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EXISTENCE OF GLOBAL SOLUTIONS OF IMPULSIVE IVPS OF

SINGULAR FRACTIONAL DIFFERENTIAL SYSTEMS ON HALF LINE

YUJI LIU

Abstract. A impulsive boundary value problem of fractional differential equation is proposed.
By constructing a novel transformation, the considered impulsive system is convert into a con-
tinuous system. We construct a weighted function space, by employing a fixed point theorem,
we establish existence results for global solutions for a system of impulsive singular fractional
differential equations. Am example is presented to illustrate the efficiency of the results obtained.

1. Introduction

Fractional differential equation is a generalization of ordinary differential equation
to arbitrary non-integer orders. The origin of fractional calculus goes back to Newton
and Leibniz in the seventeenth century. Recent investigations have shown that many
physical systems can be represented more accurately through fractional derivative for-
mulation [17]. Fractional differential equations therefore find numerous applications in
different branches of physics, chemistry and biological sciences such as visco-elasticity,
feed back amplifiers, electrical circuits, electro analytical chemistry, fractional multi-
poles and neuron modelling [20]. The reader may refer to the books and monographs
[7, 18, 19, 21] for fractional calculus and developments on fractional differential and
fractional integro-differential equations with applications.

On the other hand, the theory of impulsive differential equations describes pro-
cesses which experience a sudden change of their state at certain moments. Processes
with such characteristics arise naturally and often, for example, phenomena studied
in physics, chemical technology, population dynamics, biotechnology and economics.
For an introduction of the basic theory of impulsive differential equation, we refer the
reader to [14].

Recently, the authors in papers [1, 3, 4, 5, 8, 22, 23] and the survey paper [2] stud-
ied the existence of solutions for different initial value problems involving impulsive
fractional differential equations. In [6], Furati and Tatar studied the following family of
fractional differential problems of weighted Cauchy type⎧⎨

⎩Dα
0+u(t) = f (t,u(t))+

∫ 1

0
g(t,s,u(s))ds, t > 0,

t1−αu(t)|t=0 = b
(1.1)

Mathematics subject classification (2010): 92D25, 34A37, 34K15.
Keywords and phrases: Solvability, singular fractional differential system, impulsive effect, fixed point

theorem.
Supported by the Natural Science Foundation of Guangdong province (No: S2011010001900) and the Guangdong

Higher Education Foundation for High-level talents.

c© � � , Zagreb
Paper FDC-06-03

35

http://dx.doi.org/10.7153/fdc-06-03


36 Y. LIU

where 0< α < 1, b∈ IR, f and g are continuous functions. Dα
0+ denotes the Riemann-

Liouville fractional derivative of order α . Using Schauder fixed point theorem, it is
proved that (1.1) admits at least one solution on a sufficiently small interval under some
assumptions imposed on f and g . Further, in [16, 17] the authors investigated the
initial value problem for the fractional differential equation{

Dα
0+u(t) = f (t,u(t)), t ∈ (0,T ],

t1−αu(t)|t=0 = u0.
(1.2)

Using the monotone iterative method, the existence and uniqueness of solution of (1.2)
is established under the existence of upper and lower solutions of (1.2).

In recent paper [10], Liu studied the existence of solutions of a initial value prob-
lem of singular impulsive fractional differential system on half line involving the Ca-
puto type fractional derivative with a single starting point. While in [11, 12], existence
of solutions of periodic type BVPs for singular fractional differential systems imposed
impulse effects (single and multiple impulse points respectively) involving Riemann-
Liouville type fractional derivatives with multiple starting points were investigated.

We note that there has been no paper concerned with solvability of singular frac-
tional differential system involving Riemann-Liouville type fractional derivatives with
a single starting point and with infinitely many impulse effect points.

Motivated by mentioned papers and reason, in this paper, we discuss the following
initial value problem of nonlinear singular impulsive fractional differential system on
half line⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dα
0+u(t) = m(t) f (t,u(t),v(t)), t ∈ (0,+∞), t �= ts, s = 0,1,2, · · · ,

Dβ
0+v(t) = n(t)g(t,u(t),v(t)), t ∈ (0,+∞), t �= ts, s = 0,1,2, · · · ,

lim
t→0

t1−αu(t) =
∫ ∞

0
φ(s)F(s,u(s),v(s))ds,

lim
t→0

t1−βv(t) =
∫ ∞

0
ψ(s)G(s,u(s),v(s))ds,

lim
t→t+s

(t − ts)1−αu(t) = I(ts,u(ts),v(ts)), s = 1,2, · · · ,

lim
t→t+s

(t − ts)1−β v(t) = J(ts,u(ts),v(ts)), s = 1,2, · · ·

(1.3)

where

(a) 0 < α,β < 1, Dα
0+ and Dβ

0+ are the Riemann-Liouville fractional derivatives of
orders α and β respectively with single starting point 0 ,

(b) 0 = t0 < t1 < · · · < ts < · · · with lim
s→∞

ts = +∞ ,

(c) m,n : (0,+∞)→ IR satisfy m|(ts,ts+1], n|(ts,ts+1] ∈C0(ts,ts+1] (s = 0,1,2, · · ·), both
m and n may be singular at t = 0, there exist constants L1,L2 > 0 and k, l > −1
such that

|m(t)| � L1t
k and |n(t)| � L2t

l, t ∈ (0,+∞),
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(d) φ ,ψ : (0,+∞) → IR satisfy φ ,ψ ∈ L1(0,+∞), and

(e) f , g, F, G are Carathéodory functions defined on (0,+∞)× IR× IR, I, J are
discrete Carathéodory functions defined on {ts : s = 1,2, · · ·}× IR× IR.

A pair of functions (x,y) with x : (0,+∞)→ IR and y : (0,+∞)→ IR is said to be
a global solution of (1.3) if

x|(ts,ts+1], y|(ts,ts+1] ∈C0(ts,ts+1], s = 0,1,2, · · · ,

lim
t→t+s

(t− ts)1−αu(t), lim
t→t+s

(t− ts)1−β v(t) are finite, s = 0,1,2, · · · ,

Dα
0+x is α − integrable on (0,+∞), , Dβ

0+y is β − integrable on (0,+∞)

and (x,y) satisfies all equations in (1.3).
We shall construct a weighted Banach space and apply the Leray-Schauder nonlin-

ear alternative to obtain the existence of at least one global solution of (1.3). Our results
are new and naturally complement the literature on fractional differential equations.

The paper is outlined as follows. Section 2 contains some preliminary results. The
main results are presented in Section 3. Finally, in Section 4 we give an example to
illustrate the efficiency of the results obtained.

2. Preliminaries

For convenience of readers, we state some necessary definitions from fractional
calculus theory.

For φ ∈ L1(0,+∞) , denote ‖φ‖1 =
∫ +∞
0 |φ(s)|ds . Let the Gamma and Beta func-

tions Γ(α) and B(p,q) be defined by

Γ(α) =
∫ +∞

0
xα−1e−xdx, B(p,q) =

∫ 1

0
xp−1(1− x)q−1dx.

DEFINITION 2.1. [21] The Riemann-Liouville fractional integral of order α > 0
of a function g : (0,+∞) → IR is given by

Iα
0+g(t) =

1
Γ(α)

∫ t

0
(t − s)α−1g(s)ds,

provided that the right-hand side exists.

DEFINITION 2.2. [21] The Riemann-Liouville fractional derivative of order α >
0 of a continuous function g : (0,+∞) → IR is given by

Dα
0+g(t) =

1
Γ(n−α)

dn

dtn

∫ t

0

g(s)
(t− s)α−n+1 ds,

where n−1 < α < n , provided that the right-hand side exists.
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DEFINITION 2.3. [9] An odd homeomorphism Φ of the real line IR onto itself is
called a sup-multiplicative-like function if there exists a homeomorphism ω of [0,+∞)
onto itself which supports Φ in the sense that for all v1,v2 � 0,

Φ(v1v2) � ω(v1)Φ(v2). (2.1)

ω is called the supporting function of Φ .

REMARK 2.1. Note that any sup-multiplicative function is sup-multiplicative-
like function. Also any function of the form

Φ(u) :=
k

∑
j=0

c j|u| ju, u ∈ IR

is sup-multiplicative-like, provided that c j � 0. Here a supporting function is defined
by ω(u) := min{uk+1,u} , u � 0.

REMARK 2.2. It is clear that a sup-multiplicative-like function Φ and any corre-
sponding supporting function ω are increasing functions vanishing at zero. Moreover,
their inverses Φ−1 and ν respectively are increasing and such that for all w1,w2 � 0,

Φ−1(w1w2) � ν(w1)Φ−1(w2). (2.2)

ν is called the supporting function of Φ−1 .
In this paper we always suppose that Φ is a sup-multiplicative-like function with

its supporting function ω . The inverse function Φ−1 has its supporting function ν .
Let σ > k+1 and δ > l +1. Denote

ρ(t) = (t−ts)1−α

1+tσ , t ∈ (ts,ts+1], s = 0,1,2, · · · , ,

�(t) = (t−ts)1−β

1+tδ , t ∈ (ts,ts+1], s = 0,1,2, · · · .

DEFINITION 2.4. We say K : (0,+∞)× IR2 → IR is a Carathéodory function if it
satisfies the following:

(i) t → K
(
t, x

ρ(t) ,
y

�(t)

)
is continuous on (ts,ts+1] (s = 0,1,2, · · ·) , and for any

(x,y) ∈ IR2 there exist the limits

lim
t→t+s

K

(
t,

x
ρ(t)

,
y

�(t)

)
, s = 0,1,2, · · · ;

(ii) (x,y) → K
(
t, x

ρ(t) ,
y

�(t)

)
is continuous on IR2 for all t ∈ (0,+∞);

(iii) for each r > 0 there exists a constant Ar > 0 such that∣∣∣∣K
(

t,
x

ρ(t)
,

y
�(t)

)∣∣∣∣ � Ar, t ∈ (0,+∞), |x|, |y| � r.
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DEFINITION 2.5. L : {ts}× IR2 is called a discrete Carathéodory function if

(i) (x,y) → L
(
ts, x

ρ(ts)
, y

�(ts)

)
is continuous on IR2 for all s = 1,2, · · · ;

(ii) for each r > 0 there exists Ar,s � 0 such that∣∣∣∣L
(

ts,
x

ρ(ts)
,

y
�(ts)

)∣∣∣∣ � Ar,s, s = 1,2, · · · , |x|, |y| � r

and
+∞

∑
s=1

Ar,s < +∞.

DEFINITION 2.6. Let θ > 0. h : (0,+∞) → R is called a θ− integral on (0,+∞)
if

∫ t
0(t− s)θ−1h(s)ds is well defined on (0,+∞) .
To obtain the main results, we need the Leray-Schauder nonlinear alternative.

LEMMA 2.1. (Leray-Schauder Nonlinear Alternative) [16] Let X be a Banach
space and T : X → X be a completely continuous operator. Suppose Ω is a nonempty
open subset of X centered at zero. Then, either there exists x∈ ∂Ω and λ ∈ (0,1) such
that x = λTx, or there exists x ∈ Ω such that x = Tx.

3. Main results

In this section we shall establish the existence of at least one solution of system
(1.3). Throughout, we assume that the functions and parameters in (1.3) satisfy (a)–(e)
(stated in Section 1).

Let

X =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x : (0,∞) → IR :

x|(ts,ts+1] ∈C0(ts,ts+1] (s = 0,1,2, · · ·),
there exist the limits lim

t→t+s
(t− ts)1−αx(t) (s = 0,1,2, · · ·),

lim
t→+∞

ρ(t)x(t) is finite,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

and

Y =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y : (0,∞) → IR :

y|(ts,ts+1] ∈C0(ts,ts+1] (s = 0,1,2, · · ·),
there exist the limits lim

t→t+s
(t − ts)1−β y(t) (s = 0,1,2, · · ·),

lim
t→+∞

�(t)y(t) is finite

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

For x ∈ X and y ∈ Y, define the norms by

‖x‖ = ‖x‖X = sup
t∈(0,+∞)

ρ(t)|x(t)| and ‖y‖ = ‖y‖Y = sup
t∈(0,+∞)

�(t)|y(t)|.
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It is easy to show that X and Y are real Banach spaces. Thus, (X ×Y,‖ ·‖) is a Banach
space with the norm defined by

‖(x,y)‖ = max{‖x‖X , ‖y‖Y} , (x,y) ∈ X ×Y.

Let x ∈ X and y ∈Y. Then, there exists r > 0 such that

‖y‖ = sup
t∈(0,+∞)

|y(t)|�(t) � r and ‖x‖ = sup
t∈(0,+∞)

|x(t)|�(t) � r. (3.1)

From (A), f is a Carathéodory function, thus there exists Ar > 0 such that

| f (t,x(t),y(t))| =
∣∣∣∣ f

(
t,

ρ(t)x(t)
ρ(t)

,
�(t)y(t)

�(t)

)∣∣∣∣ � Ar, t ∈ (0,+∞). (3.2)

Similarly, since F is a Carathéodory function and I a discrete Carathéodory function,
there exist positive constants A′

r and Ar,s (s = 1,2, · · ·) such that

|F(t,x(t),y(t))| � A′
r, t ∈ (0,+∞),

|I(ts,x(ts),y(ts))| � Ar,s (s = 1,2, · · ·),
∞
∑

s=1
Ar,s < +∞.

(3.3)

Likewise, g, G and J are also Carathéodory functions and discrete Carathéodory func-
tion, so there exist positive constants Br, B′

r and Br,s (s = 1,2, · · ·) such that

|g(t,x(t),y(t))| � Br, |G(t,x(t),y(t))| � B′
r, t ∈ (0,∞),

|J(ts,x(ts),y(ts))| � Br,s (s = 1,2, · · ·),
∞

∑
s=1

Br,s < ∞.
(3.4)

LEMMA 3.1. Suppose that x ∈ X and y ∈Y. Then, u ∈ X is a solution of⎧⎪⎪⎨
⎪⎪⎩

Dα
0+u(t) = m(t) f (t,x(t),y(t)), t ∈ (0,+∞), t �= ts, s = 1,2, · · · ,

lim
t→0

t1−αu(t) =
∫ ∞

0
φ(s)F(s,x(s),y(s))ds,

limt→t+s
(t − ts)1−αu(t) = I(ts,x(ts),y(ts)), s = 1,2, · · ·

(3.5)

if and only if u satisfies the integral equation

u(t) =
∫ t

0

(t − s)α−1

Γ(α)
m(s) f (s,x(s),y(s))ds

+ tα−1
∫ ∞

0
φ(s)F(s,x(s),y(s))ds+

i

∑
j=1

(t − t j)α−1I(t j,x(t j),y(t j)),

t ∈ (ti,ti+1], i = 0,1,2, · · · . (3.6)

Proof. Let u ∈ X be a solution of (3.5). We firstly prove that there exists numbers
c j ∈ IR such that for t ∈ (ti,ti+1] (i = 0,1,2, · · ·)

u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1m(s) f (s,x(s),y(s))ds+

i

∑
j=0

c j(t − t j)α−1,

t ∈ (ti,ti+1], i = 0,1,2, · · · . (3.7)
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In fact, for t ∈ (t0, t1] , we have from u ∈ X that

Iα
0+m(t) f (t,x(t),y(t))

= Iα
0+Dα

0+x(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 1

Γ(1−α)

[∫ s

0
(s− v)−αu(v)dv

]′
ds

=
1

αΓ(α)

[∫ t

0
(t − s)α 1

Γ(1−α)

(∫ s

0
(s− v)−αu(v)dv

)′
ds

]′

=
1

αΓ(α)

[
(t− s)α 1

Γ(1−α)

∫ s

0
(s− v)−αu(v)dv

∣∣∣∣
t

0

+α
∫ t

0
(t − s)α−1 1

Γ(1−α)

∫ s

0
(s− v)−αu(v)dvds

]′

=
1

αΓ(α)

[
−tα 1

Γ(1−α)
lim lim

t→0+

∫ t

0
(t − v)−αu(v)dv

+α
∫ t

0

∫ t

s
(t− s)α−1 1

Γ(1−α)
(s− v)−αdsu(v)dv

]′
.

Since lim
t→0+

t1−αu(t) = A exists, for ε > 0, we have A− ε < t1−αu(t) < A + ε for

sufficiently small t ∈ (t0,t1] . So

(A− ε)
∫ 1

0
(1−w)−αwα−1dw

= (A− ε)
∫ t

0
(t− v)−αvα−1dv �

∫ t

0
(t − v)−αu(v)dv

� (A+ ε)
∫ t

0
(t− v)−αvα−1dv = (A+ ε)

∫ 1

0
(1−w)−αwα−1dw.

It follows that

(A− ε)
∫ 1

0
(1−w)−αwα−1dw

� lim
t → 0+

∫ t

0
(t− v)−αvα−1dv � lim

t→0+

∫ t

0
(t− v)−αu(v)dv

� (A+ ε)
∫ 1

0
(1−w)−αwα−1dw.

Then ε → 0 implies that lim
t→0+

∫ t
0(t− v)−αvα−1dv = A exists. Hence

Iα
0+m(t) f (t,x(t),y(t))

=
1

αΓ(α)

[
−tα 1

Γ(1−α)
A +α

∫ t

0

∫ t

s
(t − s)α−1 1

Γ(1−α)
(s− v)−αdsu(v)dv

]′

=
1

αΓ(α)

[
−tα 1

Γ(1−α)
A +α

∫ t

0

∫ 1

0
(1−w)α−1 1

Γ(1−α)
w−αdwu(v)dv

]′
= −c0t

α−1 +u(t).
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Thus

u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1m(s) f (s,x(s),y(s))ds+ c0t

α−1, t ∈ (t0,t1].

We find that (3.7) holds for i = 0. Now we suppose that (3.7) holds for i = 0,1,2, · · · ,n .
We will prove that (3.7) holds for i = n+ 1. By mathematical induction method, we
complete the proof of (3.7).

Suppose that

u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1m(s) f (s,x(s),y(s))ds+

n

∑
j=0

c j(t − t j)α−1 + Φ(t),

t ∈ (tn+1,tn+2]. (∗)
Then

m(t) f (t,x(t),y(t))

= Dα
0+u(t) =

1
Γ(1−α)

[∫ t

0
(t − s)αu(s)ds

]′
=

1
Γ(1−α)

[ n

∑
ν=0

∫ tν+1

tν
(t − s)−α

( 1
Γ(α)

∫ s

0
(s− v)α−1m(v) f (v,x(v),y(v))dv

+
ν

∑
j=0

c j(s− t j)α−1
)
ds+

∫ t

tn+1

(t− s)−α
( 1

Γ(α)

∫ s

0
(s− v)α−1m(v) f (v,x(v),y(v))dv

+
n

∑
j=0

c j(s− t j)α−1 + Φ(s)
)
ds

]′

=
1

Γ(1−α)

[∫ t

0
(t− s)−α 1

Γ(α)

∫ s

0
(s− v)α−1m(v) f (v,x(v),y(v))dvds

+
n

∑
ν=0

∫ tν+1

tν
(t− s)−α

ν

∑
j=0

c j(s− t j)α−1ds

+
1

Γ(α)

∫ t

tn+1

(t − s)−α
n

∑
j=0

c j(s− t j)α−1ds+
∫ t

tn+1

(t− s)−αΦ(s)ds
]′

= Dα
t+n+1

Φ(t)+
1

Γ(1−α)

[∫ t

0

∫ t

s
(t− s)−α 1

Γ(α)
(s− v)α−1dsm(v) f (v,x(v),y(v))dv

+
n

∑
ν=0

ν

∑
j=0

c j

∫ tν+1−t j
t−t j

tν−t j
t−t j

(1−w)−αwα−1dw+
1

Γ(α)

n

∑
j=0

c j

∫ 1

tn+1−t j
t−t j

(1−w)−αwα−1dw
]′

= Dα
t+n+1

Φ(t)+
1

Γ(1−α)

[∫ t

0

∫ 1

0
(1−w)−α 1

Γ(α)
wα−1dwm(v) f (v,x(v),y(v))dv

+
n

∑
j=0

c j

n

∑
ν= j

∫ tν+1−t j
t−t j

tν−t j
t−t j

(1−w)−αwα−1dw+
1

Γ(α)

n

∑
j=0

c j

∫ 1

tn+1−t j
t−t j

(1−w)−αwα−1dw
]′

= m(t) f (t,x(t),y(t)).
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It follows that Dα
t+n+1

Φ(t) = 0. Then similarly to (∗ ) we know that there exists cn+1 ∈ R

such that Φ(t) = cn+1(t − tn+1)α−1 . Hence

u(t) = 1
Γ(α)

∫ t
0(t − s)α−1m(s) f (s,x(s),y(s))ds+

n+1
∑
j=0

c j(t − t j)α−1, t ∈ (tn+1,tn+2].

(∗)
Thus (3.7) holds for i = n+1. This completes the proof of (3.7).

From lim
t→0

t1−αu(t) =
∫ ∞
0 φ(s)F(s,x(s),y(s))ds , we get

c0 =
∫ ∞

0
φ(s)F(s,x(s),y(s))ds.

From lim
t→t+i

(t − ti)1−αu(t) = I(ti,x(ti),y(ti)) , we have

ci = I(ti,x(ti),y(ti)).

On substituting ci into (3.7), we obtain for t ∈ (ti,ti+1] (i = 0,1,2, · · ·),

u(t) =
∫ t

0

(t− s)α−1

Γ(α)
m(s) f (s,m(s),y(s))ds+ tα−1

∫ ∞

0
φ(s)F(s,x(s),y(s))ds

+
i

∑
j=1

(t − t j)α−1I(t j,x(t j),y(t j)), t ∈ (ti,ti+1], i = 0,1,2, · · ·

which is simply the same as (3.6).
Moreover, since x ∈ X and y ∈ Y, we have (3.1)–(3.3) which will lead to the

expression of u in (3.6) is well defined on (0,+∞) . We will prove that u ∈ X and u
satisfies (3.5).

In fact, by (3.1)–(3.3) and (c), we have

∣∣∣∣
∫ t

0

(t− s)α−1

Γ(α)
m(s) f (s,x(s),y(s))ds

∣∣∣∣ � ArL1

∫ t

0

(t − s)α−1

Γ(α)
skds

= ArL1t
α+k

∫ 1

0

(1−w)α−1

Γ(α)
wkdw by

s
t

= w

= ArL1t
α+k B(α,k+1)

Γ(α)
.

We have

lim
t→0+

ρ(t)u(t) =
t1−α

1+ tσ

∫ t

0

(t − s)α−1

Γ(α)
m(s) f (s,x(s),y(s))ds+

∫ ∞
0 φ(s)F(s,x(s),y(s))ds

1+ tσ

=
∫ ∞

0
φ(s)F(s,x(s),y(s))ds
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and for s = 1,2, · · · , we have

lim
t→t+s

ρ(t)u(t) =
(t− ts)1−α

1+ tσ

∫ t

0

(t− s)α−1

Γ(α)
m(s) f (s,x(s),y(s))ds

+
tα−1(t− ts)1−α ∫ ∞

0 φ(s)F(s,x(s),y(s))ds
1+ tσ

+
(t− ts)1−α

s
∑
j=1

(t− t j)α−1I(t j,x(t j),y(t j))

1+ tσ

= I(ts,x(ts),y(ts)).

One can get for t ∈ (ti,ti+1] that

Dα
0+u(t) =

1
Γ(1−α)

[∫ t

0
(t − s)−αu(s)ds

]′

=
1

Γ(1−α)

[ i−1

∑
n=0

∫ tn+1

tn
(t − s)−αu(s)ds+

∫ t

ti
(t − s)−αu(s)ds

]

=
1

Γ(1−α)

[ i−1

∑
n=0

∫ tn+1

tn
(t − s)−α

(∫ s

0

(s− v)α−1

Γ(α)
m(v) f (v,m(v),y(v))dv

+sα−1
∫ ∞

0
φ(v)F(v,x(v),y(v))dv+

n

∑
j=1

(s− t j)α−1I(t j,x(t j),y(t j))
)
ds

+
∫ t

ti
(t− s)−α

(∫ s

0

(s− v)α−1

Γ(α)
m(v) f (v,m(v),y(v))dv

+sα−1
∫ ∞

0
φ(v)F(v,x(v),y(v))dv+

i

∑
j=1

(s− t j)α−1I(t j,x(t j),y(t j))
)
ds

]′

=
1

Γ(1−α)

[∫ t

0
(t − s)−α

∫ s

0

(s− v)α−1

Γ(α)
m(v) f (v,m(v),y(v))dvds

+
i−1

∑
n=0

∫ tn+1

tn
(t− s)−αsα−1ds

∫ ∞

0
φ(v)F(v,x(v),y(v))dv

+
i−1

∑
n=0

∫ tn+1

tn
(t− s)−α

n

∑
j=1

(s− t j)α−1dsI(t j,x(t j),y(t j))

+
∫ t

ti
(t− s)−αsα−1ds

∫ ∞

0
φ(v)F(v,x(v),y(v))dv

+
∫ t

ti
(t− s)−α

i

∑
j=1

(s− t j)α−1dsI(t j,x(t j),y(t j))
]′

=
1

Γ(1−α)

[∫ t

0

∫ t

s
(t − s)−α (s− v)α−1

Γ(α)
dsm(v) f (v,m(v),y(v))dv
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+
i−1

∑
n=0

∫ tn+1
t

tn
t

(1−w)−αwα−1dw
∫ ∞

0
φ(v)F(v,x(v),y(v))dv

+
i−1

∑
n=0

n

∑
j=1

∫ tn+1−t j
t−t j

tn−t j
t−t j

(1−w)−αwα−1dwI(t j,x(t j),y(t j))

+
∫ 1

ti
t

(1−w)−αwα−1dw
∫ ∞

0
φ(v)F(v,x(v),y(v))dv

+
i

∑
j=1

∫ 1

ti−t j
t−t j

(1−w)−αwα−1dwI(t j,x(t j),y(t j))
]′

=
1

Γ(1−α)

[∫ t

0

∫ 1

0
(1−w)−α wα−1

Γ(α)
dwm(v) f (v,m(v),y(v))dv

+
i−1

∑
n=0

∫ tn+1
t

tn
t

(1−w)−αwα−1dw
∫ ∞

0
φ(v)F(v,x(v),y(v))dv

+
i−1

∑
j=0

i−1

∑
n= j

∫ tn+1−t j
t−t j

tn−t j
t−t j

(1−w)−αwα−1dwI(t j,x(t j),y(t j))

+
∫ 1

ti
t

(1−w)−αwα−1dw
∫ ∞

0
φ(v)F(v,x(v),y(v))dv

+
i

∑
j=1

∫ 1

ti−t j
t−t j

(1−w)−αwα−1dwI(t j,x(t j),y(t j))
]′

=
1

Γ(1−α)

[∫ t

0

∫ 1

0
(1−w)−α wα−1

Γ(α)
dwm(v) f (v,m(v),y(v))dv

+
∫ 1

0
(1−w)−αwα−1dw

∫ ∞

0
φ(v)F(v,x(v),y(v))dv

+
i−1

∑
j=0

∫ 1

0
(1−w)−αwα−1dwI(t j,x(t j),y(t j))

+
∫ 1

0
(1−w)−αwα−1dwI(ti,x(ti),y(ti))

]′
= m(t) f (t,x(t),y(t)), t ∈ (ti,ti+1], i = 0,1,2, · · · .

It is easy to see that u|ti,ti+1] ∈ C0(ti,ti+1] and lim
t→t+i

ρ(t)u(t) exists for all i = 1,2, · · · .
Furthermore, we have for t ∈ (ti,ti+1] that

ρ(t)|u(t)| � (t − ti)1−α

1+ tσ

∫ t

0

(t − s)α−1

Γ(α)
|m(s) f (s,m(s),y(s))|ds

+
(t− ti)1−α

1+ tσ tα−1
∫ ∞

0
|φ(s)||F(s,x(s),y(s))|ds
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+
(t− ti)1−α

1+ tσ

i

∑
j=1

(t− t j)α−1|I(t j,x(t j),y(t j))|

� ArL1
(t − ti)1−α

1+ tσ

∫ t

0

(t− s)α−1

Γ(α)
skds

+A′
r
(t− ti)1−α

1+ tσ tα−1
∫ ∞

0
|φ(s)|ds+

(t − ti)1−α

1+ tσ

i

∑
j=1

(t− t j)α−1Ar, j

� ArL1
(t − ti)1−α

1+ tσ tα+k B(α,k+1)
Γ(α)

+A′
r

1
1+ tσ

∫ ∞

0
|φ(s)|ds+

1
1+ tσ

+∞

∑
j=1

Ar, j.

It follows that lim
t→+∞

ρ(t)u(t) = 0. So u ∈ X and u is a solution of (3.5). The proof is

complete. �

LEMMA 3.2. Suppose that x ∈ X and y ∈Y. Then, v ∈Y is a solution of⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Dβ
0+v(t) = n(t)g(t,x(t),y(t)), t ∈ (0,+∞), t �= ts, s = 1,2, · · · ,

lim
t→0

t1−β v(t) =
∫ ∞

0
ψ(s)G(s,x(s),y(s))ds,

lim
t→t+s

(t− ts)1−β v(t) = Js(ts,x(ts),y(ts)), s = 1,2, · · ·
(3.8)

if and only if v satisfies the integral equation

v(t) =
∫ t

0

(t − s)β−1

Γ(β )
n(s)g(s,x(s),y(s))ds

+ tβ−1
∫ ∞

0
ψ(s)G(s,x(s),y(s))ds+

i

∑
j=1

(t − t j)β−1J(t j,x(t j),y(t j)),

t ∈ (ti,ti+1], i = 0,1,2, · · · . (3.9)

Proof. The proof is similar to that of Lemma 3.1. �

Now, we define the operator T on X ×Y by

T (x,y)(t) = (T1(x,y)(t),T2(x,y)(t))

where

T1(x,y)(t) =
∫ t

0

(t − s)α−1

Γ(α)
m(s) f (s,x(s),y(s))ds

+ tα−1
∫ ∞

0
φ(s)F(s,x(s),y(s))ds+

i

∑
j=1

(t − t j)α−1I(t j,x(t j),y(t j)),

t ∈ (ti,ti+1], i = 0,1,2, · · · (3.10)



EXISTENCE OF GLOBAL SOLUTIONS OF IMPULSIVE IVPS 47

and

T2(x,y)(t) =
∫ t

0

(t − s)β−1

Γ(β )
n(s)g(s,x(s),y(s))ds

+ tβ−1
∫ ∞

0
ψ(s)G(s,x(s),y(s))ds+

i

∑
s=1

tβ−1
s J(t j,x(t j),y(t j)),

t ∈ (ti,ti+1], i = 0,1,2, · · · . (3.11)

REMARK 3.1. By Lemmas 3.1 and 3.2, (x,y) ∈ X ×Y is a solution of system
(1.3) if and only if (x,y) ∈ X ×Y is a fixed point of the operator T .

LEMMA 3.3. The operator T : X ×Y → X ×Y is well defined and is completely
continuous.

Proof. The proof is long and will be divided into parts. First, we prove that T
is well defined. Next, we show that T is continuous, and finally we prove that T is
compact. Hence, T is completely continuous. We omit some of details, one may see
[13].

Step 1. We shall prove that T : X ×Y → X ×Y is well defined. For (x,y) ∈ X ×Y ,
we have ‖(x,y)‖ = r > 0. Then, (3.1)–(3.4) hold. We can shown similarly to the proof
of Lemma 3.1 that T1(x,y) ∈ X . Similarly we can show that T2(x,y) ∈ Y . Hence,
(T1(x,y),T2(x,y)) ∈ X ×Y and T : X ×Y → X ×Y is well defined.

Step 2. We shall prove that T is continuous. Let (xn,yn) ∈ X ×Y with (xn,yn) →
(x0,y0) as n→∞ . We shall show that T (xn,yn)→ T (x0,y0) as n→∞ , i.e., T1(xn,yn)→
T1(x0,y0) and T2(xn,yn)→ T2(x0,y0) as n → ∞ . The proof is similar to (a) in the proof
of Lemma 10 in [13].

Step 3. We shall prove that T is compact, i.e., for each nonempty open bounded
subset Ω of X ×Y , we shall prove that T (Ω) is relatively compact. For this, we shall
show that T (Ω) is uniformly bounded, equi-continuous on each subinterval [a,b] ⊆
(ti,ti+1] (i = 0,1,2, · · ·) , T (Ω) is equi-convergent as t → ti (i = 0,1,2, · · ·) and t → ∞ .

Let Ω be an open bounded subset of X ×Y . There exists r > 0 such that (3.1)
holds for all (x,y) ∈ Ω . Hence, (3.2)–(3.4) also hold for all (x,y) ∈ Ω . We need to do
the following three substeps similarly to (b) of the proof of Lemma 10 in [13].

Step 3a. We shall show that T (Ω) is uniformly bounded.

Step 3b. We shall prove that T (Ω) is equi-continuous on each subinterval [a,b]⊆
(ti,ti+1] (i = 0,1,2, · · ·) .

Step 3c. We shall show that T (Ω) is equi-convergent as t → ti (i = 0,1,2, · · ·) and
t → ∞ .

We have established that T (Ω) is relatively compact. So T is completely contin-
uous. This completes the proof. �

We are now ready to present the main theorem.
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THEOREM 3.1. Let (a)–(e) hold, Φ : IR→ IR be a sup-multiplicative-like function
with supporting function ω , and its inverse function Φ−1 : IR → IR with supporting
function ν . Furthermore, suppose that

(i) there exist nonnegative numbers c f , b f , a f , CF , BF , AF , CI,s, BI,s and AI,s such

that
∞
∑

s=1
CI,s,

∞
∑

s=1
BI,s and

∞
∑

s=1
AI,s are convergent, and the following hold for all

(U,V ) ∈ IR2 and t ∈ (0,+∞) :∣∣∣∣ f
(

t,
U

ρ(t)
,

V
�(t)

)∣∣∣∣ � c f +b f |U |+a f Φ−1(|V |),∣∣∣∣F
(

t,
U

ρ(t)
,

V
�(t)

)∣∣∣∣ � CF +BF |U |+AFΦ−1(|V |),∣∣∣∣I
(

ts,
U

ρ(ts)
,

V
�(ts)

)∣∣∣∣ � CI,s +BI,s|U |+AI,sΦ−1(|V |);

(ii) there exist nonnegative numbers cg, bg, ag, CG, BG, AG, CJ,s, BJ,s and AJ,s such

that
∞
∑

s=1
CJ,s,

∞
∑

s=1
BJ,s and

∞
∑

s=1
AJ,s are convergent, and the following hold for all

(U,V ) ∈ IR2 and t ∈ (0,∞) :∣∣∣∣g
(

t,
U

ρ(t)
,

V
�(t)

)∣∣∣∣ � cg +bgΦ(|U |)+ag|V |,∣∣∣∣G
(

t,
U

ρ(t)
,

V
�(t)

)∣∣∣∣ � CG +BGΦ(|U |)+AG|V |,∣∣∣∣J
(

ts,
U

ρ(ts)
,

V
�(ts)

)∣∣∣∣ � CJ,s +BJ,sΦ(|U |)+AJ,s|V |.

Then, the system (1.3) has at least one solution in X ×Y if

Σ3 < 1, Θ2 < 1,
Θ3

1−Θ2
ν

(
2Σ2

1−Σ3

)
< 1 (3.15)

or

Σ3 < 1, Θ2 < 1,
Σ2

1−Σ3

1

w
(

1−Θ2
2Θ3

) < 1, (3.16)

where

Θ2 = L1
σ − k−1

σ

(
k+1

σ − k−1

)(k+1)/σ B(α,k+1)
Γ(α)

b f +‖φ‖1BF +
∞

∑
s=1

BI,s,

Θ3 = L1
σ − k−1

σ

(
k+1

σ − k−1

)(k+1)/σ B(α,k+1)
Γ(α)

a f +‖φ‖1AF +
∞

∑
s=1

AI,s,

Σ2 = L2
δ − l−1

δ

(
l +1

δ − l−1

)(l+1)/δ B(β , l +1)
Γ(β )

bg +‖ψ‖1BG +
∞

∑
s=1

BJ,s,

Σ3 = L2
δ − l−1

δ

(
l +1

δ − l−1

)(l+1)/δ B(β , l +1)
Γ(β )

ag +‖ψ‖1AG +
∞

∑
s=1

AJ,s.

(3.17)
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Proof. We shall apply Lemma 2.1. From Lemma 3.3 we note that T is completely
continuous. Let us consider the operator equation

(x,y) = λT (x,y) (3.18)

where λ ∈ (0,1). We shall show that any solution (x,y) of (3.18) satisfies

‖(x,y)‖ � M (3.19)

where M is a constant independent of λ . Now, in the context of Lemma 2.1, let

Ω = {(x,y) ∈ X ×Y : ‖(x,y)‖ < M +1}.
In view of (3.19), it is not possible to have (x,y) ∈ ∂Ω satisfying (x,y) = λT (x,y),
hence we conclude by Lemma 2.1 that there exists (x,y) ∈ Ω such that (x,y) = T (x,y),
i.e., the system (1.3) has a solution in X ×Y. This completes the proof.

We shall now proceed to prove (3.19). Let (x,y) be a solution of the operator
equation (3.18). It follows that x = λT1(x,y) and y = λT2(x,y), i.e.,

x(t) = λT1(x,y)(t)

= λ
∫ t

0

(t − s)α−1

Γ(α)
m(s) f (s,x(s),y(s))ds

+ λ tα−1
∫ ∞

0
φ(s)F(s,x(s),y(s))ds+

i

∑
j=1

(t − t j)α−1I(t j,x(t j),y(t j)),

t ∈ (ti,ti+1], i = 0,1,2, · · · (3.20)

and

y(t) = λT2(x,y)(t)

= λ
∫ t

0

(t − s)β−1

Γ(β )
n(s)g(s,x(s),y(s))ds

+ λ tβ−1
∫ ∞

0
ψ(s)G(s,x(s),y(s))ds+

i

∑
j=1

(t − t j)β−1J(t j,x(t j),y(t j)),

t ∈ (ti,ti+1], i = 0,1,2, · · · . (3.21)

It is easy to see from condition (i) that

| f (t,x(t),y(t))| =
∣∣∣∣ f

(
t,

ρ(t)x(t)
ρ(t)

,
�(t)y(t)

�(t)

)∣∣∣∣
� c f +b f ρ(t)|x(t)|+a f Φ−1 (�(t)|y(t)|)
� c f +b f ||x||+a f Φ−1 (||y||) . (3.22)

Similarly, we get

|F(t,x(t),y(t))| � CF +BF ||x||+AFΦ−1 (||y||) ,

|I(ts,x(ts),y(ts))| � CI,s +BI,s ||x||+AI,sΦ−1 (||y||) .
(3.23)
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From (3.20), using (3.22) and (3.23), we find for t ∈ (ti, ti+1] (i = 0,1,2, · · ·),

ρ(t)|x(t)| � (t− ti)1−α

1+ tσ |T1(x,y)(t)|

� (t− ti)1−α

1+ tσ

∫ t

0

(t− s)α−1

Γ(α)
|m(s) f (s,x(s),y(s))|ds

+
(t− ti)1−α

1+ tσ tα−1
∫ ∞

0
|φ(s)F(s,x(s),y(s))|ds

+
(t− ti)1−α

1+ tσ

i

∑
j=1

(t− t j)α−1|I(t j,x(t j),y(t j))|

� L1
(t− ti)1−α

1+ tσ

∫ t

0

(t− s)α−1

Γ(α)
skds[c f +b f ||x||+a f Φ−1 (||y||)]

+
(t− ti)1−α

1+ tσ tα−1
∫ ∞

0
|φ(s)|ds[CF +BF ||x||+AFΦ−1 (||y||)]

+
(t− ti)1−α

1+ tσ

i

∑
j=1

(t− t j)α−1[CI,s +BI,s ||x||+AI,sΦ−1 (||y||)]

� L1
t1+k

1+ tσ

∫ 1

0

(1−w)α−1

Γ(α)
wkdw[c f +b f ||x||+a f Φ−1 (||y||)]

+||φ ||1[CF+BF ||x||+AFΦ−1 (||y||)]+
+∞

∑
j=1

[CI,s+BI,s ||x||+AI,sΦ−1 (||y||)]

= L1
σ−k−1

σ

(
k+1

σ−k−1

)(k+1)/σ B(α,k+1)
Γ(α)

[c f +b f ||x||+a f Φ−1 (||y||)]

+||φ ||1[CF+BF ||x||+AFΦ−1 (||y||)]+
+∞

∑
j=1

[CI,s+BI,s ||x||+AI,sΦ−1 (||y||)].

So
ρ(t)|x(t)| � Θ1 + Θ2||x||+ Θ3Φ−1(||y||),

where

Θ1 = L1
σ − k−1

σ

(
k+1

σ − k−1

)(k+1)/σ B(α,k+1)
Γ(α)

c f +‖φ‖1CF +
∞

∑
s=1

CI,s.

It follows that

‖x‖ = sup
t∈(0,∞)

ρ(t)|x(t)| � Θ1 + Θ2‖x‖+ Θ3Φ−1(‖y‖),

or equivalently

‖x‖ � Θ1

1−Θ2
+

Θ3

1−Θ2
Φ−1(‖y‖). (3.24)
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Similarly, from (3.21) we can show that

‖y‖ � Σ1

1−Σ3
+

Σ2

1−Σ3
Φ(‖x‖) (3.25)

where

Σ1 = L2
δ − l−1

δ

(
l +1

δ − l−1

)(l+1)/δ B(β , l +1)
Γ(β )

cg +‖ψ‖1CG +
∞

∑
s=1

CJ,s.

Case 1. Suppose (3.15) holds. Without loss of generality, suppose that

‖x‖ � Φ−1
(

Σ1

Σ2

)
. (3.26)

Then, using (3.25) in (3.24) as well as (3.26) and (2.2), we get

‖x‖ � Θ1

1−Θ2
+

Θ3

1−Θ2
Φ−1

(
Σ1

1−Σ3
+

Σ2

1−Σ3
Φ(‖x‖)

)

� Θ1

1−Θ2
+

Θ3

1−Θ2
Φ−1

(
2Σ2

1−Σ3
Φ(‖x‖)

)

� Θ1

1−Θ2
+

Θ3

1−Θ2
ν

(
2Σ2

1−Σ3

)
Φ−1 (Φ(‖x‖))

=
Θ1

1−Θ2
+

Θ3

1−Θ2
ν

(
2Σ2

1−Σ3

)
‖x‖.

(3.27)

From (3.15) we have Θ3
1−Θ2

ν
(

2Σ2
1−Σ3

)
< 1, therefore it follows from (3.27) that

‖x‖ � Θ1

1−Θ2

[
1− Θ3

1−Θ2
ν

(
2Σ2

1−Σ3

)]−1

≡W. (3.28)

From the above discussion, we have either ‖x‖ � W or ‖x‖ < Φ−1
(

Σ1
Σ2

)
. Therefore,

‖x‖ � max

{
W, Φ−1

(
Σ1

Σ2

)}
≡ M1. (3.29)

Substituting (3.29) into (3.25) yields

‖y‖ � Σ1

1−Σ3
+

Σ2

1−Σ3
Φ

(
max

{
W, Φ−1

(
Σ1

Σ2

)})
≡ M2. (3.30)

Combining (3.29) and (3.30), we have proved that (3.19) holds with M = max{M1,M2}.
Case 2. Suppose (3.16) holds. Without loss of generality, suppose that

‖y‖ � Φ
(

Θ1

Θ3

)
. (3.31)
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Then, using (3.24) in (3.25) and together with (3.31) and (2.1), we find

‖y‖ � Σ1

1−Σ3
+

Σ2

1−Σ3
Φ

(
Θ1

1−Θ2
+

Θ3

1−Θ2
Φ−1(‖y‖)

)

� Σ1

1−Σ3
+

Σ2

1−Σ3
Φ

(
2Θ3

1−Θ2
Φ−1(‖y‖)

)

� Σ1

1−Σ3
+

Σ2

1−Σ3

Φ
(
Φ−1(‖y‖))

w
(

1−Θ2
2Θ3

)
=

Σ1

1−Σ3
+

Σ2

1−Σ3

1

w
(

1−Θ2
2Θ3

)‖y‖.

(3.32)

Since Σ2
1−Σ3

[
w

(
1−Θ2
2Θ3

)]−1
< 1, it is clear from (3.32) that

‖y‖ � Σ1

1−Σ3

⎡
⎣1− Σ2

1−Σ3

1

w
(

1−Θ2
2Θ3

)
⎤
⎦
−1

≡W ′. (3.33)

From the above discussion, we have either ‖y‖�W ′ or ‖y‖< Φ
(

Θ1
Θ3

)
. Hence, we get

‖y‖ � max

{
W ′, Φ

(
Θ1

Θ3

)}
≡ M3, (3.34)

which on substituting into (3.24) gives

‖x‖ � Θ1

1−Θ2
+

Θ3

1−Θ2
Φ−1

(
max

{
W, Φ

(
Θ1

Θ3

)})
≡ M4. (3.35)

Coupling (3.34) and (3.35), we have shown that (3.19) holds with M = max{M3,M4}.
The proof is complete. �

THEOREM 3.2. Let (a)–(e) hold. Furthermore, suppose that

(i) there exist nonnegative numbers c f , CF and CI,s such that
∞
∑

s=1
CI,s is convergent,

and the following hold for all (U,V ) ∈ IR2 and t ∈ (0,+∞) :∣∣∣∣ f
(

t,
U

ρ(t)
,

V
�(t)

)∣∣∣∣ � c f ,∣∣∣∣F
(

t,
U

ρ(t)
,

V
�(t)

)∣∣∣∣ � CF ,∣∣∣∣I
(

ts,
U

ρ(ts)
,

V
�(ts)

)∣∣∣∣ � CI,s;



EXISTENCE OF GLOBAL SOLUTIONS OF IMPULSIVE IVPS 53

(ii) there exist nonnegative numbers cg, CG and CJ,s such that
∞
∑

s=1
CJ,s is convergent,

and the following hold for all (U,V ) ∈ IR2 and t ∈ (0,∞) :∣∣∣∣g
(

t,
U

ρ(t)
,

V
�(t)

)∣∣∣∣ � cg,∣∣∣∣G
(

t,
U

ρ(t)
,

V
�(t)

)∣∣∣∣ � CG,∣∣∣∣J
(

ts,
U

ρ(ts)
,

V
�(ts)

)∣∣∣∣ � CJ,s.

Then, the system (1.3) has at least one solution in X ×Y .

Proof. In Theorem 3.1, choose a f = ag = b f = bg = 0, AF = AG = BF = BG = 0
and AI,s = AJ,s = BI,s = BJ,s = 0. It is easy to see that (3.15) and (3.16) hold. We get
Theorem 3.2. The proof is completed. �

4. Examples

To illustrate the usefulness of our main result, we present an example that Theorem
3.1 can readily apply.

EXAMPLE 4.1. Consider the following impulsive boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
2
5
0+u(t) = t−

1
2

[
c0 +b0

(t− s)3/5

1+ t2/3
u(t)+a0

(t− s)6/5

(1+ t2/3)3
(v(t))3

]
,

t ∈ (s,s+1], s = 0,1,2, · · · ,

D
3
5
0+v(t) = t−

1
2

[
c1 +b1

(t− s)1/5

(1+ t2/3)1/3
(u(t))

1
3 +a1

(t− s)2/5

1+ t2/3
v(t)

]
,

t ∈ (s,s+1], s = 0,1,2, · · · ,
lim
t→0

t
3
5 u(t) = B0

∫ ∞

0
e−s 1

1+ s2/3
u(s)ds,

lim
t→0

t
2
5 v(t) = B1

∫ ∞

0
e−s 1

(1+ s2/3)1/3
(u(s))

1
3 ds,

lim
t→s+

(t − s)
3
5 u(t) = 2−s, s = 1,2, · · · ,

lim
t→s+

(t − s)
2
5 v(t) = 3−s, s = 1,2, · · ·

(4.1)

where c0, b0, a0, c1, b1, a1, B0 and B1 are constants.
Corresponding to system (1.3) we have

(a) α = 2
5 , β = 3

5 ,

(b) 0 = t0 < t1 = 1 < · · · < ts = s < · · · with lim
s→∞

s = ∞ ,
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(c) m(t) = t−
1
2 = n(t) are singular at t = 0, |m(t)|= |n(t)|� L1tk = L2tl with L1 =

L2 = 1 and k = l = − 1
2 ,

(d) φ(t) = e−t = ψ(t) satisfy φ ,ψ ∈ L1(0,∞), and

(e) f , g, F, G, I and J are defined by

ρ(t) =
(t− s)3/5

1+ t2/3
, t ∈ (s,s+1], s = 0,1,2, · · · ,

�(t) =
(t − s)2/5

1+ t2/3
, t ∈ (s,s+1], s = 0,1,2, · · · ,

f

(
t,

x
ρ(t)

,
y

�(t)

)
= c0 +b0 x+a0 y3,

g

(
t,

x
ρ(t)

,
y

�(t)

)
= c1 +b1x

1/3 +a1 y,

F

(
t,

x
ρ(t)

,
y

�(t)

)
= B0 x, G

(
t,

x
ρ(t)

,
y

�(t)

)
= B1 x

1
3 ,

I
(
s, x

ρ(s) ,
y

�(s)

)
= 2−s, J

(
s, x

ρ(s) ,
y

�(s)

)
= 3−s, s = 1,2, · · · .

Choose σ = δ = 2
3 . Then, σ > k+1 and δ > l +1. It is easy to show that

(A) f , g, F, G are Carathéodory functions,

(B) I and J are discrete Carathéododory functions.

Furthermore, in the context of Theorem 3.1, we have Φ−1(x) = x3 with supporting

function w(x) = x
1
3 , and Φ(x) = x

1
3 with supporting function ν(x) = x3 . It is easy to

see that conditions (i) and (ii) in Theorem 3.1 are satisfied with

c f = |c0|, b f = |b0|, a f = |a0|,
CF = 0, BF = |B0|, AF = 0, CI,s = 2−s, BI,s = AI,s = 0,

cg = |c1|, bg = |b1|, ag = |a1|,
CG = 0, BG = |B1|, AG = 0, CJ,s = 3−s, BJ,s = AJ,s = 0.

By direct computation, we get

Θ2 =
4
√

27
4

B(2/5,1/2)
Γ(2/5)

|b0|+ |B0|,

Θ3 =
4
√

27
4

B(2/5,1/2)
Γ(2/5)

|a0|,

Σ2 =
4
√

27
4

B(3/5,1/2)
Γ(3/5)

|b1|+ |B1|,
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Σ3 =
4
√

27
4

B(3/5,1/2)
Γ(3/5)

|a1|.

Applying Theorem 3.1, we see that system (4.1) has at least one solution if (3.15) or
(3.16) holds, i.e., if

4
√

27
4

B(3/5,1/2)
Γ(3/5)

|a1| < 1,
4
√

27
4

B(2/5,1/2)
Γ(2/5)

|b0|+ |B0| < 1,

and
4√27
4

B(2/5,1/2)
Γ(2/5) |a0|

1− 4√27
4

B(2/5,1/2)
Γ(2/5) |b0|− |B0|

⎡
⎣ 4√27

2
B(3/5,1/2)

Γ(3/5) |b1|+2|B1|
1− 4√27

4
B(3/5,1/2)

Γ(3/5) |a1|

⎤
⎦

3

< 1

or
4√27
4

B(3/5,1/2)
Γ(3/5) |b1|+ |B1|

1− 4√27
4

B(3/5,1/2)
Γ(3/5) |a1|

⎡
⎣1− 4√27

4
B(2/5,1/2)

Γ(2/5) |b0|− |B0|
4√27
2

B(2/5,1/2)
Γ(2/5) |a0|

⎤
⎦
− 1

3

< 1. (4.2)

REMARK 4.1. It is easy to see from (4.2) that system (4.1) has at least one solution
for sufficiently small |a0|, |b0| , |a1|, |b1| , |B0| and |B1|.

RE F ER EN C ES

[1] R. P. AGARWAL, M. BENCHOHRA AND B. A. SLIMANI, Existence results for differential equations
with fractional order and impulses, Mem. Differential Equations Math. Phys. 44 (2008), 1–21.

[2] R. P. AGARWAL, M. BENCHOHRA AND S. HAMANI, A survey on existence results for boundary
value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math. 109
(2010), 973–1033.

[3] B. AHMAD AND J. J. NIETO, Existence of solutions for impulsive anti-periodic boundary value prob-
lems of fractional order, Taiwanese J. Math. 15 (2011), 981–993.

[4] B. AHMAD AND S. SIVASUNDARAM, Existence of solutions for impulsive integral boundary value
problems involving fractinal differential equations, Nonlinear Anal. Hybrid Syst. 3 (2009), 251–258.

[5] B. AHMAD AND S. SIVASUNDARAM, Existence of solutions for impulsive integral boundary value
problems of fractional order, Nonlinear Anal. Hybrid Syst. 4 (2010), 134–141.

[6] K. M. FURATI AND N. TATAR, An existence result for a nonlocal fractional differential problem, J.
Fract. Calc. 26 (2004), 43–51.

[7] R. HILFER, Applications of Fractional Calculus in Physics, World Scientific, River Edge, NJ, 2000.
[8] J. HENDERSON AND A. OUAHAB, Impulsive differential inclusions with fractional order, Comput.

Math. Appl. 59 (2010), 1191–1226.
[9] G. L. KARAKOSTAS, Positive solutions for the Φ -Laplacian when Φ is a sup-multiplicative-like

function, Electron. J. Differential Equations 2004 (2004), No. 68, 1–12.
[10] Y. LIU, Global Existence of Solutions for a System of Singular Fractional Differential Equations with

Impulse Effects, J. Appl. Math. Informatics, 33 (3–4) (2015), 327–342.
[11] Y. LIU, Existence of solutions of a class of impulsive periodic type BVPs for singular fractional dif-

ferential systems, The Korean Journal of Mathematics, 23 (1) (2015), 205–230.
[12] Y. LIU, New results on the existence of solutions of boundary value problems for singular fractional

differential systems with impulse effects, Tbilisi Mathematical Journal, 8 (2) (2015), 1–22.
[13] Y. LIU, B. AHMAD, A Study of Impulsive Multiterm Fractional Differential Equations with Single

and Multiple Base Points and Applications, The Scientific World Journal, 2014, Article ID 194346, 28
pages.

[14] V. V. LAKSHMIKANTHAM, D. D. BAINOV AND P. S. SIMEONOV, Theory of Impulsive Differential
Equations, World Scientific, Singapore, 1989.



56 Y. LIU

[15] V. LASHMIKANTHAN AND A. S. VATSALA, Basic theory of fractional differential equations, Non-
linear Anal. 69 (2008), 2715–2682.

[16] J. MAWHIN, Topological degree methods in nonlinear boundary value problems, in: CBMS Regional
Conference Series in Mathematics 40, American Math. Soc., Providence, R.I., 1979.

[17] F. MAINARDI, Fractional Calculus: Some basic problems in continuum and statistical mechanics, in:
Fractals and Fractional Calculus in Continuum Mechanics, 291–348, CISM Courses and Lectures 378,
Springer, Vienna, 1997.

[18] Z. MEI, J. PENG, J. GAO, Existence and uniqueness of solutions for nonlinear general fractional
differential equations in Banach spaces, Indagationes Mathematicae, 26 (4) (2015), 669–678.

[19] K. S. MILLER AND B. ROSS, An Introduction to the Fractional Calculus and Fractional Differential
Equations, John Wiley, New, York, 1993.

[20] I. PODLUBNY, Geometric and physical interpretation of fractional integration and fractional differ-
entiation, Fract. Calc. Appl. Anal. 5 (2002), 367–386.

[21] I. PODLUBNY, Fractional Differential Equations, Academic Press, London, 1999.
[22] Y. TIAN AND Z. BAI, Existence results for three-point impulsive integral boundary value problems

involving fractinal differential equations, Comput. Math. Appl. 59 (2010), 2601–2609.
[23] J. R. WANG, Y. YANG AND W. WEI, Nonlocal impulsive problems for fractional differential equa-

tions with time-varying generating operators in Banach spaces, Opuscula Math. 30 (2010), 361–381.
[24] S. ZHANG, Monotone iterative method for initial value problem involving Riemann-Liouville frac-

tional derivatives, Nonlinear Anal. 71 (2009), 2087–2093.

(Received February 4, 2015) Yuji Liu
Department of Mathematics

Guangdong University of Finance and Economics
Guangzhou 510320, P. R. China
e-mail: liuyuji888@sohu.com

Fractional Differential Calculus
www.ele-math.com
fdc@ele-math.com


