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EXISTENCE AND MULTIPLICITY RESULTS FOR

THE BOUNDARY VALUE PROBLEM OF NONLINEAR

FRACTIONAL DIFFERENTIAL EQUATIONS

LIJUN PAN

Abstract. In this paper, we devote to investigation of the existence of positive solutions for the
boundary value problem of nonlinear fractional differential equations{

Dα
0+u(t)+ f (t,u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = · · ·u(n−2)(0) = Dβ
0+u(1),

where Dα
0+ , Dβ

0+ are the standard Riemann-Liouville fractional derivative, n− 1 < α � n ,
n−2 � β � n−1 , n � 3 . By means of constructing an exact cone of the Banach space and fixed-
point theorem, some new multiplicity results for the boundary value problem are obtained. The
interest is that we establish the theorems of the existence of infinitely many positive solutions.

1. Introduction

In this paper, we are concerned with positive solutions for the boundary value
problem of nonlinear fractional differential equations{

Dα
0+u(t)+ f (t,u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = · · ·u(n−2)(0) = Dβ
0+u(1),

(1.1)

where Dα
0+ , Dβ

0+ are the standard Riemann-Liouville fractional derivative, n−1< α �
n , n−2 � β � n−1, n � 3, and f : [0,1]× [0,∞)→ [0,∞) is continuous.

Fractional differential equations are mathematical apparatus for simulation of pro-
cess and phenomenaobserved in the fields of control theory, physics, chemistry, biotech-
nologies, industrial robotics, engineering, etc. So there have been quite a few results
on properties of their solutions [1–3, 7–8, 10–11, 13]. Recently, there are some papers
investigating the existence and multiplicity of solutions for boundary value problem
of fractional differential equations [4–6, 9, 12, 14, 16–18]. For example, in [5], Bai
and Lu investigated the boundary value problem of the following fractional dierential
equations {

Dα
0+u(t)+ f (t,u(t)) = 0, 0 < t < 1, 1 < α � 2,

u(0) = u(1) = 0,
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where Dα
0+ is the standard Riemann-Liouville fractional derivative. Jiang and Yuan

generalized the results of the above equation [16].
In [14], Kaufmann and Mboumi studied the existence of positive solutions of non-

linear fractional boundary value problem{
Dα

0+u(t)+a(t) f (u(t)) = 0, 0 < t < 1, 1 < α � 2,

u(0) = u′(1) = 0,

In [18], Liang and Zhang used lower and upper solution method and fixed point
theorem to show the existence and non-existence of positive solutions of nonlinear frac-
tional boundary value problem{

Dα
0+u(t)+a(t) f (u(t)) = 0, 0 < t < 1, 3 < α � 4,

u(0) = u′(0) = u′′(0) = u′(1) = 0.

In the present paper, we derive the corresponding Green function. Consequently
BVP (1.1) is reduced to an equivalent Fredholm integral equation. Next, applying the
properties of Green function, we construct the exact cone of the Banach space. Finally,
by using fixed-point theorems, existence and multiplicity results for the BVP (1.1) are
obtained. The interest is that we establish the theorems of the existence of infinitely
many positive solutions. Meanwhile, some examples are given to illustrate the effect of
these theorems.

2. Preliminary results

DEFINITION 2.1. ([7]) The fractional integral of order α > 0 of a function y :
(0,∞) → R is given by

Iα
0+y(t) =

1
Γ(α)

∫ t

0
(t − s)α−1y(s)ds

provided the right integral converges.

DEFINITION 2.2. ([7]) The standard Riemann-Liouville fractional derivative of
order α > 0 of a continuous function y : (0,∞) → R is given by

Dα
0+y(t) =

1
Γ(n−α)

(
d
dt

)n ∫ t

0
(t − s)n−α−1y(s)ds

where n = [α]+1, provided the right integral converges.

LEMMA 2.1. ([7]) Assume that u ∈C(0,1)∩L(0,1) with a fractional derivative
of order α > 0 that belongs to C(0,1)∩L(0,1) . Then

Iα
0+Dα

0+u(t) = u(t)+C1t
α−1 +C2t

α−2 + · · ·+CNtα−N

for some Ci ∈ R, i = 1,2, . . . ,N , where N is the smallest integer greater than or equal
to α .
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LEMMA 2.2. Assume that g(t) ∈ L[0,1] and α,β are two constants such that
α > n−1 � β � n−2 , n � 3 . Then

Dβ
0+

∫ t

0
(t − s)α−1g(s)ds =

Γ(α)
Γ(α −β )

∫ t

0
(t− s)α−β−1g(s)ds

The proof of Lemma 2.2 is similar to that of Lemma 2,2 in [18], here we omit it.

LEMMA 2.3. Let g(t) ∈ L[0,1] and n−1 < α � n, n−2 � β � n−1 , n � 3 , the
unique solution of {

Dα
0+u(t)+g(t) = 0, 0 < t < 1,

u(0) = u′(0) = · · ·u(n−2)(0) = Dβ
0+u(1) = 0,

(2.1)

is

u(t) =
∫ t

0
G(t,s)g(s)ds,

where

G(t,s) =

⎧⎨
⎩

tα−1(1−s)α−β−1−(t−s)α−1

Γ(α) , 0 � s � t � 1,

tα−1(1−s)α−β−1

Γ(α) , 0 � t � s � 1
(2.2)

Proof. Applying Lemma 2.1, the Eq. (2.1) is equivalent to the integral equation

u(t) = −Iα
0+u(t)+C1t

α−1 +C2t
α−2 + · · ·+Cnt

α−n

for some Ci ∈ R , i = 1,2, . . . ,n . Consequently, the general solution of Eq. (2.1) is

u(t) = − 1
Γ(α)

∫ t

0
(t− s)α−1g(s)ds+C1t

α−1 +C2t
α−2 + · · ·+Cnt

α−n.

From u(0) = u′(0) = · · ·u(n−2)(0) = Dβ
0+u(1) , we get C2 = · · · = Cn . Thus

u(t) = − 1
Γ(α)

∫ t

0
(t− s)α−1g(s)ds+C1t

α−1.

From Lemma 2.2, we get

Dβ
0+u(t) = − 1

Γ(α −β )

∫ t

0
(t− s)α−β−1g(s)ds+C1

Γ(α)
Γ(α −β )

tα−β−1.

In view of the boundary condition Dβ
0+u(1) = 0, we conclude that

C1 =
1

Γ(α)

∫ 1

0
(1− s)α−β−1g(s)ds.

Therefore, the unique solution of BVP (2.1) is

u(t) = − 1
Γ(α)

∫ t

0
(t− s)α−β−1g(s)ds+

1
Γ(α)

∫ 1

0
tα−1(t− s)α−β−1g(s)ds

=
∫ 1

0
G(t,s)g(s)ds. �
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LEMMA 2.4. The function G(t,s) satisfies the following conditions
(i) G(t,s) is continuous on [0,1]× [0,1];
(ii) G(t,s) > 0 for any s,t ∈ [0,1];
(iii) For any s, t ∈ [0,1] , tα−1w(s)

Γ(α) � G(t,s) � w(s)
Γ(α) , where w(s) = (1− s)α−β−1−

(1− s)α−1 .

Proof. It is easy to check that (i) holds. So we will prove that (ii) and (iii) hold. If

0 � s � t � 1, let h(t,s) = (1− s)α−β−1− (1− s
t )

α−1 , then G(t,s) = tα−1h(t,s)
Γ(α) . Since

∂h(t,s)
∂ t = −(α − 1)(1− s

t )
α−2 s

t2
� 0, so h(t,s) is decreasing on [s,1] with respect to

t . Then h(t,s) � h(1,s) = (1− s)α−β−1 − (1− s)α−1 > 0. Which implies (ii) holds.
Furthermore, we have for 0 � s � t � 1

G(t,s) =
tα−1h(t,s)

Γ(α)
� tα−1h(1,s)

Γ(α)
=

tα−1[(1− s)α−β−1− (1− s)α−1]
Γ(α)

=
tα−1w(s)

Γ(α)
.

If 0 � t � s � 1. It is easy to see that

G(t,s) � tα−1[(1− s)α−β−1− (1− s)α−1]
Γ(α)

.

On the other hand, If 0 � s � t � 1, we get

dG(t,s)
dt

=
(α −1)[tα−2(1− s)α−β−1− (t− s)α−2]

Γ(α)
=

(α −1)[ (t−ts)α−2

(1−s)β−1 − (t− s)α−2]

Γ(α)

�
(α −1)[ (t−s)α−2

(1−s)β−1 − (t− s)α−2]

Γ(α)
� 0.

Then G(t,s) is increasing with respect to t for 0 � s � t � 1. So

G(t,s) � G(1,s) � (1− s)α−β−1− (1− s)α−1

Γ(α)
=

w(s)
Γ(α)

.

If 0 � t � s � 1, we also get

G(t,s) � s(1− s)α−β−1

Γ(α)
=

[1− (1− s)](1− s)α−β−1

Γ(α)
� [1− (1− s)β−1](1− s)α−β−1

Γ(α)

=
(1− s)α−β−1− (1− s)α−1

Γ(α)
.

Thus, we conclude that (iii) holds. �

LEMMA 2.5. ([15]) Let Q be a cone of a Banach space E , and Ω , Ω′ are open
subsets of E with 0∈ Ω⊂ Ω⊂ Ω′ . Suppose that A : Q→Q is a completely continuous
operator such that one of the following two conditions is satisfied:

(i) ‖Ax‖ � ‖x‖ for x ∈ Q∩∂Ω and ‖Ax‖ � ‖x‖ for x ∈ Q∩∂Ω′ .
(ii) ‖Ax‖ � ‖x‖ for x ∈ Q∩∂Ω and ‖Ax‖ � ‖x‖ for x ∈ Q∩∂Ω′ .
Then, A has a fixed point x ∈ Q∩Ω′ \Ω .
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2. Main results

In this section, we establish the theorems of positive solutions for BVP (1.1). For
convenience, let us list the following assumptions.

(H1) 0 � lim
u→0+

sup
t∈[0,1]

f (t,u)
u � M1 , where M1 = [ max

0�t�1

∫ 1
0 G(t,s)ds]−1 ;

(H2) There exists γ ∈ [0, 2α−2
3α−β−2 ] such that lim

u→+∞
inf

t∈[γ,1]

f (t,u)
u � Γ(α)(α−β )

M(α ,β ) , where

M(α,β ) = (2α−2)2α−2(α−β )α−β

(3α−β−2)3α−β−2 ;

(H3) There exists γ ∈ [0, 2α−2
3α−β−2 ] such that lim

u→0+
inf

t∈[γ,1]

f (t,u)
u � Γ(α)(α−β )

M(α ,β ) ;

(H4) There exist a number r > 0 and a function h(t) ∈ C(0,1) such that for
t ∈ [0,1] , 0 < u � r , f (t,u) � h(t) , and max

0�t�1

∫ 1
0 G(t,s)h(s)ds � r ;

(H5) 0 � lim
u→+∞

sup
t∈[0,1]

f (t,u)
u � M1 ;

(H6) There exists γ ∈ [0, 2α−2
3α−β−2 ] such that for t ∈ [γ,1] , γα−1ν � u � ν , f (t,u)�

Γ(α)(α−β )ν
M(α ,β ) .

Let the Banach space E = C[0,1] be endowed norm u = sup
0�t�1

|u(t)| . For ∀c > 0,

we define Ωc = {u∈ E : ‖u‖� c} . Let Pγ be the cone Pγ = u∈ E : u(t) � 0, t ∈ [0,1] ,
min

γ�t�1
u(t) � γα−1‖u‖} , where γ ∈ [0, 2α−2

3α−β−2 ] . Suppose that u is a solution of BVP

(1.1), then

u(t) =
∫ t

0
G(t,s) f (s,u(s))ds, 0 � t � 1.

Dene an operator A : Pγ → E as follows

(Au)(t) =
∫ t

0
G(t,s) f (s,u(s))ds.

Clearly, the fixed points of the operator A are the solutions of the BVP (1.1).

LEMMA 3.1. The operator A is defined by (3.1). Then A(Pγ) ⊂ Pγ and A is
completely continuous.

Proof. It follows from Lemma 2.4 that

‖Au‖ � 1
Γ(α)

∫ 1

0
w(s) f (s,u(s))ds,

(Au)(t) � tα−1

Γ(α)

∫ 1

0
w(s) f (s,u(s))ds,

Then
min

γ�t�1
(Au)(t) � γα−1‖Au‖.

So we have A(pγ) ⊂ Pγ . Next, in view of nonnegativeness of G(t,s), f (t,u) and con-
tinuity of f (t,u) with respect to u , we can see that A : Pγ → Pγ is continuous. Let
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Ω ∈ Pγ . It is easy to show that A(Ω) is uniformly bounded and is equicontinuity. Thus,
the operator A is completely continuous. �

THEOREM 3.1. Suppose that (H1) , (H2) hold. Then BVP (1.1) has at least one
positive solution.

Proof. We first prove that there exist γ0 ∈ [0,1] and Rγ0 > 0 such that for u ∈
Pγ0 ∩∂ΩRγ0 ‖Au‖ � ‖u‖.
Since condition (H2) holds, there exist ε > 0 and N > 0 such that for t ∈ [γ,1] and
u � N

f (t,u) �
(

Γ(α)(α −β )
M(α,β )

+ ε
)

u. (3.2)

Choose Rγ � N
γα−1 . For u ∈ Pγ ∩∂ΩRγ , we obtain

min
γ�t�1

(Au)(t) � γα−1‖u‖ = γα−1Rγ � N. (3.3)

Then, it follows from (3.2) and (3.3) that for u ∈ Pγ ∩∂ΩRγ

(Au)(γ) =
∫ t

0
G(γ,s) f (s,u(s))ds �

∫ t

γ
G(γ,s) f (s,u(s))ds

�
(

Γ(α)(α −β )
M(α,β )

+ ε
)

1
Γ(α)

γα−1‖u‖
∫ t

γ
γα−1(1− s)α−β−1ds

� 1
M(α,β )

γ2α−2(1− γ)α−β‖u‖.

Thus

‖Au‖ � 1
M(α,β )

γ2α−2(1− γ)α−β‖u‖, u ∈ Pγ ∩∂ΩRγ . (3.4)

Let ϕ(γ)= γ2α−2(1−γ)α−β . It follows that when γ = γ0 = 2α−2
3α−β−2 , ϕ(γ0)= max

0�γ�1
ϕ(γ)

= M(α,β ) . Then taking γ = γ0 , we have

‖Au‖ � ‖u‖, u ∈ Pγ0 ∩∂ΩRγ0
.

In view of (H1) , we know that there exist ε ∈ (0,M1) and 0 < r1 < Rγ0 such that for
t ∈ [0,1] , 0 � u � r1

f (t,u) � (M1 − ε)u,

Then for u ∈ Pγ0 ∩∂Ωr1

(Au)(t) =
∫ t

0
G(γ,s) f (s,u(s))ds � (M1− ε)r1

∫ t

0
G(t,s)ds � (M1− ε)

r1

M1
� r1 = ‖u‖.

So, we have
‖Au‖ � ‖u‖, u ∈ Pγ0 ∩∂Ωr1 .

Consequently, by Lemma 2.5, BVP (1.1) has at least one positive solution in Pγ0 ∩
(Ωγ0 \Ωr1) . �
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THEOREM 3.2. Suppose that (H3) , (H4) hold. Then BVP (1.1) has at least one
positive solution.

Proof. Similar to the proof of Theorem 3.1, we now show that there exist γ0 ∈
[0,1] and < rγ0 < r such that for u ∈ Pγ0 ∩∂Ωrγ0

‖Au‖ � ‖u‖.
Indeed, since condition (H3) holds, there exist ε > 0 and L > 0 such that

f (t,u) �
(

Γ(α)(α −β )
M(α,β )

+ ε
)

u, 0 < u � L.

Choosing rγ = min{ r
2 ,L} , for u ∈ Pγ ∩ ∂Ωrγ , we have min

γ�t�1
u(t) � γα−1rγ , u(t) �

rγ � L . It follows that

(Au)(γ) =
∫ 1

0
G(γ,s) f (s,u(s))ds �

∫ 1

γ
G(γ,s) f (s,u(s))ds

�
(

Γ(α)(α −β )
M(α,β )

+ ε
)

rγ γ2α−2

Γ(α)

∫ t

γ
(1− s)α−β−1ds

� 1
M(α,β )

γ2α−2(1− γ)α−βrγ .

Thus

‖Au‖ � 1
M(α,β )

γ2α−2(1− γ)α−β‖u‖, u ∈ Pγ ∩∂Ωrγ .

Taking γ = γ0 = 2α−2
3α−β−2 , we have

‖Au‖ � ‖u‖, u ∈ Pγ0 ∩∂Ωrγ0
.

For u ∈ Pγ0 ∩∂Ωr , we have 0 � u � r . It follows from condition (H4) that

(Au)(t) =
∫ 1

0
G(γ,s) f (s,u(s))ds � min

0�t�1

∫ 1

0
G(t,s)h(s)ds � r = ‖u‖.

That is for u ∈ Pγ0 ∩∂Ωr

‖Au‖ � ‖u‖.
So, by Lemma 2.5, BVP (1.1) has at least one positive solution in Pγ0 ∩(Ωrγ0

\Ωr) . �

THEOREM 3.3. Suppose that (H5) , (H6) hold. Then BVP (1.1) has at least one
positive solution.

Proof. Suppose that (H6) holds, similar to the proof of the Theorem 3.1, taking
γ = γ0 = 2α−2

3α−β−2 , we have for u ∈ Pγ0 ∩∂Ων

‖Au‖ � ‖u‖.
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Since condition (H5) holds, there exist ε ∈ (0,M1) and N1 > 0 such that for u � N1

and t ∈ [0,1]
f (t,u) � (M1 − ε)u. (3.5)

If max
0�t�1

f (t,u) is bounded for u ∈ [0,+∞) , that is to say that for all u ∈ [0,+∞) and

t ∈ [0,1]
f (t,u) � L1.

Let ν1 = max{N1,ν, L1
M1

} . For u ∈ Pγ0 ∩∂Ων1 , from the above inequality, we have

(Au)(t) =
∫ t

0
G(t,s) f (s,u(s))ds � L1

∫ t

0
G(γ,s)ds � L1

M1
� ν1 = ‖u‖.

If max
0�t�1

f (t,u) is unbounded for u ∈ [0,+∞) , then there exists ν2 > max{N1,ν} such

that for u ∈ [0,ν2] and t ∈ [0,1]

f (t,u) � max
0�t�1

f (t,ν2). (3.6)

It follows from (3.5) and (3.6) that

(Au)(t) =
∫ 1

0
G(γ,s) f (s,u(s))ds �

∫ 1

0
G(t,s) max

0�t�1
f (t,ν2)ds

� (M1− ε)ν2

∫ 1

0
G(t,s)ds � (M1 − ε)

ν2

M1
� ν2 = ‖u‖.

Thus, we can see that there exists ν � ν such that for u ∈ Pγ0 ∩∂Ων

‖Au‖ � |u‖.
Applying Lemma 2.5, BVP (1.1) has at least one positive solution in Pγ0 ∩ (Ων \
Ων) . �

THEOREM 3.4. Suppose that (H1) and (H3) hold. Then BVP (1.1) has at least
one positive solutions.

THEOREM 3.5. Suppose that (H2) and (H4) hold. Then BVP (1.1) has at least
one positive solutions.

THEOREM 3.6. Suppose that (H1) and (H6) hold. Then BVP (1.1) has at least
one positive solutions.

THEOREM 3.7. Suppose that (H3) and (H5) hold. Then BVP (1.1) has at least
one positive solutions.

THEOREM 3.8. Suppose that (H4) and (H6) hold. Then BVP (1.1) has at least
one positive solutions.

Furthermore, from the Theorems 3.1-3.8, we have the multiplicity results for BVP
(1.1) as follows:
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THEOREM 3.9. Suppose that (H2) , (H3) and (H4) hold. Then BVP (1.1) has at
least two positive solutions.

Proof. Suppose that (H3) and (H4) hold, by Theorem 3.2, we see that BVP (1.1)
has at least one positive solution in Pγ0 ∩ (Ωrγ0

\ Ωr) . Since (H2) and (H4) hold,
according to the proof of Theorem 3.1 and theorem 3.2, we conclude that BVP (1.1)
has at least one positive solution in Pγ0 ∩ (ΩRγ0

\Ωrγ0
) . Hence, BVP (1.1) has at least

two positive solutions in Pγ0 ∩ (ΩRγ0
\Ωrγ0

)∩ (Ωrγ0
\Ωr) . �

THEOREM 3.10. Suppose that (H3) , (H4) and (H5) hold. Then BVP (1.1) has
at least two positive solutions.

THEOREM 3.11. Suppose that (H4) , (H5) and (H6) hold, and γα−1R > r . Then
BVP (1.1) has at least two positive solutions.

THEOREM 3.12. Suppose that (H2) , (H3) , (H4) and (H6) hold, and γα−1R > r .
Then BVP (1.1) has at least three positive solutions.

REMARK 3.1. If we replace the condition (H2) , (H3) with (H ′
2 lim

u→+∞
inf

t∈[γ,1]

f (t,u)
u

= ∞ , (H ′
3 lim

u→0+
inf

t∈[γ,1]

f (t,u)
u = ∞ , then the conclusions of the above theorems 3.2–3.5,

3,7, 3.9–3.10, 3.12 are valid.

REMARK 3.2. We often take γ = γ0 = 2α−2
3α−β−2 to show the effect of the above

theorems in practice.
Finally, we obtain the following two theorems of infinitely many positive solutions

for BVP (1.1).

THEOREM 3.13. Suppose that there exist sequences rn,Rn > 0 such that

0 < r1 < R1 < r2 < R2 < · · · < rn < Rn < · · · ,
and 1

γα−1
0

rn < Rn < rn+1γα1
0 , n = 1,2, . . . satisfy

(H7) f (t,u) > Γ(α)(α−β )
M(α ,β ) Rn for t ∈ [γ0,1] and γα1

0 Rn � u � Rn .

(H8) there exist hn,hn ∈C[0,1] such that

f (t,u) � hn(t), f or t ∈ [0,γ0], 0 � u � rn,

f (t,u) � hn(t), f or t ∈ [γ0,1], γ0rn � u � rn,

and

max
0�t�γ0

∫ 1

0
G(t,s)hn(s)ds+ max

γ0�t�1

∫ 1

0
G(t,s)hn(s)ds � rn,

where γ0 = 2α−2
3α−β−2 . Then BVP (1.1) has innitely many positive solutions.

Proof. Suppose that (H7) holds, from the proof of the above theorems, we have
for u ∈ Pγ0 ∩∂ΩRn

‖Au‖ � |u‖.
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Since (H8) holds, for u ∈ Pγ0 ∩ ∂Ωrn , we have min
γ0�t�1

u(t) � γα−1
0 rn,u(t) � rn . Then

for u ∈ Pγ0 ∩∂Ωrn

(Au)(t) =
∫ 1

0
G(t,s) f (s,u(s))ds =

∫ γ0

0
G(t,s) f (s,u(s))ds+

∫ 1

γ0

G(t,s) f (s,u(s))ds

�
∫ γ0

0
G(t,s)hn(s)ds+

∫ 1

γ0

G(t,s)hn(s)ds

� max
0�t�γ0

∫ γ0

0
G(t,s)hn(s)ds+ max

γ0�t�1

∫ 1

γ0

G(t,s)hn(s)ds � rn = ‖u‖.

Hence, by Lemma 2.5, we see that BVP (1.1) has infinitely many positive solutions. �

THEOREM 3.14. Suppose that there exist sequences rn,Rn > 0 such that

0 < r1 < R1 < r2 < R2 < · · · < rn < Rn < · · · ,

and 1
γα−1
0

rn < Rn < rn+1γα1
0 , n = 1,2, . . . satisfy

(H9) f (t,u) >
Γ(α)(α−β )

M(α ,β ) rn for t ∈ [γ0,1] and γα1
0 rn � u � rn .

(H10) there exist h′n,h
′
n ∈C[0,1] such that

f (t,u) � h′n(t), f or t ∈ [0,γ0], 0 � u � Rn,

f (t,u) � h
′
n(t), f or t ∈ [γ0,1], γ0Rn � u � Rn,

and

max
0�t�γ0

∫ 1

0
G(t,s)h′n(s)ds+ max

γ0�t�1

∫ 1

0
G(t,s)h

′
n(s)ds � Rn,

where γ0 = 2α−2
3α−β−2 . Then BVP (1.1) has infinitely many positive solutions.

EXAMPLE 3.1. Consider the problem⎧⎨
⎩ D

5
2
0+u(t)+u2( 1

2 sin t +1) = 0, 0 < t < 1,

u(0) = u′(0) = D
3
2
0+u(1) = 0.

(3.7)

where α = 5
2 , β = 3

2 , f (t,u) = u2( 1
2 sin t +1) , limsup

u→0+

f (t,u)
u = 0, liminf

u→+∞
f (t,u)

u = ∞ for

t ∈ [0,1] . We see that condition (H1) and condition (H2) hold. Applying Theorem 3.1,
we conclude that BVP (3.7) has at least one solution.

EXAMPLE 3.2. Consider the problem⎧⎨
⎩ D

7
2
0+u(t)+ f (t,u) = 0, 0 < t < 1,

u(0) = u′(0) = u′′(0) = D
5
2
0+u(1) = 0.

(3.8)
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where α = 7
2 , β = 5

2 ,

f (t,u) =

{
t
5 +4u2, (t,u) ∈ [0,1]× [0,1],
t
5 +u2 +u+2, (t,u) ∈ [0,1]× (1,+∞).

Taking γ0 = 5
6 , for t ∈ [ 5

6 ,1] , it is easy to see that (H2) and (H3) hold. Choose R = 1
5 ,

v = 60, we can check that γα−1v > R and (H4) , (H6) hold. By Theorem 3.12, BVP
(3.8) has at least three positive solutions.

EXAMPLE 3.3. Consider the problem

⎧⎨
⎩ D

7
2
0+u(t)+a(t)g(u) = 0, 0 < t < 1,

u(0) = u′(0) = u′′(0) = D
5
2
0+u(1) = 0.

(3.9)

where α = 7
2 , β = 5

2 ,

a(t) =

⎧⎪⎪⎨
⎪⎪⎩

t
300

, t ∈
[
0,

5
6

]
,

719t
60

− 599
60 , t ∈

[
5
6
,1

]
,

g(u)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
6
, u ∈

[
0,8γ

3
2
0

]
,

u
6
, u ∈

[
8nγ

3
2
0 ,8n

]
,

1080γ
3
2
0 −1

6(3γ
3
2
0 −1)

(u−8n)+ 1
6 ×8n, u ∈

[
8n, 3×8nγ

3
2
0

]
,

60u, u ∈
[
3×8nγ

3
2
0 ,3×8n

]
,

540−4γ
3
2
0

3(8γ
3
2
0 −3)

(3×8n−u)+180×8n, u ∈
[
3×8n,×8n+1γ

3
2
0

]
, n = 1,2,3, . . . ,

γ0 = 5
6 , f (t,u) = a(t)g(u) . Set rn = 8n , Rn = 3×8n , n = 1,2, . . . . Then

0 < r1 < R1 < r2 < R2 < · · · < rn < Rn < · · · ,

and 1
γα−1
0

rn < Rn < rn+1γα1
0 , n = 1,2, . . . . It is obvious that (H7) and (H8) hold. Thus

by Theorem 3.13, BVP (3.9) has infinitely many positive solutions.



162 L. PAN

RE F ER EN C ES

[1] S. G. SAMKO, A. A. KILBAS, O. I. MARICHEV, Fractional Integral And Derivatives (Theory and
Applications), Gordon and Breach, Switzerland, 1993.

[2] I. PODLUBNY, Fractional Differential Equations, in: Mathematics in Science and Engineering, vol.
198, Academic Press, New Tork, London, Toronto, 1999.

[3] O. P. AGRAWAL, Formulation of Euler-Lagrange equations for fractional variational problems, J.
Math. Anal. Appl. 272 (2002) 368–379.

[4] A. BABAKHANI, V. D. GEJJI,Existence of positive solutions of nonlinear fractional differential equa-
tions, J. Math. Anal. Appl. 278 (2003) 434–442.

[5] Z. B. BAI, H. S. LU, Positive solutions for boundary value problem of nonlinear fractional differential
equation, J. Math. Anal. Appl. 311 (2005) 495–505.

[6] R. P. AGARWAL, M. BENCHOHRA, S. HAMANI, Boundary value problem for fractional differential
equations, Adv. Stud. Contemp. Math. 16 (2) (2008) 181–196.

[7] A. A. KILBAS, H. M. SRIVASTAVA, J. J. TRUJILLO,Theory and Applications of Fractional Differen-
tial Equations, in: North-Holland Mathematics Studies, vol. 204, Elsevier Science B. V., Amsterdam,
2006.

[8] H. M. SRIVASTAVA, R. K. SAXENA, Operators of fractional integration and their applications, Appl.
Math. Comput. 118 (2001) 1–52.

[9] B. AHMAD, S. SIVASUNDARAM, Existence and uniqueness results for nonlinear boundary value
problems of fractional differential equations with separated boundary conditions, Commun. Appl.
Anal. 13 (2009) 121–228.

[10] H. M. SRIVASTAVA, S. OWA, K. NISHIMOTO, Some fractional differintegral equations, J. Math.
Anal. Appl. 106 (1985) 360–366.

[11] V. LAKSHMIKANTHAM, A. S. VATSALA, General uniqueness and monotone iterative or fractional
differential equations, Appl. Math. Lett. 21 (2008) 828–834.

[12] C. BAI, J. FANG, The existence of a positive solution for a singular coupled system of nonlinear
fractional dierential equations, Appl. Math. Comput. 150 (2004) 611–621.

[13] V. LAKSHMIKANTHAM, A. S. VATSALA, Basic theory of fractional dierential equations, Nonlinear
Anal. TMA. 69 (2008) 2677–2682.

[14] E. KAUFMANN, E. MBOUMI, Positive solutions of a boundary value problem for a nonlinear frac-
tional differential equation, Electron. J. Qual. Theory Differ. Equ. 2008 (2008), No. 3, 1–11.

[15] M. A. KRASNOSELSKII,Positive Solutions of Operator Equations, Groningen, Netherlands, 1964.
[16] D. JIANG, C. YUAN, The properties of the Green function for Dirichlet-type boundary value problem

of a nonlinear fractional differential equations and its application, Nonlinear Anal. 72 (2010) 710–
719.

[17] C. F. LI, X. N. LUO, Y. ZHOU, Existence of positive solution of the boundary value problem for
nonlinear fractional differential equations, Comput and Math Appl. 59 (2010) 1363–1375.

[18] S. H. LIANG, J. H. ZHANG, Positive solutions for boundary value problem of nonlinear fractional
differential equation, Nonlinear Anal. 71 (2009) 5545–5550.

(Received December 7, 2011) Lijun Pan
School of Mathematics, Jia Ying University
Meizhou Guangdong, 514015, P. R. China

e-mail: plj1977@126.com

Fractional Differential Calculus
www.ele-math.com
fdc@ele-math.com


