrapping argument,
we have

Tuy(r /11/ G(t,s1)p1(s1)fi(A2--)dsy
<A /O G(t,51)p1(s1)fi (Ao - -)disy
1
<A /0 G(1,51)p1 (1) 7 (Ha)dsy

<0 [ GO (s1)dsi (ot €)He
<Hy = Jun,
and so ||Tui || < [lur]]. So, if we let Q@ = {x6X| 1] <H4}, then
| Tuy|| < ||ui], foru; € PNIQ;. (13)

Applying Theorem I to (12)—(13), we obtain that T has a fixed point u; € PN (Q,\Q1),
which in turn with u; = u, 1, yields an n-tuple (uy,us,---,u,) satisfying (1)—(2) for
the chosen values of A;, 1 <i < n. The proof is completed. [
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4. Example

In this section, as an application, we demonstrate our results with an example.
Consider the system of fractional order boundary value problem,

Déf 1)+ Mpi(t)fi(u2) =0, 1€(0,1),
8+ I/Lz +12P2(t)f2(”3) 7 (S (07 1)7 (14)
DyPus(t)+ Asps(1) f3(ur) =0, 1€(0,1),
u;(0) =0, ui(0)=0,
1 (15)
5D (1) = 2D1+u,<2>, i=1,2,3,
where
) =2 [1050 — 999.35¢ 2] [870 — 798.5¢ 2]
)= 1+99/x ’
foun) = [3000 — 2984.65¢ 73] [567 — 489.5¢ ]
243 = 31877 ’
Foy) = [1200 — 986.25¢ 1] [1050 — 999.2¢ 1]
= 2478 ’

and pi(t) = pa(t) = p3(t) = 1. Then the Green’s function G(¢,s) for the boundary
value problem,

Du(t)+h(t) =0, t€(0,1),

1
w1 (0)=0, u}(0)=0, SDL3u(1)= 2D(1)'+5u1<§>,

Gits) _ [ Guilt,s), 0<t<s<5<1,
i€f0.5] T | Giaft,s), 0 < s <minfr, 3} < 1,
G(t,s) =
Grs) _ | Galt,s), 0< max{t,%} <s <,
tE[%J] - ng(t,s), 0< % <s<r<1,
Gui(t,s) = 25 [5615(1 — )03 —2r15(1 _S)l.s},
Gia(t,s) = 25 |5t15(1 — )03 —3.38(t — 5)1° — 2113 (1 —5) 15},
Gau(r,) = 25 [5119(1- 53]
Gnlt,s) = & 5z1-5(1—5)03—3.38(1—5)15}.

By direct calculations, we determine T = 0.65, 7' = 0.52405, fi0 = 20.5214, f>»o =
50.5308, f30 =77.4216, fi. =5176.4312, fr. = 10820.3708 and f3.. = 8983.8675.
Employing Theorem 2, we get an eigenvalue interval 0.00033829 < A; < 0.01504484,
for i = 1,2,3 in which the fractional order boundary value problem (14)—(15) has at
least one positive solution.
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