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ON THE CAUCHY PROBLEM OF A DELAY STOCHASTIC

DIFFERENTIAL EQUATION OF ARBITRARY (FRACTIONAL) ORDERS

A. M. A. EL-SAYED, E. E. ELADDAD AND H. F. A. MADKOUR

Abstract. In this work, we are concerned with the Cauchy problem of a delay stochastic differ-
ential equation of arbitrary (fractional) orders. The existence (local) of a unique mean square
continuous solution is proved. The continuous dependence of the solution on the initial random
variable is studied.

1. Introduction

Let I = [a,b] . Let (Ω,F,P) be a fixed probability space, where Ω is a sample
space, F is a σ -algebra and P is a probability measure.

We denote by L2(Ω) the Banach space of random variables X : Ω → R such that∫
Ω X2 dP < ∞ .

Let X(t;ω) = {X(t), t ∈ I, ω ∈ Ω} be a second order stochastic process, i.e.,
E(X2(t)) < ∞ , t ∈ I .

Let ℜ = ℜ(I,L2(Ω)) be the class of all second order stochastic processes which
are mean square (m.s.) Riemann integrable on I i.e.,∫ b

a
E(X2(t)) dt < ∞

The norm of X ∈ ℜ(I,L2(Ω)) is given by

||X ||2ℜ =
∫ b

a
E(X2(t)) dt

DEFINITION 1. Let X ∈ ℜ(I,L2(Ω)) and β ∈ (0,1] . The stochastic fractional

order integral Iβ
a X is defined by

Iβ
a X(t) =

∫ t

a

(t− s)β−1

Γ(β )
X(s) ds. (1)

For the existence and properties of the integral Iβ
a X we have the following theorem

([4]–[7]).
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THEOREM 1. Let α,β ∈ (0,1) . If X ∈ ℜ(I,L2(Ω)) , then Iβ
a X exists in m.s. sense

as a second order Riemann integrable stochastic process Iβ
a X ∈ ℜ(I,L2(Ω)). Further,

the the following properties hold.

(1) Iβ
a : ℜ(I,L2(Ω)) −→ ℜ(I,L2(Ω))

(2) Iα
a Iβ

a X(t) = Iβ
a Iα

a X(t) = Iα+β
a X(t)

(3) L.i.mβ→1I
β
a X(t) = IaX(t) =

∫ t
a X(s)ds

where L.i.m denote the mean square limit.

Let C = C(I,L2(Ω)) be the space of all second order stochastic processes which
are mean square (m.s.) continuous on I. This space is a Banach space endowed with
the norm

||X ||C = sup
t

‖X(t)‖2, where ‖X(t)‖2 = (E(X2(t)))
1
2 .

DEFINITION 2. Let X ∈C1(I,L2(Ω)) (be a second order stochastic process which
is m.s. differentiable with m.s. continuous derivative). The Caputo fractional derivative
of order α ∈ (0,1] of the process X , denoted by Dα

a X(t) is defined by ([4]–[7])

Dα
a X(t) = I1−α

a
d
dt

X(t) ∈C(I,L2(Ω)). (2)

For the properties of the fractional order stochastic derivative, we have the following
theorem ([4]).

THEOREM 2. Let X ∈C1(I,L2(Ω)) , and α ∈ (0,1] , then

(1) L.i.mα→1Dα
a X(t) = d

dt X(t)

(2) L.i.mα→0Dα
a X(t) = X(t)−X(a)

(3) Iα
a Dα

a X(t) = X(t)−X(a)

(4) Dα
a Iα

a X(t) = X(t) .

For other properties of the fractional order derivative see ([4]).

When a = 0 we denote by Dα and Iβ the operators Dα
a and Iβ

a respectively.
Let α ∈ (0,1] , φ1, φ2 : [0,T ] −→ [0,T ] . Suppose that φ1(t), φ2(t) � t and X0

be a random variable with E(X0)2 < ∞ . Consider the Cauchy problem of the delay
stochastic differential equation of arbitrary (fractional) orders

d
dt

X(t) = f (t,X(φ1(t)),DαX(φ2(t))), t ∈ (0,T ] (3)

X(0) = X0. (4)

The delay fractional order differential equations have studied by some authors (see for
example ([1]), ([3]) and ([9])).

Here we are concerned with the Cauchy problem (3)–(4). The existence of a
unique solution X ∈ C([0,T ],L2(Ω)) of the problem (3)–(4) is proved. The contin-
uous dependence, of this solution, on the initial random variable Xo is studied.
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2. Existence of solution

Consider the Cauchy the problem (3)–(4) under the following assumptions

(i) f : [0,T ]×L2(Ω)×L2(Ω) −→ L2(Ω) is m.s. continuous and satisfies Lipschitz
condition

‖ f (t,X1,Y1)− f (t,X2,Y2)‖2 � k[‖X1−X2‖2 +‖Y1−Y2‖2],

where k is constant

(ii) φ1, φ2 : [0,T ] −→ [0,T ] are continuous real valued functions, φ1(t), φ2(t) � t ,
and φ2 has a bounded derivative such that ‖φ ′

2‖2 � M.

Now, let d
dt X(t) = Y (t) ∈C([0,T ],L2(Ω)) , then we obtain (see [8])

X(t) = X0 +
∫ t

0
Y (s) ds ∈C1([0,T ],L2(Ω)) (5)

and

X(φ1(t)) = X0 +
∫ φ1(t)

0
Y (s) ds

where Y is the solution of the stochastic functional integral equation

Y (t) = f (t,X0 +
∫ φ1(t)

0
Y (s) ds, I1−α φ ′

2Y (φ2(t))). (6)

Hence we have proved the following lemma.

LEMMA 1. Let the assumptions (i)–(ii) be satisfied. The solution of the problem
(3)–(4) can be represented by equation (5) where y is the solution of the stochastic
functional integral equation (6).

THEOREM 3. Let the assumptions (i)–(ii) be satisfied. If

K =
(

kT +
kMT 1−α

Γ(2−α)

)
< 1,

then the stochastic functional integral equation (6) has (locally) a unique solution Y ∈
C([0,T ],L2(Ω)) .

Proof. Define the operator F as the following

FY (t) = f (t,X0 +
∫ φ1(t)

0
Y (s) ds, I1−α φ ′

2Y (φ2(t))).

Now we prove that

F : C([0,T ],L2(Ω)) −→C([0,T ],L2(Ω)).
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For this, let t1, t2 ∈ [0,T ] such that |t2− t1|< δ and Y ∈C([0,T ],L2(Ω)) , then we have

FY (t2)−FY (t1) = f (t2,X0 +
∫ φ1(t2)

0
Y (s) ds, I1−α φ ′

2Y (φ2(t))|t=t2)

− f (t1,X0 +
∫ φ1(t1)

0
Y (s) ds, I1−αφ ′

2Y (φ2(t))|t=t1 )

= f (t2,X0 +
∫ φ1(t2)

0
Y (s) ds, I1−α φ ′

2Y (φ2(t))|t=t2)

− f (t2,X0 +
∫ φ1(t2)

0
Y (s) ds, I1−αφ ′

2Y (φ2(t))|t=t1 )

+ f (t2,X0 +
∫ φ1(t2)

0
Y (s) ds, I1−αφ ′

2Y (φ2(t))|t=t1 )

− f (t1,X0 +
∫ φ1(t1)

0
Y (s) ds, I1−αφ ′

2Y (φ2(t))|t=t1 )

= ( f (t2,X0 +
∫ φ1(t2)

0
Y (s) ds, I1−α φ ′

2Y (φ2(t))|t=t2 )

− f (t2,X0 +
∫ φ1(t2)

0
Y (s) ds, I1−αφ ′

2Y (φ2(t))|t=t1 ))

+( f (t2,X0 +
∫ φ1(t2)

0
Y (s) ds, I1−α φ ′

2Y (φ2(t))|t=t1)

− f (t2,X0 +
∫ φ1(t1)

0
Y (s) ds, I1−αφ ′

2Y (φ2(t))|t=t1 )

+ f (t2,X0 +
∫ φ1(t1)

0
Y (s) ds, I1−αφ ′

2Y (φ2(t))|t=t1 )

− f (t1,X0 +
∫ φ1(t1)

0
Y (s) ds, I1−αφ ′

2Y (φ2(t))|t=t1 )).

Then

‖FY (t2)−FY (t1)‖2 � ‖ f (t2,X0 +
∫ φ1(t2)

0
Y (s) ds, I1−αφ ′

2Y (φ2(t))|t=t2)

− f (t2,X0 +
∫ φ1(t2)

0
Y (s) ds, I1−αφ ′

2Y (φ2(t))|t=t1))‖2

+‖ f (t2,X0 +
∫ φ1(t2)

0
Y (s) ds, I1−αφ ′

2Y (φ2(t))|t=t1 )

− f (t2,X0 +
∫ φ1(t1)

0
Y (s) ds, I1−α φ ′

2Y (φ2(t))|t=t1 )‖2

+‖ f (t2,X0 +
∫ φ1(t1)

0
Y (s) ds, I1−αφ ′

2Y (φ2(t))|t=t1 )

− f (t1,X0 +
∫ φ1(t1)

0
Y (s) ds, I1−α φ ′

2Y (φ2(t))|t=t1 )‖2
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� k‖I1−αφ ′
2Y (φ2(t))|t=t2 − I1−αφ ′

2Y (φ2(t))|t=t1‖2

+k‖X0 +
∫ φ1(t2)

0
Y (s) ds−X0−

∫ φ1(t1)

0
Y (s) ds‖2

+‖ f (t2,X0 +
∫ φ1(t1)

0
Y (s) ds, I1−α φ ′

2Y (φ2(t))|t=t1)

− f (t1,X0 +
∫ φ1(t1)

0
Y (s) ds, I1−αφ ′

2Y (φ2(t))|t=t1)‖2

� kM||Y ||C|
∫ t2

0

(t2 − s)−α

Γ(1−α)
ds−

∫ t1

0

(t1− s)−α

Γ(1−α)
ds|

+k‖
∫ φ1(t1)

0
Y (s) ds+

∫ φ1(t2)

φ1(t1)
Y (s) ds−

∫ φ1(t1)

0
Y (s) ds‖2

+‖ f (t2,X0 +
∫ φ1(t1)

0
Y (s) ds, I1−α φ ′

2Y (φ2(t))|t=t1)

− f (t1,X0 +
∫ φ1(t1)

0
Y (s) ds, I1−αφ ′

2Y (φ2(t))|t=t1)‖2

� kM||Y ||C
(

t1−α
2

Γ(2−α)
− t1−α

1

Γ(2−α)

)
+ kM(φ1(t2)−φ1(t1))

+‖ f (t2,X0 +
∫ φ1(t1)

0
Y (s) ds, I1−α φ ′

2Y (φ2(t))|t=t1)

− f (t1,X0 +
∫ φ1(t1)

0
Y (s) ds, I1−αφ ′

2Y (φ2(t))|t=t1)‖2.

This proves that F : C([0,T ],L2(Ω)) −→C([0,T ],L2(Ω)).
Secondly, we prove that F is contraction.
For this, let X , Y ∈C([0,T ],L2(Ω)) , then we have

‖FY (t)−FX(t)‖2

� ‖ f (t,X0 +
∫ φ1(t)

0
Y (s) ds, I1−α φ ′

2(t)Y (φ2(t)))

− f (t,X0 +
∫ φ1(t)

0
X(s) ds, I1−α φ ′

2(t)X(φ2(t)))‖2

� k‖X0 +
∫ φ1(t)

0
Y (s) ds−X0−

∫ φ1(t)

0
X(s) ds‖2

+k‖I1−αφ ′
2(t)Y (φ2(t))− I1−αφ ′

2(t)X(φ2(t))‖2

� k‖
∫ φ1(t)

0
Y (s) ds−

∫ φ1(t)

0
X(s) ds‖2 +‖I1−αφ ′

2(t)(Y (φ2(t))−X(φ2(t)))‖2

� k‖
∫ φ1(t)

0
(Y (s)−X(s)) ds‖2 + k | I1−αφ ′

2(t) | ‖(Y (φ2(t))−X(φ2(t)))‖C

� kφ1(t)‖Y −X‖C + k
∣∣∣ t1−α

Γ(2−α)

∣∣∣M‖Y −X‖C
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� kT‖Y −X‖C +
kMT 1−α

Γ(2−α)
‖Y −X‖C

�
(

kT +
kMT 1−α

Γ(2−α)

)
‖Y −X‖C

� K‖Y −X‖C.

Hence
‖FY −FX‖C � K‖Y −X‖C.

Since K = (kT + kMT 1−α

Γ(2−α) ) < 1 (by assumption), F is contraction operator. By the

Banach fixed point theorem [2], there exists a unique solution Y ∈C([0,T ],L2(Ω)) of
the integral equation (6). �

Now from Lemma 1 and Theorem 3 we can prove the following corollary.

COROLLARY 1. Let the assumptions of Theorem 3 be satisfied. Then the problem
(3)–(4) has (locally) a unique solution X ∈C([0,T ],L2(Ω)).

3. Continuous dependence

DEFINITION 3. The solution of the problem (3)–(4) is said to depend continu-
ously on the initial random variable X0 if ∀ε > 0, ∃δ (ε) > 0 s.t. ‖X0 − X̃0‖2 � δ
implies that ‖X − X̃‖C � ε .

THEOREM 4. Let the assumptions of Theorem 3 be satisfied, then the solution of
the initial value problem (3)–(4) depends continuously on the initial random variable.

Proof. Let ε > 0 be given. Choose δ = δ (ε) such that

‖X0− X̃0‖2 � δ ,

then we have

‖Y (t)− Ỹ(t)‖2

� ‖ f (t,X0+
∫ φ1(t)

0
Y (s)ds, I1−α φ ′

2Y (φ2(t)))− f (t, X̃0+
∫ φ1(t)

0
Ỹ (s)ds, I1−α φ ′

2Ỹ (φ2(t)))‖2

� k[‖X0+
∫ φ1(t)

0
Y (s) ds−X̃0−

∫ φ1(t)

0
Ỹ (s) ds‖2+‖I1−α φ ′

2Y (φ2(t))−I1−α φ ′
2Ỹ (φ2(t))‖2]

� k[‖X0−X̃0‖2+
∫ φ1(t)

0
‖Y (s)−Ỹ (s)‖2 ds+ | t1−α

Γ(2−α)
| ‖φ ′

2(t)‖2‖Y (φ2(t))−Ỹ (φ2(t))‖2]

� k[‖X0− X̃0‖2 + φ1(t)‖Y − Ỹ‖C +
MT 1−α

Γ(2−α)
‖Y − Ỹ‖C]

� k[‖X0− X̃0‖2 +T‖Y − Ỹ‖C +
MT 1−α

Γ(2−α)
‖Y − Ỹ‖C],
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then
(1−K)‖Y − Ỹ‖C � k‖X0− X̃0‖2

and

‖Y − Ỹ‖C � k
1−K

‖X0− X̃0‖2.

Now

‖X(t)− X̃(t)‖2 � ‖X0− X̃0‖2 + t‖Y − Ỹ‖C

� ‖X0− X̃0‖2 +T‖Y − Ỹ‖C

� ‖X0− X̃0‖2 +
Tk

1−K
‖X0− X̃0‖2

�
(

1+
Tk

1−K

)
‖X0− X̃0‖2

� δ
(

1+
Tk

1−K

)
� ε

such that ε = δ (1+ Tk
1−K ) .

Hence the solution of the problem (3)–(4) depends continuously on the initial ran-
dom variable X0 for t ∈ [0,T ] . �

4. Examples

Here, as an application of our results, we give the following two examples.

EXAMPLE 1. Let β1, β2 ∈ (0,1] . As φ1 and φ2 , one can tack, for example
φ1(t) = β1t and φ2(t) = β2t .

Let the assumptions of Theorem 3 be satisfied. Then the problem

d
dt

X(t) = f (t,X(β1t),DαX(β2t)), t ∈ (0,T ] (7)

X(0) = X0. (8)

has (locally) a unique solution X ∈ C([0,T ],L2(Ω)) . This solution depends continu-
ously on the initial random variable X0 for t ∈ [0,T ] .

EXAMPLE 2. Let γ1, γ2 � 1. As φ1 and φ2 , one can tack, for example φ1(t) = tγ1

and φ2(t) = tγ2 .
Let the assumptions of Theorem 3 be satisfied. Then the problem

d
dt

X(t) = f (t,X(tγ1),DαX(tγ2)), t ∈ (0,1] (9)

X(0) = X0. (10)

has (locally) a unique solution X ∈ C([0,1],L2(Ω)) . This solution depends continu-
ously on the initial random variable X0 for t ∈ [0,1] .
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