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Abstract. In this paper, we establish the criteria for the existence and uniqueness of solutions
of a three-point boundary value problem for a class of fractional differential equations on time
scales. By using some well known fixed point theorems, sufficient conditions for the existence
of solutions are established. An illustrative example is also presented.

1. Introduction

Fractional calculus is a generalization of ordinary differentiation and integration
to arbitrary (noninteger) order. Fractional differential equations arise in many engineer-
ing and scientific disciplines as the mathematical models of systems and processes in
the fields of physics, chemistry, aerodynamics, electrodynamics of complex medium,
polymer rheology, [18, 23, 24, 25]. Among all the researches on the theory of the
fractional differential equations, the study of the boundary value problems for frac-
tional differential equations recently has attracted a great deal of attention from many
researchers. Some results have been obtained on the existence of positive solutions
of the boundary value problems for some specific fractional differential equations (see
[11, 17, 20, 22, 27, 28, 31, 32] and references therein).

Miller and Ross [21] has been done a pioneering work in discrete fractional cal-
culus. Particularly, Atici and Eloe [5, 7, 8, 9] contributed to the improvement of the
discrete fractional calculus. The existence problems of discrete fractional difference
equations have been investigated by a several authors (see [1, 7, 8, 14, 15, 16] and refer-
ences therein). Then, to unify the fractional differential equations with both continuous
and discrete forms, fractional calculus on time scales was used, see [3, 4, 6, 10, 29].
Some basic definitions and theorems on time scales can be found in the books [12, 13],
which are excellent references for calculus of time scales.

Recently, existence problems of initial value problems for fractional differential
equations on time scales has been studied by a few authors [2, 30, 33]. However, to the
best of our knowledge, there exists no literature devoted to three-point boundary value
problems of fractional differential equations on time scales. Boundary value problems
are an important class of dynamic equations, because of their striking applications to
almost all area of science, engineering and technology. By researching boundary value
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problems of fractional differential equations on time scales, the results unify the the-
ory of fractional differential and fractional difference equations (and removes obscurity
from both areas) and provide accurate information of phenomena that manifest them-
selves partly in continuous time and partly in discrete time.

We shall consider the following nonlinear three-point boundary value problem
with delta Riemann-Liouville fractional derivative on time scales of order α −1:

{
Δα−1

a∗ x(t) = f (t,x(t)), t ∈ J := [a,b]∩T, 2 < α < 3
x(a) = xΔ(b) = 0, xΔ(a) = xΔ(c),

(1)

where T is any time scale, c ∈ (a,b)∩T , f ∈C ([a,b]×R,R) and Δα−1
a∗ denotes the

delta fractional derivative on time scale T of order α −1 which will be defined later.

2. Preliminaries

To state the main results of this paper, we will give some definitions of delta
Riemann-Liouville type fractional integral and delta fractional derivative on time scales
and auxiliary lemmas which are needed later.

Let us consider the rd-continuous functions hα : T×T → R , α � 0, such that

hα+1(t,s) =
t∫

s

hα(τ,s)Δτ, h0(t,s) = 1 ∀s,t ∈ T, (2)

where T is a time scale such that T
k = T . Also, we suppose

t∫
σ(u)

hα−1(t,σ(τ))hβ−1(τ,σ(u))Δτ = hα+β−1(t,σ(u)), α,β > 1, u < t, u, t ∈ T,

(3)
where σ is the forward jump operator.

If T = R , then σ(t) = t and hk(t,s) = (t−s)k
k! , ∀k ∈ N0 = N∪{0} and we define

hα(t,s) =
(t − s)α

Γ(α +1)
, α > 0

which satisfies the properties in (2) and (3) (see [3]).

If T = Z , then σ(t) = t + 1 and hk(t,s) = (t−s)(k)
k! , ∀k ∈ N0 , where t(0) = 1,

t(k) =
k−1
∏
i=0

(t− i) . We define

hα(t,s) =
(t− s)(α)

Γ(α +1)
, α > 0

where t(α) = Γ(t+1)
Γ(t−α+1) which satisfies the properties in (2) and (3) (see [3]).
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DEFINITION 1. [3] For α � 1, a time scale delta Riemann-Liouville type frac-
tional integral is defined by

Kα
a f (t) =

t∫
a

hα−1(t,σ(τ)) f (τ)Δτ, K0
a f = f ,

where f ∈ L1([a,b]∩T) and t ∈ [a,b]∩T .

If α = 1, then we have K1
a f (t) =

t∫
a

f (τ)Δτ .

DEFINITION 2. [3] For α � 2, m−1 < α � m ∈ N , i.e., m = �α� (ceiling of the
number) and v = m−α , the Δ− fractional derivative on time scale T of order α −1
is defined by

Δα−1
a∗ f (t) = (Kv+1

a f Δm
)(t) =

t∫
a

hv(t,σ(τ)) f Δm
(τ)Δτ, ∀t ∈ [a,b]∩T,

where f ∈Cm
rd([a,b]∩T) and f Δm

is a Lebesgue Δ-integrable function.

If we take α = m , then we have Δα−1
a∗ f (t) = (K1

a f Δm
)(t) = f Δm−1

.

LEMMA 1. [3] Let α > 2 , m−1 < α < m∈N , v = m−α , f ∈Cm
rd(T) , a,b∈T ,

T
k = T . Suppose hα−2(s,σ(t)) , hv(s,σ(t)) to be continuous on ([a,b]∩T)2 . Then,

we have

Kα−1
a Δα−1

a∗ f (t) = f (t)+E( f Δm
,α −1,v+1,T,t)−

m−1

∑
k=0

hk(t,a) f Δk
(a),

where E( f Δm
,α−1,v+1,T,t)=

t∫
a

f Δm
(u)μ(u)hα−2(t,σ(u))hv(u,σ(u))Δu and μ(t)=

σ(t)− t .

LEMMA 2. Assume that 2 < α < 3 , β = 3−α , x ∈C3
rd(T) , g ∈Crd ([a,b]∩T) ,

a,b ∈ T , a < b and T
k = T , hα−1(t,σ(s)) is continuous on J× J . Then, a function

x ∈C3
rd(T) is a solution of the boundary value problem

{
Δα−1

a∗ x(t) = g(t), t ∈ [a,b]∩T, 2 < α < 3
x(a) = xΔ(b) = 0, xΔ(a) = xΔ(c),

(4)
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if and only if x is a solution of the following integral equation

x(t) =
t∫

a

hα−2 (t,σ(τ))
(
g(τ)− xΔ3

(τ)μ(τ)hβ (τ,σ(τ))
)

Δτ

+
(t−a)(b−a)−h2(t,a)

c−a

c∫
a

hΔ
α−2 (c,σ(τ))

(
g(τ)− xΔ3

(τ)μ(τ)hβ (τ,σ(τ))
)

Δτ

−(t−a)
b∫

a

hΔ
α−2 (b,σ(τ))

(
g(τ)− xΔ3

(τ)μ(τ)hβ (τ,σ(τ))
)

Δτ. (5)

Proof. Let x be a solution of the BVP (4). By Lemma 1, we have

Kα−1
a g(t) = Kα−1

a Δα−1
a∗ x(t)

= x(t)+
t∫

a

xΔ3
(τ)μ(τ)hα−2(t,σ(τ))hβ (τ,σ(τ))Δτ −

2

∑
k=0

hk(t,a)xΔk
(a).

Then, we get

x(t) =
t∫

a

hα−2(t,σ(τ))g(τ)Δτ −
t∫

a

hα−2(t,σ(τ))xΔ3
(τ)μ(τ)hβ (τ,σ(τ))Δτ

+x(a)+h1(t,a)xΔ(a)+h2(t,a)xΔ2
(a) (6)

and using the differentiation formula [12, Theorem 1.117], we find

xΔ(t) =
t∫

a

hΔ
α−2(t,σ(τ))

(
g(τ)− xΔ3

(τ)μ(τ)hβ (τ,σ(τ))
)

Δτ + xΔ(a)+ (t−a)xΔ2
(a).

From xΔ(a) = xΔ(c) , we have

xΔ2
(a) = − 1

c−a

c∫
a

hΔ
α−2(c,σ(τ))

(
g(τ)− xΔ3

(τ)μ(τ)hβ (τ,σ(τ))
)

Δτ.

From xΔ(b) = 0, we get

xΔ(a) =
b−a
c−a

c∫
a

hΔ
α−2(c,σ(τ))

(
g(τ)− xΔ3

(τ)μ(τ)hβ (τ,σ(τ))
)

Δτ

−
b∫

a

hΔ
α−2(b,σ(τ))

(
g(τ)− xΔ3

(τ)μ(τ)hβ (τ,σ(τ))
)

Δτ.
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Thus, we obtain (5) by using (6).
The converse of the lemma follows by a direct computation. This completes the

proof. �

C3
rd(T) is a Banach space with the norm ‖x‖ = max

t∈J
|x(t)|+max

t∈J
|xΔ3

(t)| . The so-

lutions of the BVP (1) are the fixed points of the operator A :C3
rd(T) →C3

rd(T) defined
by

Ax(t) =
t∫

a

hα−2 (t,σ(τ))
(

f (τ,x(τ))− xΔ3
(τ)μ(τ)hβ (τ,σ(τ))

)
Δτ

+
(t−a)(b−a)−h2(t,a)

c−a

×
c∫

a

hΔ
α−2 (c,σ(τ))

(
f (τ,x(τ))−xΔ3

(τ)μ(τ)hβ (τ,σ(τ))
)

Δτ

−(t−a)
b∫

a

hΔ
α−2 (b,σ(τ))

(
f (τ,x(τ))− xΔ3

(τ)μ(τ)hβ (τ,σ(τ))
)

Δτ. (7)

For the sake of convenience, we set

M = max
t∈J

( t∫
a

|hα−2(t,σ(τ))|Δτ +
|(t −a)(b−a)−h2(t,a)|

c−a

c∫
a

|hΔ
α−2 (c,σ(τ)) |Δτ

+(t−a)
b∫

a

|hΔ
α−2 (b,σ(τ)) |Δτ

)
+max

t∈J

t∫
a

|hΔ3

α−2(t,σ(τ))|Δτ (8)

and

N = max
t∈J

( t∫
a

|hα−2(t,σ(τ))μ(τ)hβ (τ,σ(τ))|Δτ

+
|(t−a)(b−a)−h2(t,a)|

c−a

c∫
a

|hΔ
α−2 (c,σ(τ))μ(τ)hβ (τ,σ(τ))|Δτ

+(t−a)
b∫

a

|hΔ
α−2 (b,σ(τ))μ(τ)hβ (τ,σ(τ))|Δτ

)

+max
t∈J

t∫
a

|hΔ3

α−2(t,σ(τ))μ(τ)hβ (τ,σ(τ))|Δτ. (9)
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LEMMA 3. Assume the following two conditions hold:
(H1) | f (t,x)| � φ(t)ψ(|x|) for all t ∈ J , x ∈ C3

rd(T), where φ : J → [0,∞) and
ψ : [0,∞) → [0,∞) are continuous and nondecreasing.

(H2) The functions hα−2(t,σ(τ)) , hΔ3

α−2(t,σ(τ)) , h2(t,a) and μ(t)hβ (t,σ(t))
are continuous for t ∈ J and τ ∈ J .

Then, the operator A : C3
rd(T) →C3

rd(T) is completely continuous.

Proof. We divide the proof into two steps.

Step 1. We show that A is continuous. Let (xn) be a sequence such that xn → x ∈
C3

rd(T) . Then, we obtain that

|(Axn)(t)− (Ax)(t)|

�
t∫

a

|hα−2(t,σ(τ))| | f (τ,xn(τ))− f (τ,x(τ))|Δτ

+
t∫

a

∣∣hα−2(t,σ(τ))μ(τ)hβ (τ,σ(τ))
∣∣ ∣∣∣xΔ3

n (τ)− xΔ3
(τ)

∣∣∣Δτ

+
|(t−a)(b−a)−h2(t,a)|

c−a

c∫
a

|hΔ
α−2 (c,σ(τ)) | | f (τ,xn(τ))− f (τ,x(τ))|Δτ

+
|(t−a)(b−a)−h2(t,a)|

c−a

c∫
a

|hΔ
α−2 (c,σ(τ))μ(τ)hβ (τ,σ(τ))|

∣∣∣xΔ3

n (τ)− xΔ3
(τ)

∣∣∣Δτ

+(t−a)
b∫

a

|hΔ
α−2 (b,σ(τ)) | | f (τ,xn(τ))− f (τ,x(τ))|Δτ

+(t−a)
b∫

a

|hΔ
α−2 (b,σ(τ))μ(τ)hβ (τ,σ(τ))|

∣∣∣xΔ3

n (τ)− xΔ3
(τ)

∣∣∣Δτ

and

∣∣∣(Axn)Δ3
(t)− (Ax)Δ3

(t)
∣∣∣ �

t∫
a

∣∣∣hΔ3

α−2(t,σ(τ))
∣∣∣ | f (τ,xn(τ))− f (τ,x(τ))|Δτ

+
t∫

a

∣∣∣hΔ3

α−2(t,σ(τ))μ(τ)hβ (τ,σ(τ))
∣∣∣ ∣∣∣xΔ3

n (τ)− xΔ3
(τ)

∣∣∣Δτ.

From f ∈C ([a,b]×R,R), (H2) and ‖xn− x‖ → 0 as n → ∞ , it follows that ‖Axn −
Ax‖→ 0 as n → ∞. Hence, A is continuous.
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Step 2. We show that the image of any bounded subset Ω of C3
rd(T) under A is

relatively compact in C3
rd(T) . For each x ∈ Ω =

{
x ∈C3

rd(T) : ‖x‖ � r
}

, we obtain

|(Ax)(t)| �
t∫

a

|hα−2(t,σ(τ))| | f (τ,x(τ))|Δτ

+
t∫

a

∣∣hα−2(t,σ(τ))μ(τ)hβ (τ,σ(τ))
∣∣ ∣∣∣xΔ3

(τ)
∣∣∣Δτ

+
|(t−a)(b−a)−h2(t,a)|

c−a

c∫
a

|hΔ
α−2 (c,σ(τ)) | | f (τ,x(τ))|Δτ

+
|(t−a)(b−a)−h2(t,a)|

c−a

c∫
a

|hΔ
α−2

(
c,σ(τ)μ(τ)hβ (τ,σ(τ))

∣∣ ∣∣∣xΔ3
(τ)

∣∣∣Δτ

+(t−a)
b∫

a

|hΔ
α−2 (b,σ(τ)) | | f (τ,x(τ))|Δτ

+(t−a)
b∫

a

|hΔ
α−2

(
b,σ(τ)μ(τ)hβ (τ,σ(τ))

∣∣ ∣∣∣xΔ3
(τ)

∣∣∣Δτ

� φ(b)ψ(r)
t∫

a

|hα−2(t,σ(τ))|Δτ +‖x‖
t∫

a

∣∣hα−2(t,σ(τ))μ(τ)hβ (τ,σ(τ))
∣∣Δτ

+φ(b)ψ(r)
|(t −a)(b−a)−h2(t,a)|

c−a

c∫
a

|hΔ
α−2 (c,σ(τ)) |Δτ

+‖x‖ |(t−a)(b−a)−h2(t,a)|
c−a

c∫
a

|hΔ
α−2 (c,σ(τ)) μ(τ)hβ (τ,σ(τ))|Δτ

+φ(b)ψ(r)(t −a)
b∫

a

|hΔ
α−2 (b,σ(τ)) |Δτ

+‖x‖ |(t−a)(b−a)−h2(t,a)|
c−a

b∫
a

|hΔ
α−2 (b,σ(τ))μ(τ)hβ (τ,σ(τ))|Δτ

and

∣∣∣(Ax)Δ3
(t)

∣∣∣ �
t∫

a

∣∣∣hΔ3

α−2(t,σ(τ))
∣∣∣ | f (τ,x(τ))|Δτ

+
t∫

a

∣∣∣hΔ3

α−2(t,σ(τ))μ(τ)hβ (τ,σ(τ))
∣∣∣ ∣∣∣xΔ3

(τ))
∣∣∣Δτ
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� φ(b)ψ(r)
t∫

a

∣∣∣hΔ3

α−2(t,σ(τ))
∣∣∣Δτ

+‖x‖
t∫

a

∣∣∣hΔ3

α−2(t,σ(τ))μ(τ)hβ (τ,σ(τ))
∣∣∣Δτ.

Therefore,

‖Ax‖ � φ(b)ψ(r)M +‖x‖N (10)

� φ(b)ψ(r)M + rN,

that is AΩ is a bounded set.
Now we show that AΩ is equicontinuous on J . For each t1,t2 ∈ J , without loss

of generality we may assume that t1 < t2 , and for all x ∈ Ω one can see that

|Ax(t2)−Ax(t1)|

�
∣∣∣∣

t2∫
a

hα−2(t2,σ(τ))
(

f (τ,x(τ))− xΔ3
(τ)μ(τ)hβ (τ,σ(τ))

)
Δτ

−
t1∫

a

hα−2(t1,σ(τ))
(

f (τ,x(τ))− xΔ3
(τ)μ(τ)hβ (τ,σ(τ))

)
Δτ

∣∣∣∣
+

∣∣∣∣ (t2−a)(b−a)−h2(t2,a)
c−a

c∫
a

hΔ
α−2 (c,σ(τ))

(
f (τ,x(τ))−xΔ3

(τ)μ(τ)hβ (τ,σ(τ))
)

Δτ

−(t1−a)(b−a)−h2(t1,a)
c−a

c∫
a

hΔ
α−2 (c,σ(τ))

(
f (τ,x(τ))−xΔ3

(τ)μ(τ)hβ (τ,σ(τ))
)

Δτ
∣∣∣∣

+
∣∣∣∣(t2−a)

b∫
a

hΔ
α−2 (b,σ(τ))

(
f (τ,x(τ))− xΔ3

(τ)μ(τ)hβ (τ,σ(τ))
)

Δτ

−(t1−a)
b∫

a

hΔ
α−2 (b,σ(τ))

(
f (τ,x(τ))− xΔ3

(τ)μ(τ)hβ (τ,σ(τ))
)

Δτ
∣∣∣∣

�
t1∫

a

|hα−2(t2,σ(τ))−hα−2(t1,σ(τ))|
∣∣∣ f (τ,x(τ))− xΔ3

(τ)μ(τ)hβ (τ,σ(τ))
∣∣∣Δτ

+
t2∫

t1

|hα−2(t2,σ(τ))|
∣∣∣ f (τ,x(τ))− xΔ3

(τ)μ(τ)hβ (τ,σ(τ))
∣∣∣Δτ

+
|t2− t1|(b−a)+ |h2(t2,a)−h2(t1,a)|

c−a

c∫
a

hΔ
α−2 (c,σ(τ))
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×
(

f (τ,x(τ))− xΔ3
(τ)μ(τ)hβ (τ,σ(τ))

)
Δτ

+(t2− t1)
b∫

a

∣∣∣hΔ
α−2 (b,σ(τ))

(
f (τ,x(τ))− xΔ3

(τ)μ(τ)hβ (τ,σ(τ))
)∣∣∣Δτ

→ 0 (t1 → t2)

and ∣∣∣(Ax)Δ3
(t2)− (Ax)Δ3

(t1)
∣∣∣

�
∣∣∣∣

t2∫
a

hΔ3

α−2(t2,σ(τ))
(

f (τ,x(τ))− xΔ3
(τ)μ(τ)hβ (τ,σ(τ))

)
Δτ

−
t1∫

a

hΔ3

α−2(t1,σ(τ))
(

f (τ,x(τ))− xΔ3
(τ)μ(τ)hβ (τ,σ(τ))

)
Δτ

∣∣∣∣
�

t1∫
a

∣∣∣hΔ3

α−2(t2,σ(τ))−hΔ3

α−2(t1,σ(τ))
∣∣∣ ∣∣∣ f (τ,x(τ))− xΔ3

(τ)μ(τ)hβ (τ,σ(τ))
∣∣∣Δτ

+
t2∫

t1

∣∣∣hΔ3

α−2(t2,σ(τ))
∣∣∣ ∣∣∣ f (τ,x(τ))− xΔ3

(τ)μ(τ)hβ (τ,σ(τ))
∣∣∣Δτ

→ 0 (t1 → t2)

by using (H2) . It yields that AΩ is equicontinuous in C3
rd(T) .

As a consequence of this steps, we obtain that A is completely continuous opera-
tor. �

3. Existence and uniqueness of solutions

In this section, we will use the following well-known contractionmapping theorem
named also as the Banach fixed point theorem: Let B be a Banach space and S a
nonempty closed subset of B . Assume A : S → S is a contraction, i.e., there is a λ
(0 < λ < 1) such that ‖Ax−Ay‖ � λ‖x− y‖ for all x , y in S . Then A has a unique
fixed point in S .

THEOREM 1. Suppose that (H2) holds. Also, we assume that
(H3) Let the function f (t,x) satisfy the following Lipschitz condition: there is a

constant L > 0 such that

| f (t,x)− f (t,y)| � L|x− y| for each t ∈ J, (11)

for all x and y in C3
rd(T) . Moreover, LM +N < 1 , where M and N are defined in (8)

and (9), respectively.
Then, the BVP (1) has a unique solution in C3

rd(T) .
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Proof. For x,y ∈C3
rd(T) and t ∈ J , we have

|(Ax)(t)− (Ay)(t)|

�
t∫

a

|hα−2(t,σ(τ))| |( f (τ,x(τ))− f (τ,y(τ)))|Δτ

+
t∫

a

∣∣hα−2(t,σ(τ))μ(τ)hβ (τ,σ(τ))
∣∣ ∣∣∣(xΔ3

(τ)− yΔ3
(τ)

)∣∣∣Δτ

+
|(t−a)(b−a)−h2(t,a)|

c−a

c∫
a

|hΔ
α−2 (c,σ(τ)) | | f (τ,x(τ))− f (τ,y(τ))|Δτ

+
|(t−a)(b−a)−h2(t,a)|

c−a

c∫
a

|hΔ
α−2 (c,σ(τ)) μ(τ)hβ (τ,σ(τ))|

∣∣∣xΔ3
(τ)− yΔ3

(τ)
∣∣∣Δτ

+(t−a)
b∫

a

|hΔ
α−2 (b,σ(τ)) | | f (τ,x(τ))− f (τ,y(τ))|Δτ

+(t−a)
b∫

a

|hΔ
α−2 (b,σ(τ))μ(τ)hβ (τ,σ(τ))|

∣∣∣xΔ3
(τ)− yΔ3

(τ)
∣∣∣Δτ

� L‖x− y‖
t∫

a

|hα−2(t,σ(τ))|Δτ

+‖x− y‖
t∫

a

∣∣hα−2(t,σ(τ))μ(τ)hβ (τ,σ(τ))
∣∣Δτ

+L‖x− y‖ |(t−a)(b−a)−h2(t,a)|
c−a

c∫
a

|hΔ
α−2 (c,σ(τ)) |Δτ

+‖x− y‖ |(t−a)(b−a)−h2(t,a)|
c−a

c∫
a

|hΔ
α−2 (c,σ(τ))μ(τ)hβ (τ,σ(τ))|Δτ

+L‖x− y‖(t−a)
b∫

a

|hΔ
α−2 (b,σ(τ)) |Δτ

+‖x− y‖(t−a)
b∫

a

|hΔ
α−2 (b,σ(τ))μ(τ)hβ (τ,σ(τ))|Δτ

and
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∣∣∣(Ax)Δ3
(t)− (Ay)Δ3

(t)
∣∣∣ �

t∫
a

∣∣∣hΔ3

α−2(t,σ(τ))( f (τ,x(τ))− f (τ,y(τ)))
∣∣∣Δτ

+
t∫

a

∣∣∣hΔ3

α−2(t,σ(τ))μ(τ)hβ (τ,σ(τ))
(
xΔ3

(τ)− yΔ3
(τ)

)∣∣∣Δτ

� L

t∫
a

∣∣∣hΔ3

α−2(t,σ(τ))
∣∣∣ |x(τ)− y(τ)|Δτ

+
t∫

a

∣∣∣hΔ3

α−2(t,σ(τ))μ(τ)hβ (τ,σ(τ))
∣∣∣ ∣∣∣xΔ3

(τ)− yΔ3
(τ)

∣∣∣Δτ

� L‖x− y‖
t∫

a

∣∣∣hΔ3

α−2(t,σ(τ))
∣∣∣Δτ

+‖x− y‖
t∫

a

∣∣∣hΔ3

α−2(t,σ(τ))μ(τ)hβ (τ,σ(τ))
∣∣∣Δτ.

Then, we obtain

‖Ax−Ay‖ = max
t∈J

|(Ax)(t)− (Ay)(t)|+max
t∈J

∣∣∣(Ax)Δ3
(t)− (Ay)Δ3

(t)
∣∣∣

� (LM +N)‖x− y‖
= λ‖x− y‖,

where λ = LM + N ∈ (0,1) . Hence, A is a contraction mapping and the theorem is
proved. �

In the next theorem, the function f (t,x) satisfies a Lipschitz condition on a subset
of C3

rd(T) .

THEOREM 2. Suppose that (H2) holds. Besides, we assume that
(H4) Let there a number r > 0 such that

| f (t,x)− f (t,y)| � L|x− y| for each t ∈ J, (12)

for all x and y in S = {x ∈ C3
rd(T) : ‖x‖ � r} , where L > 0 is a constant which may

depend on r . Moreover, LM + N < 1 , where M and N are defined in (8) and (9),
respectively.

(H5) lim
x→0

f (t,x)
x = 0 .

Then, the BVP (1) has a unique solution x∈C3
rd(T) with max

t∈J
|x(t)|+max

t∈J
|xΔ3

(t)|�
r .
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Proof. Since lim
x→0

f (t,x)
x = 0 from (H5) , there exists a constant r > 0 such that

| f (t,x)| � δ |x| for 0 < |x| � r , where δ > 0 is a constant satisfying δM + N � 1.
Let us take S = {x ∈ C3

rd(T) : ‖x‖ � r} . Obviously, S is a closed subset of C3
rd(T) .

Let A : C3
rd(T) → C3

rd(T) be the operator defined by (7). For x and y in S , taking
into account (H4) , in exactly the same way in the proof of Theorem 1 we can get
‖Ax−Ay‖� λ‖x− y‖ , where 0 < λ < 1.

It remains to show that A maps S into itself. If x ∈ S , then we obtain

|(Ax)(t)| �
t∫

a

|hα−2(t,σ(τ))| | f (τ,x(τ))|Δτ

+
t∫

a

∣∣hα−2(t,σ(τ))μ(τ)hβ (τ,σ(τ))
∣∣ ∣∣∣xΔ3

(τ)
∣∣∣Δτ

+
|(t−a)(b−a)−h2(t,a)|

c−a

c∫
a

|hΔ
α−2 (c,σ(τ)) | | f (τ,x(τ))|Δτ

+
|(t−a)(b−a)−h2(t,a)|

c−a

c∫
a

|hΔ
α−2

(
c,σ(τ)μ(τ)hβ (τ,σ(τ))

∣∣ ∣∣∣xΔ3
(τ)

∣∣∣Δτ

+(t−a)
b∫

a

|hΔ
α−2 (b,σ(τ)) | | f (τ,x(τ))|Δτ

+(t−a)
b∫

a

|hΔ
α−2

(
b,σ(τ)μ(τ)hβ (τ,σ(τ))

∣∣ ∣∣∣xΔ3
(τ)

∣∣∣Δτ

� δ r

t∫
a

|hα−2(t,σ(τ))|Δτ + r

t∫
a

∣∣hα−2(t,σ(τ))μ(τ)hβ (τ,σ(τ))
∣∣Δτ

+δ r
|(t −a)(b−a)−h2(t,a)|

c−a

c∫
a

|hΔ
α−2 (c,σ(τ)) |Δτ

+r
|(t−a)(b−a)−h2(t,a)|

c−a

c∫
a

|hΔ
α−2 (c,σ(τ)) μ(τ)hβ (τ,σ(τ))|Δτ

+δ r(t −a)
b∫

a

|hΔ
α−2 (b,σ(τ)) |Δτ

+r
|(t−a)(b−a)−h2(t,a)|

c−a

b∫
a

|hΔ
α−2 (b,σ(τ))μ(τ)hβ (τ,σ(τ))|Δτ

and
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|(Ax)Δ3
(t)| �

t∫
a

∣∣∣hΔ3

α−2(t,σ(τ))
∣∣∣ | f (τ,x(τ))|Δτ

+
t∫

a

∣∣∣hΔ3

α−2(t,σ(τ))μ(τ)hβ (τ,σ(τ))
∣∣∣ ∣∣∣xΔ3

(τ))
∣∣∣Δτ

� δ r

⎛
⎝ t∫

a

∣∣∣hΔ3

α−2(t,σ(τ))
∣∣∣Δτ

⎞
⎠

+r

⎛
⎝ t∫

a

∣∣∣hΔ3

α−2(t,σ(τ))μ(τ)hβ (τ,σ(τ))
∣∣∣Δτ

⎞
⎠ .

Since ‖Ax‖ = max
t∈J

|(Ax)(t)|+max
t∈J

|(Ax)Δ3
(t)| � δ rM + rN � r , we have A : S → S .

From the contraction mapping theorem, the BVP (1) has a unique solution in
C3

rd(T) . �

4. Existence of solutions

THEOREM 3. [19, 26] Let E be a Banach space. Assume that A : E → E is com-
pletely continuous operator and the set V = {u ∈ E : u = λAu,0 < λ < 1} is bounded.
Then A has a fixed point in E.

THEOREM 4. If the conditions (H1) and (H2) satisfy, then the BVP (1) has at
least one solution in C3

rd(T) .

Proof. From Lemma 3, A : C3
rd(T) → C3

rd(T) is completely continuous operator.
Now, we will show that the set V =

{
x ∈C3

rd(T) : x = λAx for some 0 < λ < 1
}

is
bounded. For all x ∈V , we get

‖x‖ = ‖λAx‖
� λ φ(b)ψ(r)M + λ‖x‖N

by using (10). Then we obtain ‖x‖ � λ φ(b)ψ(r)M
1−λN . From Theorem 3, the BVP (1) has at

least one solution in C3
rd(T) . �

THEOREM 5. [19, 26] Let E be a Banach space. Assume that Ω is an open
bounded subset of E with θ ∈Ω and let A : Ω→E be a completely continuous operator
such that

‖Au‖ � ‖u‖ ∀x ∈ ∂Ω, (13)

then A has a fixed point in Ω .
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THEOREM 6. If the conditions (H2) and (H5) satisfy, then the BVP (1) has at
least one solution.

Proof. Since lim
x→0

f (t,x)
x = 0, there exists a constant r > 0 such that | f (t,x)| � δ |x|

for 0 < |x| < r , where δ > 0 is a constant satisfying δM +N < 1. Let us take Ω ={
x ∈C3

rd(T) : ‖x‖ < r
}

. Since the function f satisfies the condition (H1) by taking
φ(t) = δ and ψ(|x|) = |x| , A : Ω → C3

rd(T) is completely continuous operator from
Lemma 3. If we take x ∈ ∂Ω , then we obtain ‖Ax‖� r as in the proof of Theorem 2. It
follows that ‖Ax‖ � ‖x‖ , ∀x ∈ ∂Ω . Therefore, by means of Theorem 5 the operator A
has at least one fixed point in Ω . Thus, the BVP (1) has at least one solution u∈Ω . �

COROLLARY 1. Assume that (H1) and (H2) hold. If φ(b)M+N � 1 and ψ(z)�
z, ∀z ∈ [0,∞) , then the BVP (1) has at least one solution.

EXAMPLE 1. Let T = qZ = {qk : k ∈ Z} and define

hα(t,s) =
qα

(
t−s
q

)(α)

Γ(α +1)
,

where t(α) = Γ(t+1)
Γ(t−α+1) which satisfies the properties in (2) and (3). Consider the fol-

lowing boundary value problem{
Δα−1

0∗ x(t) = tx4

5+x4 , t ∈ J := [0,20]∩T, 2 < α < 3

x(0) = xΔ(20) = 0, xΔ(0) = xΔ(10).
(14)

Since f (t,x) = tx4

5+x4 ∈C ([0,20]×R,R) holds f (t,x) � 20 and the condition (H2) is
satisfied, the BVP (14) has at least one solution by using Theorem 4.
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