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ON THE CAUCHY PROBLEM OF A DELAY STOCHASTIC
DIFFERENTIAL EQUATION OF ARBITRARY (FRACTIONAL) ORDERS

A. M. A. EL-SAYED, E. E. ELADDAD AND H. F. A. MADKOUR

Abstract. In this work, we are concerned with the Cauchy problem of a delay stochastic differ-
ential equation of arbitrary (fractional) orders. The existence (local) of a unique mean square
continuous solution is proved. The continuous dependence of the solution on the initial random
variable is studied.

1. Introduction

Let I = [a,b]. Let (Q,F,P) be a fixed probability space, where Q is a sample
space, F' is a o-algebra and P is a probability measure.

We denote by L(€2) the Banach space of random variables X : Q — R such that
JoX?dP < oo.

Let X(r;w) = {X(¢), t €I, o € Q} be a second order stochastic process, i.e.,
E(X?(t)) <eo,t€l.

Let R = R(I,L,(2)) be the class of all second order stochastic processes which
are mean square (m.s.) Riemann integrable on I i.e.,

/bE(Xz(t)) di < oo

The norm of X € R(I,L,(Q)) is given by

b
I = [ B )

DEFINITION 1. Let X € R(I,L,(Q)) and B € (0,1]. The stochastic fractional
order integral If X is defined by

1 (p—g)B-1
IfX(t):/u %X(s) ds. (1)

For the existence and properties of the integral If X we have the following theorem
([41-L7D).
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THEOREM 1. Let o, € (0,1). If X € R(I,L2(Q)), then 1PX exists inm.s. sense

as a second order Riemann integrable stochastic process Px e R(I,Lr(Q)). Further,
the the following properties hold.

(1) 1P R(U1L(Q) — R, L (Q))

(2) 110x(0) = 119X (1) = 1P x (1)

(3) Limg (IPX(1) = LX(1) = [!X(s)ds
where L.i.m denote the mean square limit.

Let C = C(I,L,(Q)) be the space of all second order stochastic processes which
are mean square (m.s.) continuous on /. This space is a Banach space endowed with
the norm

=

[1X[lc = sup [X(t)[l2, where [[X(1)[2= (E(X*(1)))>.

DEFINITION 2. Let X € C'(I,L,(Q)) (be a second order stochastic process which
is m.s. differentiable with m.s. continuous derivative). The Caputo fractional derivative
of order o € (0, 1] of the process X, denoted by DX (¢) is defined by ([4]-[7])

DEX(1) =17 S X(1) € C(1,L> (@), @
For the properties of the fractional order stochastic derivative, we have the following
theorem ([4]).
THEOREM 2. Let X € C'(I,1,(Q)), and o € (0, 1], then
(1) Limg . DIX(t) = 4X(r)
(2) Limg .oDPX (1) =X(1)—X(a)
(3) 1gDgX(t) =X (1) — X(a)
(4) DGIZX () =X (1).
For other properties of the fractional order derivative see ([4]).
When a = 0 we denote by D* and I the operators D% and If respectively.
Let o € (0,1], ¢1, ¢ :[0,7] — [0,T]. Suppose that ¢;(z), ¢.(z) <t and Xo

be a random variable with E(Xo)? < . Consider the Cauchy problem of the delay
stochastic differential equation of arbitrary (fractional) orders

d

2 X0 =1, X(41(1)), DX (92(1))), 1€(0,T] 3)

X(0) = Xo. 4)

The delay fractional order differential equations have studied by some authors (see for
example ([1]), ([3]) and ([9])).

Here we are concerned with the Cauchy problem (3)—(4). The existence of a
unique solution X € C([0,T],L,(Q)) of the problem (3)-(4) is proved. The contin-
uous dependence, of this solution, on the initial random variable X, is studied.
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2. Existence of solution

Consider the Cauchy the problem (3)—(4) under the following assumptions

(i) f:]0,T] x Lp(Q) x Lp(Q) — Lp(Q) is m.s. continuous and satisfies Lipschitz
condition

|l f(t, X1, Y1) — f(2,X2,12) |2 < K[| X1 — X224 ||Y1 — Y2 |2],
where k is constant

(il) ¢1, ¢ :[0,T] — [0,T] are continuous real valued functions, ¢(r), ¢ (r) <t,
and ¢, has a bounded derivative such that ||¢}]|> < M.

Now, let £X(1) =Y (r) € C([0,T],L>(RQ)), then we obtain (see [8])

X(1) =x0+/oty(s) ds € C\([0,7],»(Q)) 5)

and 00
xwm»=%+A

where Y is the solution of the stochastic functional integral equation

Y (i z%+/ (s) ds, ' 95¥ (6a(1)))- ©)

Hence we have proved the following lemma.

LEMMA 1. Let the assumptions (i)—(ii) be satisfied. The solution of the problem
(3)—(4) can be represented by equation (5) where y is the solution of the stochastic
functional integral equation (6).

THEOREM 3. Let the assumptions (i)—(ii) be satisfied. If

K= kT + kM <1
B r2—a) ’

then the stochastic functional integral equation (6) has (locally) a unique solution Y €

Proof. Define the operator F as the following

FY( th+/ (s) ds,I'~“@5¥ (9a(t)))

Now we prove that

F: C([0,T], L2(Q)) — C(0,T], L()).
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For this, let #1,, € [0, T] such that |r, — ;] < 6 and Y € C([0,T],L2(L)), then we have

1 (t2)
FY () —FY (1) = f(tz,Xo+/ Y(s) ds, I'"“03Y (92(1)) =1,

tl,Xo-l-/
=f t2,X0+/
t2,X0+/
t2,X0+/
tl,Xo-l-/
= t2,X0+/

s) ds, I'"*$3Y ($2(t)) =1, )
s) ds, 1'% 03Y ($2(t))]i=1,)
s) ds, I'“93Y (9a(t))l1=1,)
ds, 1" 93Y (¢2(1))lr=1,)
s) ds, I'"*®3Y ($2(t)) =1, )

s) ds, 1" 03 (92(1)) 1=1,)

Ko+ / "y s)ds, 14 (020))

t2,X0—|-/

t2,X0—|-/
12,X0+/
ll,Xo+/

Then

IFY (1) = FY (11) |2 < || £ (12, X0 + /

l‘2,Xo+/

+II£( 12,X0+/

t2,X0—|-/

+|£( l27X0+/

ll,Xo+/

s) ds, 1'% @5Y (¢2(t))]1=r,)
s) ds, I'"“ QY ($2(t))]i=,)
s) ds, I" "% Q3Y (¢2(t)) 1=, )

s) ds, I'""03Y (92(t))|i=1, ))-

Y(s) ds, I'"%93Y (92(1))|1=1,)
s) ds, 1'% 03Y (92(1)) 1=, ))II2
s) ds, I'" %037 ($2(t))|1=1,)
s) ds,I'"" 0¥ (62(1)) =1, )2
s) ds, I'"*$3Y ($2(t)) =1, )

s) ds,I'"" 63 (62(1)li=1,) 2
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ST G3Y (02(1)) =ty — 1"~ B3Y (62(1))li=1, |12
01(2) o1(t1)
+k||x0+/ Y(s) ds—Xo—/O Y (s) ds|»

Hf (2 Xo+ / $) ds, 193 (¢2(1)) i)
o [ v s, 10 (020l
< km|l¥ic| / P [
¢1(22) o1 (1)
||/ st [ v0) ds—/o Y(s) dsl»
Hf (2 Xo+ / $) ds, 193 (¢2(1)) 1)
FlonXo+ / $) ds, 163 (62(0) i) 2
—a 1-a
(2, %o+ / $) ds. 1" 63 (02(1)) =1
Ko+ [ v6)ds, 1Y (9200

This proves that F : C([0,T],L2(Q)) — C([0,T],L>(Q)).
Secondly, we prove that F' is contraction.
For this, let X, Y € C([0,T],L,(Q)), then we have

IFY() -~ POl
<o [ v as 1oy o)

£t Xo + / ) ds. "} (0X (02(0)]2
<kHX0+/ 5) ds — Xo—/od)l(I)X(s) ds||

LSO (620) - 1S OX )
()
<kl ["vis)as- / X () dsla+ |1 g3(0) (¥ (82(6)) ~ X ($2(1))) 2

< kH/ ) dslla+k [ 1795 () | (Y (92(1)) = X (92(1))lc

<kpu ()Y - X||c+k\r—)M||Y X|le
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kMT!'—©
re-oa)
kMT!—*
KT+ —— ) lY =X
< (T+ fggs ) 17 =Xl
<K[[Y —X|lc.

SAT|Y =Xlle+ 1Y =X

Hence
|FY — FX|lc <K[Y ~X|lc

Since K = (kT + ’}Ag O()) < 1 (by assumption), F is contraction operator. By the
Banach fixed point theorem [2], there exists a unique solution Y € C([0,T],L,(Q2)) of

the integral equation (6). [
Now from Lemma 1 and Theorem 3 we can prove the following corollary.

COROLLARY 1. Let the assumptions of Theorem 3 be satisfied. Then the problem
(3)—(4) has (locally) a unique solution X € C([0,T],L,(Q)).

3. Continuous dependence

DEFINITION 3. The solution of the problem (3)—(4) is said to depend continu-
ously on the initial random variable Xy if Ve >0, 35 (¢) > 0 s.t. [[Xo—Xo2 < 6
implies that || X — X||¢ < €.

THEOREM 4. Let the assumptions of Theorem 3 be satisfied, then the solution of
the initial value problem (3)—(4) depends continuously on the initial random variable.

Proof. Let € > 0 be given. Choose 8§ = § (&) such that

%= Kol < 8
then we have
0O -70lk
\V:&+/ (s)ds. " $3¥ (4 (1) t&ﬁ/ (s)ds, 1" “B7 (2(1)) |2
<kl [ (s s Ko (AjNUEQS)dSH2+-11a¢£Y(¢20))—11a¢é?(¢20)ﬂb]

1

ro—a) 1950 1211Y (62(1)) =Y (62(1)) 2]

wmﬁ%m+4 1¥(5)=F(5) 2 ds+ | 77—

. . MTI o
< K[| Xo—Xol2+ 1 (0)||Y =Y |lc+ 7\\1/ Y||c]
r2-o)
. _ MTI o
k[[|[Xo—Xol2+T||Y = Y|lc+ 1Y =Y,

T2—a)
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then
(1= K)[lY =Y |lc < k|| Xo— Xol2
and
Y =Yl < —HXo—Xon
Now
I1X(£) =X (t)|l2 < || Xo — Xoll2 +1[|Y = Y|
< X0 —Xoll2+T[Y =Yl

. Tk _
< X0 = Xoll2 + 37— %o — Xoll2

Tk
< (14105 ) 10~ Tala

Tk
<6 1+——
such that & = §(1+ £&).

Hence the solution of the problem (3)—(4) depends continuously on the initial ran-
dom variable X, forz € [0,7]. O

N

€

4. Examples

Here, as an application of our results, we give the following two examples.

EXAMPLE 1. Let B, B, € (0,1]. As ¢; and ¢,, one can tack, for example

¢1(t) = it and ¢a2(t) = Pot.
Let the assumptions of Theorem 3 be satisfied. Then the problem
d
EX(I):f(taX(ﬁlt>7DaX(ﬁ2t>)7 IE(OaT] (7)
X(0) = Xp. (8)
has (locally) a unique solution X € C([0,T],L,(€2)). This solution depends continu-
ously on the initial random variable X, for ¢ € [0,7].

EXAMPLE 2. Let 1, 95 > 1. As ¢; and ¢,, one can tack, for example ¢; (r) ="

and ¢ (1) =1".
Let the assumptions of Theorem 3 be satisfied. Then the problem
d
EX(I):f(t7X(tyl)vDaX(tyz))a IE(O,I] (9)

X(0) = Xo. (10)
has (locally) a unique solution X € C([0,1],L,(€2)). This solution depends continu-
ously on the initial random variable Xy for ¢ € [0,1].
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