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GLOBAL EXISTENCE AND UNIQUENESS FOR IMPLICIT

DIFFERENTIAL EQUATION OF ARBITRARY ORDER

SAGAR T. SUTAR AND KISHOR D. KUCCHE

Abstract. The aim of this paper is to establish the existence result for implicit differential equa-
tion of fractional (arbitrary) order via topological transversality theorem known as Leray-Schauder
alternative. Further we prove the uniqueness results. The Grownwall’s lemma for singular ker-
nels play an important role to prove our results. We verify our results by providing an example.

1. Introduction

It is well known that behavior of many physical systems can be properly described
by using the various forms of fractional differential and hence the theory of fractional
differential has a great importance. Detail basic theory of fractional calculus, fractional
differential equations and its applications, can found in the monographs [5, 9, 12, 15].
We mention few papers [1, 2, 6, 10, 11] in which the interesting theory results of frac-
tional differential equations has been investigated.

Recently, in papers [4, 13] the existence, uniqueness and other properties of so-
lutions for implicit fractional differential equations with initial conditions have been
established by using the technique of fixed point theorems and approximated methods.

Inspired by the works of [4, 13] here we study the existence and uniqueness of
solution of initial value problem for implicit differential equation of fractional order
with Caputo fractional derivative given in the form:

cDαx(t) = f (t,x(t),c Dαx(t)), t ∈ [0,b], b > 0, n−1 < α � n, (1.1)

xk(0) = xk ∈ R
n, k = 0,1, · · · ,n−1, (1.2)

where f : [0,b]×R
n×R

n → R
n is a nonlinear continuous function, x : [0,b]→ R

n and
cDα denotes the Caputo fractional derivative of order α .

The initial value problem (1.1)–(1.2) and their special forms have been studied
[3, 4, 13] by using different approaches.

The method which we have used here gives existence as well as the maximal in-
terval of existence. Further, the uniqueness result is obtained with the same assumption
of existence result.

We organize this paper as follows: Preliminaries, the basic definitions of fractional
calculus, and the theorems which are required in this paper are given in Section 2. In
Section 3, we establish existence and uniqueness theorems for problem (1.1)–(1.2). We
present an example to illustrate the theorem in Section 3.
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2. Preliminaries

Let R
n is an Euclidean n -space with the norm ‖·‖ and denote by B =C([0,b],Rn)

– the Banach space of all continuous functions from [0,b] into Rn with the suprimum
norm ‖x‖B = sup{‖x(t)‖ : t ∈ [0,b]} .

Let C[a,b] denotes the space of all continuous functions defined over [a,b] and
Cn[a,b] be the set of all real valued functions on [a,b] having nth order continuous
derivatives.

Here we give some basic definitions and the results [5, 9, 12, 15] which are re-
quired throughout this paper.

DEFINITION 2.1. Let f ∈ C[0,b] and α > 0 then Riemann-Liouville fractional
integral of order α of a function f is defined as

Iα f (t) =
1

Γ(α)

∫ t

0
(t − s)α−1 f (s)ds,

provided the integral exists. Note that, I0 f (t) = f (t) .

DEFINITION 2.2. For a function f ∈Cn[0,b] , the Caputo derivative of order α is
defined as

cDα f (t) =
1

Γ(n−α)

∫ t

0
(t − s)n−α−1 f (n)(s)ds, n−1 < α � n.

LEMMA 2.3. Let f ∈Cn[0,b] , and α > 0 , then

Iα [cDα f (t)] = f (t)−
n−1

∑
k=0

f k(0)
Γ(k+1)

tk, n−1 < α � n.

LEMMA 2.4. Let f (t) = tβ , where β � 0 and let n−1 < α � n, n ∈ N , then

cDα f (t) =

{
0 if β ∈ {0,1, · · · ,n−1}

Γ(1+β )
Γ(1+β−α)t

β−α if β ∈ N, β � n or β /∈ N, β > n−1.

LEMMA 2.5. [8] Suppose δ � 0 , α > 0 and a(t) is a nonnegative function lo-
cally integrable on 0 � t < T (some T � ∞) , and suppose u(t) is nonnegative and
locally integrable on 0 � t < T with

u(t) � a(t)+ δ
∫ t

0
(t− s)α−1u(s)ds

on this interval; then

u(t) � a(t)+ θ
∫ t

0
E ′

α(θ (t− s))a(s)ds, 0 � t < T,
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where θ = (δΓ(α))
1
α , Eα(z) = ∑∞

n=0
znα

Γ(nα+1) , E ′
α(z) =

d
dz

Eα(z) , E ′
α(z) � zα−1

Γ(α) as

z→ 0+ , E ′
α(z)� 1

α ez as z→+∞ (and Eα(z)� 1
α ez as z→∞+ ). If a(t)≡ a, constant,

then u(t) � aEα(θ t) .

DEFINITION 2.6. If f ∈C([0,b]×R
n×R

n,Rn) , then x ∈ B given by

x(t) =
n−1

∑
k=0

xk

Γ(k+1)
tk +

1
Γ(α)

∫ t

0
(t− s)α−1 f (s,x(s),c Dαx(s))ds, t ∈ [0,b],

is the solution of implicit fractional differential equation (1.1)–(1.2).

To prove the existence result, we use the topological transversality theorem known as
Leray-Schauder alternative given below.

LEMMA 2.7. ([7]) Let S be a convex subset of a normed linear space E and
assume that 0 ∈ S . Let F : S → S be a completely continuous operator, and let

ε(F) = {x ∈ S : x = λFx, 0 < λ < 1}.
Then either ε(F) is unbounded or F has a fixed point in S .

Study of integer order differential equations via topological transversality can be
found in [14] and the references therein.

3. Existence and uniqueness of solution

THEOREM 3.1. (Existence) Let f : [0,b]×R
n×R

n → R
n be a continuous func-

tion that satisfies the conditions:

(H1) ‖ f (t,x,y)‖ � p(t)‖x‖+ L‖y‖ , t ∈ [0,b] and x,y ∈ R
n , where p(t) : [0,b] →

(0,∞) is continuous function and 0 < L < 1 .

(H2) There exist constants M > 0 , 0 < N < 1 such that

‖ f (t,x,y)− f (t, x, y)‖ � M‖x− x‖+N‖y− y‖, t ∈ [0,b], x, x,y, y ∈ R
n.

Then the initial-value problem for implicit fractional differential equation (1.1)–(1.2)
has at least one solution on [0,b] .

Proof. Firstly we establish the priori bounds on the solutions of implicit fractional
differential equation of the form:

cDαx(t) = λ f (t,x(t),c Dαx(t)), t ∈ [0,b], b > 0, n−1 < α � n, (3.1)

xk(0) = xk ∈ R
n, k = 0,1, · · · ,n−1, (3.2)

for λ ∈ (0,1) .
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Let x(t) be the solution of (3.1)–(3.2) then it is equivalent to integral equation

x(t) =
n−1

∑
k=0

xk

Γ(k+1)
tk +

λ
Γ(α)

∫ t

0
(t− s)α−1 f (s,x(s),c Dαx(s))ds.

Then for any t ∈ [0,b] we have

‖x(t)‖ �
n−1

∑
k=0

‖xk‖
Γ(k+1)

tk +
1

Γ(α)

∫ t

0
(t− s)α−1‖ f (s,x(s),c Dαx(s))‖ds

�
n−1

∑
k=0

‖xk‖
Γ(k+1)

tk +
1

Γ(α)

∫ t

0
(t− s)α−1 (p(s)‖x(s)‖+L‖cDαx(s)‖)ds (3.3)

From (3.1) and the hypothesis (H1) for any t ∈ [0,b] we have,

‖cDαx(t)‖ � p(t)‖x(t)‖+L‖cDαx(t)‖,

and hence ‖cDαx(t)‖ � p(t)
1−L‖x(t)‖. Thus for any t ∈ [0,b] , (3.3) gives

‖x(t)‖ �
n−1

∑
k=0

‖xk‖
Γ(k+1)

tk +
1

Γ(α)

∫ t

0
(t− s)α−1

(
p(s)‖x(s)‖+

Lp(s)
1−L

‖x(s)‖
)

ds

�
n−1

∑
k=0

‖xk‖
Γ(k+1)

bk +
1

Γ(α)

∫ t

0
(t− s)α−1 p(s)

1−L
‖x(s)‖ds

As p(t) : [0,b]→ (0,∞) is continuous on compact set [0,b] there exist constant P such
that p(t) � P < ∞ , t ∈ [0,b]. Therefore,

‖x(t)‖ �
n−1

∑
k=0

‖xk‖
Γ(k+1)

bk +
P

(1−L)Γ(α)

∫ t

0
(t− s)α−1‖x(s)‖ds. t ∈ [0,b].

By an application of Lemma 2.5, with a(t) = ∑n−1
k=0

‖xk‖
Γ(k+1)b

k , a constant, and δ =
P

(1−L)Γ(α) , we obtain

‖x(t)‖ �
n−1

∑
k=0

‖xk‖
Γ(k+1)

bk Eα

([
P

(1−L)Γ(α)
Γ(α)

] 1
α

t

)

=
n−1

∑
k=0

‖xk‖
Γ(k+1)

bk Eα

([
P

1−L

] 1
α

t

)
� ξ , t ∈ [0,b],

where ξ is some nonnegative constant. Therefore ‖x‖B � ξ . This proves the solution
of (3.1)–(3.2) is bounded.

Now let y ∈ B and define

x(t) =
k=n−1

∑
k=0

xk

Γ(k+1)
tk + y(t), t ∈ [0,b].
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Then y(t) satisfies

y(t) =
1

Γ(α)

∫ t

0
(t − s)α−1 f

(
s,

n−1

∑
k=0

xk

Γ(k+1)
sk +y(s), cDα

(
n−1

∑
k=0

xk

Γ(k+1)
sk +y(s)

))
ds

=
1

Γ(α)

∫ t

0
(t − s)α−1 f

(
s,

n−1

∑
k=0

xk

Γ(k+1)
sk +y(s), cDαy(s)

)
ds

if and only if x(t) satisfies

x(t) =
n−1

∑
k=0

xk

Γ(k+1)
tk +

1
Γ(α)

∫ t

0
(t − s)α−1 f (s,x(s),c Dαx(s))ds, t ∈ [0,b]

Denote B0 = {y ∈ B : y(k)(0) = 0, k = 0,1, ...,n−1} then clearly B0 is a convex subset
of the space B and 0 ∈ B0 . Define an operator F : B0 → B0 by:

(Fy)(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f

(
s,

n−1

∑
k=0

xk

Γ(k+1)
sk +y(s), cDαy(s)

)
ds.

Let yn → y in B0 . Then using (H2) for any t ∈ [0,b] we have

‖(Fyn)(t)− (Fy)(t)‖ � 1
Γ(α)

∫ t

0
(t − s)α−1

∥∥∥∥∥ f

(
s,

n−1

∑
k=0

xk

Γ(k+1)
sk + yn(s), cDαyn(s)

)

− f

(
s,

n−1

∑
k=0

xk

Γ(k+1)
sk + y(s), cDαy(s)

)∥∥∥∥∥ds

� 1
Γ(α)

∫ t

0
(t − s)α−1 (M‖(yn− y)(s)‖+N‖cDα(yn− y)(s)‖)ds.

But (H1) gives

‖cDα(yn− y)(t)‖ � p(t)
1−L

‖(yn− y)(t)‖, t ∈ [0,b].

Therefore

‖(Fyn)(t)− (Fy)(t)‖ � 1
Γ(α)

∫ t

0
(t− s)α−1

(
M‖(yn − y)(s)‖+

Np(s)
1−L

‖(yn− y)(s)‖
)

ds

�M(1−L)+NP
(1−L)Γ(α)

∫ t

0
(t− s)α−1‖(yn− y)(s)‖ds

�(M(1−L)+NP)bα

(1−L)Γ(α +1)
‖yn− y‖B, t ∈ [0,b].

It follows that

‖Fyn−Fy‖B �(M(1−L)+NP)bα

(1−L)Γ(α +1)
‖yn− y‖B,
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Thus Fyn → Fy in B0 whenever yn → y in B0 . This proves F is continuous on B0 .
Next, we show that F is completely continuous. Let {un} be a bounded sequence

in B0 .Then there exists a constant K > 0 such that ‖un‖ � K ∀n .
Using the definition of F and the hypothesis (H1) , for any t ∈ [0,b] , we obtain

‖(Fun)(t)‖ � 1
Γ(α)

∫ t

0
(t− s)α−1

∥∥∥∥∥ f

(
s,

n−1

∑
k=0

xk

Γ(k+1)
sk +un(s), cDαun(s)

)∥∥∥∥∥ds

� 1
Γ(α)

∫ t

0
(t− s)α−1

{
p(s)

(
n−1

∑
k=0

‖xk‖
Γ(k+1)

bk +‖un(s)‖
)

+L‖cDαun(s)‖)
}

ds

� 1
Γ(α)

∫ t

0
(t− s)α−1

{
p(s)

(
n−1

∑
k=0

‖xk‖
Γ(k+1)

bk +‖un(s)‖
)

+
Lp(s)
1−L

‖un(s)‖
}

ds

� 1
Γ(α)

∫ t

0
(t− s)α−1

{
P

n−1

∑
k=0

‖xk‖
Γ(k+1)

bk +
PK

1−L

}
ds

� bα

Γ(α +1)

{
P

n−1

∑
k=0

‖xk‖
Γ(k+1)

bk +
PK

1−L

}
.

This proves the set {(Fun)(t) : ‖un‖B � K, 0 � t � b} is uniformly bounded in R
n.

Next aim is to show that the sequence {Fun} is equicontinuous. Let any t1,t2
∈ [0,b] . By definition of F , assumption (H1) and letting 0 � t1 � t2 � b , we have

‖(Fun)(t1)− (Fun)(t2)‖

� 1
Γ(α)

∥∥∥∥∥
∫ t1

0
(t1− s)α−1 f

(
s,

n−1

∑
k=0

xk

Γ(k+1)
sk +un(s), cDαun(s)

)
ds

−
∫ t2

0
(t2− s)α−1 f

(
s,

n−1

∑
k=0

xk

Γ(k+1)
sk +un(s), cDαun(s)

)
ds

∥∥∥∥∥
� 1

Γ(α)

∥∥∥∥∥
∫ t1

0
[(t1− s)α−1 − (t2 − s)α−1] f

(
s,

n−1

∑
k=0

xk

Γ(k+1)
sk +un(s), cDαun(s)

)
ds

−
∫ t2

t1
(t2− s)α−1 f

(
s,

n−1

∑
k=0

xk

Γ(k+1)
sk +un(s), cDαun(s)

)
ds

∥∥∥∥∥
� 1

Γ(α)

∫ t1

0
[(t1− s)α−1− (t2 − s)α−1]

∥∥∥∥∥ f

(
s,

n−1

∑
k=0

xk

Γ(k+1)
sk +un(s), cDαun(s)

)∥∥∥∥∥ds

+
1

Γ(α)

∫ t2

t1
(t2− s)α−1

∥∥∥∥∥ f

(
s,

n−1

∑
k=0

xk

Γ(k+1)
sk +un(s), cDαun(s)

)∥∥∥∥∥ds. (3.4)

Noting that,∥∥∥∥∥ f

(
s,

n−1

∑
k=0

xk

Γ(k+1)
sk +un(s), cDαun(s)

)∥∥∥∥∥ �
{

P
n−1

∑
k=0

‖xk‖
Γ(k+1)

bk +
PM
1−L

}
,

from the inequality (3.4) we obtain

‖(Fun)(t1)− (Fun)(t2)‖ � 1
Γ(α +1)

{
P

n−1

∑
k=0

‖xk‖
Γ(k+1)

bk +
PM
1−L

}
[tα

1 − tα
2 +2(t2 − t1)α ]
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� 2
Γ(α +1)

{
P

n−1

∑
k=0

‖xk‖
Γ(k+1)

bk +
PM
1−L

}
(t2 − t1)α . (3.5)

From the inequality 3.5 we conclude that {Fun} is equicontinuous family and hence
by Arzela-Ascoli argument the operator F is completely continuous.

Finally we see that the set ε(F) = {y ∈ B0 : y = λFy, 0 < λ < 1} is bounded in
B, since for any y ∈ ε(F) , the function

x(t) =
n−1

∑
k=0

tk

Γ(k+1)
xk + y(t), t ∈ [0,b],

is a solution of (3.1)–(3.2) for which we have shown that ‖x‖B � ξ and hence ‖y‖B �
ξ + ∑n−1

k=0
bk

Γ(k+1)‖xk‖ .
Therefore by Lemma 2.7, the operator F has a fixed point ỹ ∈ B0 . Then

x̃(t) =
n−1

∑
k=0

tk

Γ(k+1)
xk + ỹ(t), t ∈ [0,b],

is the solution of (1.1)–(1.2). This completes the proof. �
REMARK 3.1. Note that an application of the topological transversality theorem

(Leray-Schauder alternative) does not guarantee an uniqueness of the solution. With
the same assumption of Theorem 3.1 we have following uniqueness theorem.

THEOREM 3.2. (Uniqueness) Let f : [0,b]×R
n×R

n →R
n satisfies the assump-

tions (H1) and (H2). Then the initial-value problem for implicit fractional differential
equation (1.1)–(1.2) has a unique solution.

Proof. Let x1(t) and x2(t) be any two solution of (1.1)–(1.2) then by using (H2)
for any t ∈ [0,b] we have

‖x1(t)− x2(t)‖ �
∫ t

0
(t− s)α−1 (‖ f (s,x1(s),c Dαx1(s))‖−‖ f (s,x2(s),c Dαx2(s))‖)ds

� 1
Γ(α)

∫ t

0
(t− s)α−1 (M‖(x1− x2)(s)‖+N‖cDα(x1 − x2)(s)‖)ds.

By (H1) for any t ∈ [0,b] ,

‖cDα(x1− x2)(t)‖ � p(t)
1−L

‖(x1− x2)(t)‖.

Hence for any t ∈ [0,b] we have

‖(x1− x2)(t)‖ � 1
Γ(α)

∫ t

0
(t − s)α−1

(
M‖(x1 − x2)(s)‖+

Np(s)
1−L

‖(x1− x2)(s)‖
)

ds

� M(1−L)+NP
Γ(α)(1−L)

∫ t

0
(t− s)α−1‖(x1− x2)(s)‖ds.
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Using Lemma 2.5 and noting that a(t) = 0 for above inequality , we obtain

‖(x1− x2)(t)‖ = 0, ∀t ∈ [0,b].

This proves uniqueness of solutions of (1.1)–(1.2). �

4. Example

In this section, we give an example to illustrate the results.

EXAMPLE. Consider the implicit fractional differential equation

cD
5
2 x(t) =

et

et +5
x(t)+

1
2

sin(‖cD
5
2 x(t)‖), t ∈ [0,b], 0 < b < ∞. (4.1)

Define f : [0,b]×R
n×R

n → R
n is given by

f
(
t,x(t),c D

5
2 x(t)

)
=

et

et +5
x(t)+

1
2

sin(‖cD
5
2 x(t)‖), t ∈ [0,b]

Then ∥∥∥ f
(
t,x(t),c D

5
2 x(t)

)∥∥∥� et

et +5
‖x(t)‖+

1
2

∣∣∣sin(‖cD
5
2 x(t)‖)

∣∣∣
� et

et +5
‖x(t)‖+

1
2
‖cD

5
2 x(t)‖.

We see that p(t) = et

et+5 : [0,b] → (0,∞) is a continuous function and L = 1
2 .

Further, noting that |sinu−sinv|= ∣∣2cos
(

u+v
2

)
sin
(

u−v
2

)∣∣� |u−v| , for any u,v∈
R, we have∥∥∥ f

(
t,x(t),c D

5
2 x(t)

)
− f

(
t, x(t),c D

5
2 x(t)

)∥∥∥
� et

et +5
‖x(t)− x(t)‖+

1
2

∣∣∣sin(‖cD
5
2 x(t)‖− sin(‖cD

5
2 x(t)‖)

∣∣∣
� et

et +5
‖x(t)− x(t)‖+

1
2

∣∣∣‖cD
5
2 x(t)‖−‖cD

5
2 x(t)‖

∣∣∣
� M‖x(t)− x(t)‖+

1
2

∥∥∥cD
5
2 x(t)− cD

5
2 x(t)

∥∥∥ ,

where M > 0 is a constant such that
∣∣∣ et

et+5

∣∣∣� M , t ∈ [0,b] .
Since all the assumptions of Theorems 3.1 and 3.2 are satisfied the initial value

problem (4.1) has unique solution on [0,b] for any 0 < b < ∞ .
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