
Fractional
Differential

Calculus

Volume 6, Number 1 (2016), 57–72 doi:10.7153/fdc-06-04

FRACTIONAL CALCULUS OF VARIATIONS WITH

A GENERALIZED FRACTIONAL DERIVATIVE

HASSAN ASKARI AND ALIREZA ANSARI

Abstract. In this paper, we introduce a generalization of the Hilfer-Prabhakar derivative and
obtain the Euler-Lagrange equations and Hamiltonian formulation with respect to this fractional
derivative in the theory of fractional calculus of variations. Also, we get a sufficient condition
for optimality.

1. Introduction

With the extensions of the theory of fractional calculus and fractional differen-
tial equations, the theory of calculus of variations with fractional derivatives (fractional
calculus of variations) was also developed. In year 1996, Riewe surveyed the calcu-
lus of variations with fractional derivatives for describing nonconservative systems in
mechanics [26, 27]. Later, other researchers presented some results on applications of
fractional calculus of variations in optimal control theory, robotics, biology, chemistry
and economics [11, 18, 19, 20, 21]. For example, Almeida et al. expressed a fractional
equation of motion of a vibrating string [8]. Bastos et al. introduced discrete-time and
difference variational problems and discussed on necessary optimal conditions for these
problems.

Most of these results have been developed on finding critical points of functionals
by expressing the necessary conditions (establishing the Euler-Lagrange equation) and
the main difference of them is the type of fractional derivatives. In this sense, the com-
bined Caputo derivatives [22] and Hilfer derivative [1] have been incorporated. Also,
a few works were devoted to get sufficient conditions for fractional calculus of varia-
tions. For example, Almeida and Torres discussed on sufficient conditions of fractional
calculus of variations [7, 9].

In this paper, we intend to introduce the problem of fractional calculus of variations
with the generalized Hilfer-Prabhakar derivative introduced by Garra et al. [14]. Some
of the applications of this fractional derivative in mathematical physics and probability
have been mentioned in [14] and [23]. We obtain the associated necessary and sufficient
conditions for global extremum of functionals with respect to this type of fractional
derivative.

The paper is organized as follows: in Section 2 after recalling some preliminaries,
we define a generalized form of Hilfer-Prabhakar derivative made by a specific linear
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combination of the left-sided and right-sided Hilfer-Prabhakar derivatives. We also
present an integration by parts formula for this fractional derivative.

In Section 3, we focus on the Euler-Lagrange equation. First we consider bound-
ary conditions which enable us to use the fundamental lemma of calculus of variations
and then we get the necessary conditions for optimality of two important types of func-
tionals.

In Section 4, we present the Hamiltonian form of Euler-Lagrange equations, which
are used more in physics and mechanics. In Section 5, we state the necessary definitions
and theorems in convex analysis and optimization to get a relationship between the
Hessian matrix and sufficient condition of functional containing multiple functions. In
Section 6, we present two illustrative examples.

2. Preliminaries

DEFINITION 2.1. Let f (x) ∈ L1[a,b] , where −∞ � a < x < b � ∞ , be locally
integrable real-valued function, and μ ∈ (0,1) . The left-sided and right-sided Riemann-
Liouville fractional integrals of order μ are defined as

(I μ
a+ f )(x) =

1
Γ(μ)

∫ x

a
(x− s)μ−1 f (s)ds, (I μ

b− f )(x) =
1

Γ(μ)

∫ b

x
(s− x)μ−1 f (s)ds.

(2.1)
Also, the Riesz fractional integral of order μ is defined as

(R
aI

μ
b f )(x) =

1
2

(
(I μ

a+ f )(x)+ (I μ
b− f )(x)

)
, x ∈ [a,b]. (2.2)

DEFINITION 2.2. Let f (x) ∈ L1[a,b] , −∞ � a < x < b � ∞ , μ ∈ (0,1) , D = d
dx ,

and (I 1−μ
a+ f )(x) , (I 1−μ

b− f )(x) ∈ W 1,1[a,b] , where Wn,1[a,b] is the Sobolev space
defined as

Wn,1[a,b] = { f (x) ∈ L1[a,b] :
dn

dxn f (x) ∈ L1[a,b]}, n ∈ N. (2.3)

The left-sided and right-sided Riemann-Liouville fractional derivatives of order μ are
defined as

(Dμ
a+ f )(x) = D (I 1−μ

a+ f )(x), x > a, (Dμ
b− f )(x) = (−D)(I 1−μ

b− f )(x), x < b.
(2.4)

Also, the Riesz fractional derivative of order μ is defined as

(R
aD

μ
b f )(x) =

1
2

(
(Dμ

a+ f )(x)− (Dμ
b− f )(x)

)
, x ∈ [a,b]. (2.5)

DEFINITION 2.3. Let f (x) ∈ AC([a,b]) , −∞ � a < x < b � ∞ , the space of real-
valued functions f (x) which have absolutely continuous functions, and μ ∈ (0,1) . The
left-sided and right-sided Caputo fractional derivatives of order μ are defined as

(CDμ
a+ f )(x) = (I 1−μ

a+ Df )(x), x > a, (CDμ
b− f )(x) = −(I 1−μ

b− Df )(x), x < b.
(2.6)
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Also, the Riesz-Caputo fractional derivative of order μ is defined as

(RC
a Dμ

b f )(x) =
1
2

(
(CDμ

a+ f )(x)− (CDμ
b− f )(x)

)
, x ∈ [a,b]. (2.7)

DEFINITION 2.4. Let μ ∈ (0,1) , ν ∈ [0,1] , f (x) ∈ L1[a,b] , −∞ � a < x < b �
∞ , and (I (1−ν)(1−μ)

a+ f )(x) , (I (1−ν)(1−μ)
b− f )(x) ∈ AC[a,b] . The left-sided and right-

sided Hilfer fractional derivatives (Dμ,ν
a+ f )(x) and (Dμ,ν

b− f )(x) of order μ and type ν ,
are defined by [17]

(Dμ,ν
a+ f )(x) =

(
I

(1−ν)(1−μ)
a+ (D) I

ν(1−μ)
a+ f

)
(x), a < x < b, (2.8)

(Dμ,ν
b− f )(x) =

(
I

(1−ν)(1−μ)
b− (−D) I

ν(1−μ)
b− f

)
(x), a < x < b. (2.9)

For more information of this type of fractional derivative, see [16].

DEFINITION 2.5. The generalized Mittag-Leffler function is defined as [24]

Eγ
ρ ,μ(x) =

∞

∑
n=0

Γ(γ +n)
Γ(γ)Γ(ρn+ μ)

xn

n!
, ℜ(ρ) > 0, ℜ(μ) > 0, γ ∈ C. (2.10)

DEFINITION 2.6. Let f ∈ L1[a,b] , −∞ � a < x < b � ∞ . The left-sided and
right-sided Prabhakar integrals are defined as

(Eγ
ρ ,μ,w,a+ f )(x) =

∫ x

a
(x− s)μ−1 Eγ

ρ ,μ(w(x− s)ρ) f (s)ds, w ∈ C, (2.11)

(Eγ
ρ ,μ,w,b− f )(x) =

∫ b

x
(s− x)μ−1 Eγ

ρ ,μ(w(s− x)ρ) f (s)ds, w ∈ C. (2.12)

For more information about the applications of these integrals, see [28].

DEFINITION 2.7. We define HP[a,b] , −∞ � a < x < b � ∞ , the space of real-
valued functions f (x) ∈ L1[a,b] which

(E−γ(1−ν)
ρ ,(1−ν)(1−μ),w,a+ f )(x) and (E−γ(1−ν)

ρ ,(1−ν)(1−μ),w,b− f )(x) ∈ AC[a,b].

The left-sided and right-sided Hilfer-Prabhakar derivatives of f are defined as [14]

(D γ,μ,ν
ρ ,w,a+ f )(x) =

(
E−γ(1−ν)

ρ ,(1−ν)(1−μ),w,a+ (D) E−γν
ρ ,ν(1−μ),w,a+ f

)
(x), x ∈ (a,b), (2.13)

(D γ,μ,ν
ρ ,w,b− f )(x) =

(
E−γ(1−ν)

ρ ,(1−ν)(1−μ),w,b− (−D) E−γν
ρ ,ν(1−μ),w,b− f

)
(x), x ∈ (a,b), (2.14)

where γ,w ∈ R , ρ > 0, μ ∈ (0,1) , and ν ∈ [0,1] .
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PROPERTY 2.8. For f , g ∈ HP[a,b] , the following relation holds for the Prab-
hakar integrals∫ b

a
f (x) (Eγ

ρ ,μ,w,a+g)(x)dx =
∫ b

a
g(x) (Eγ

ρ ,μ,w,b− f )(x)dx. (2.15)

Proof. The result is obtained by applying the relations (2.11) and (2.12), and
changing the order of integration. �

PROPERTY 2.9. Let f , g ∈ HP[a,b] . The following integration by parts formula
holds∫ b

a
f (x) (D γ,μ,ν

ρ ,w,a+g)(x)dx =
∫ b

a
g(x) (D γ,μ,1−ν

ρ ,w,b− f )(x)dx

+
[
(E−γ(1−ν)

ρ ,(1−ν)(1−μ),w,b− f )(x) (E−γν
ρ ,ν(1−μ),w,a+g)(x)

]∣∣∣∣b
a
. (2.16)

Proof. The result is obtained by applying (2.14) and (2.16), and changing the order
of integration. �

DEFINITION 2.10. Let f ∈ HP[a,b] . For θ ∈ [0,1] , we define the generalized
fractional Hilfer-Prabhakar derivative (GFHPD) of f (t) as

(D γ,μ,ν,θ
ρ ,w f )(x) = θ (D γ,μ,ν

ρ ,w,a+ f )(x)− (1−θ )(D γ,μ,ν
ρ ,w,b− f )(x). (2.17)

REMARK 2.11. Let f ∈ HP[a,b] . The relationship between GFHPD fractional
derivative and Hilfer fractional derivative is given as follows

(D0,μ,ν,1
ρ ,w f )(x) = (D0,μ,ν

ρ ,w,a+ f )(x) = (Dμ,ν
a+ f )(x), (2.18)

(D0,μ,ν,0
ρ ,w f )(x) = −(D0,μ,ν

ρ ,w,b− f )(x) = −(Dμ,ν
b− f )(x). (2.19)

REMARK 2.12. Let f ∈ HP[a,b] . If we consider some special values for the
parameters of GFHPD (2.17), we can obtain various fractional derivatives as follows

(D0,μ,1,1
ρ ,w f )(x) = (Dμ,1

a+ f )(x) = (Dμ
a+ f )(x), (2.20)

(D0,μ,0,1
ρ ,w f )(x) = (Dμ,0

a+ f (x) = (CD
μ
a+ f )(x), (2.21)

(D0,μ,1,0
ρ ,w f )(x) = −(Dμ,1

b− f )(x) = −(Dμ
b− f )(x), (2.22)

(D0,μ,0,0
ρ ,w f )(x) = −(Dμ,0

b− f )(x) = −(CD
μ
b− f )(x), (2.23)

(D0,μ,1, 1
2

ρ ,w f )(x) =
1
2

(
(Dμ,1

a+ f )(x)−D
μ,1
b− f )(x)

)
= (RaD

μ
b f )(x), (2.24)

(D
0,μ,0, 1

2
ρ ,w f )(x) =

1
2

(
(CD

μ,0
a+ f )(x)− (CD

μ,0
b− f )(x)

)
= (RC

a D
μ
b f )(x). (2.25)
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THEOREM 2.13. Let f ,g ∈ HP[a,b] . The following integration by parts formula
holds for the GFHPD derivatives

∫ b

a
f (x) (D γ,μ,ν,θ

ρ ,w g)(x)dx = −
∫ b

a
g(x) (D γ,μ,1−ν,1−θ

ρ ,w f )(x)dx

+θ
[
(E−γ(1−ν)

ρ ,(1−ν)(1−μ),w,b− f )(x)(E−γν
ρ ,ν(1−μ),w,a+g)(x)

]∣∣∣∣b
a

+(1−θ )
[
(E−γ(1−ν)

ρ ,(1−ν)(1−μ),w,a+ f )(x)(E−γν
ρ ,ν(1−μ),w,b−g)(x)

]∣∣∣∣b
a
.

(2.26)

Proof. Using (2.16) and (2.17), the relation (2.26) can easily be obtained. �

COROLLARY 2.14. Let f ,g∈HP[a,b] . By applying Remark 2.11 for the different
values of parameters γ and θ , the following integration by parts formulas hold

∫ b

a
f (x)(Dμ,ν

a+ g)(x)dx =
∫ b

a
g(x)(Dμ,1−ν

b− f )(x)dx+
[
(I (1−ν)(1−μ)

b− f )(x)(I ν(1−μ)
a+ g)(x)

]∣∣∣∣b
a
,

(2.27)∫ b

a
f (x) (RC

a Dμ
b g)(x)dx = −

∫ b

a
g(x) (R

aDμ
b f )(x)dx+

[
g(x) (R

aI 1−μ
b f )(x)

]∣∣∣∣b
a
, (2.28)

∫ b

a
f (x) (CaD

μ
x g)(x)dx =

∫ b

a
g(x) (xD

μ
b f )(x)dx+

[
g(x) (xI

1−μ
b f )(x)

]∣∣∣∣b
a
. (2.29)

3. Euler-Lagrange equations with GFHPD

In this section, we intend to get the necessary conditions for optimality of the
fractional calculus of variations problem. We know that the key of obtaining Euler-
Lagrange equation for a functional is the fractional integration by parts formula an-
nounced in the previous section. For obtaining the associated Euler-Lagrange equation
some definitions are in order.

DEFINITION 3.1. Let r,k ∈ N , [a,b] = [a1,b1]× [a2,b2]× ·· · × [ar+1,br+1] ⊆
Rr+1 and u(x) = (u1(x), · · · ,ur(x)) ∈ Rr be a vector function. We say F(x,u(x)) ∈
Ck[a,b] if F is k -times continuously differentiable with respect to all arguments.

DEFINITION 3.2. The vector function u is a local extremum of functional J[u]
if for any u∗ there exists δ ∈ (0,∞) such that ‖u−u∗‖ < δ and J[u∗]− J[u] > 0 or
J[u∗]− J[u] < 0. Also, we say that the vector function u is a global extremum of
functional J[u] if for (x,u∗) ∈ DF , J[u∗]−J[u] > 0 or J[u∗]−J[u] < 0.
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3.1. A functional containing multiple fractional derivatives

PROBLEM 3.3. Given y∗(x) ∈ HP[a,b] , the space of continuously differential
functions, find the function y(x) such that the functional

J[y] =
∫ b

a
F
(
x,y,D γ1,μ1,ν1,θ1

ρ1,w1 y, · · · ,D γn,μn,νn,θn
ρn,wn y

)
dx, (3.1)

with given boundary conditions attains the optimal value. The function F has continu-

ously derivatives with respect to all components and y(x) ,
∂F

∂D
γ j ,μ j ,ν j ,θ j
ρ j ,wj y

∈ HP[a,b] ,

for all j = 1, ...,n.

To respond to this problem, let ε ∈ R and define a family of curves y∗(x) = y(x)+
εη(x) ∈C1[a,b] which satisfy equation (3.1) and given boundary conditions. To derive
the necessary conditions of extremum, we compute [15]

∂J(ε)
∂ε

∣∣
ε=0 =

∂J(y∗(x))
∂ε

∣∣
ε=0 = 0, (3.2)

and since the fractional operator has linear property, we get

0 =
∫ b

a

⎛⎝∂F
∂y

η +
n

∑
j=1

∂F

∂D
γ j ,μ j ,ν j ,θ j
ρ j ,wj y

D
γ j ,μ j ,ν j ,θ j
ρ j ,wj η

⎞⎠dx, (3.3)

or equivalently by using (2.26), we have

0 =
∫ b

a

⎛⎝∂F
∂y

−
n

∑
j=1

D
γ j ,μ j ,1−ν j ,1−θ j
ρ j ,wj

∂F

∂D
γ j ,μ j ,ν j ,θ j
ρ j ,wj y

⎞⎠η dx

+
n

∑
j=1

[
θ j

(
E
−γ j(1−ν j)
ρ j ,(1−ν j)(1−μ j),wj ,b−

∂F

∂D
γ j ,μ j ,ν j ,θ j
ρ j ,wj y

)(
E
−γ jν j

ρ j ,ν j(1−μ j),wj ,a+η
)

+(1−θ j)
(

E
−γ j(1−ν j)
ρ j ,(1−ν j)(1−μ j),wj ,a+

∂F

∂D
γ j ,μ j ,ν j ,θ j
ρ j ,wj y

)(
E
−γ jν j

ρ j ,ν j(1−μ j),wj ,b−η
)]∣∣∣∣b

a
. (3.4)

DEFINITION 3.4. We consider the boundary conditions of functional (3.1) with
respect to the associated terminal conditions of (3.4), that are[

n

∑
j=1

θ j

(
E
−γ j(1−ν j)
ρ j ,(1−ν j)(1−μ j),wj ,b−

∂F

∂D
γ j ,μ j ,ν j ,θ j
ρ j ,wj y

) (
E
−γ jν j

ρ j ,ν j(1−μ j),wj ,a+η
)

+(1−θ j)
(

E
−γ j(1−ν j)
ρ j ,(1−ν j)(1−μ j),wj ,a+

∂F

∂D
γ j ,μ j ,ν j ,θ j
ρ j ,wj y

)(
E
−γ jν j

ρ j ,ν j(1−μ j),wj ,b−η
)]∣∣∣∣∣

b

a

= 0.

(3.5)
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It should be noted that depending on the values of parameters of (3.1), the bound-
ary condition may be changed and we can consider different cases such that the equation
(3.5) holds.

THEOREM 3.5. Let y(x) ∈ HP[a,b] be a solution of Problem 3.3 with the bound-
ary conditions, then y(x) must satisfy the following fractional Euler-Lagrange equation

∂F
∂y

−
n

∑
j=1

D
γ j ,μ j ,1−ν j ,1−θ j
ρ j ,wj

∂F

∂D
γ j ,μ j ,ν j ,θ j
ρ j ,wj y

= 0, ∀x ∈ [a,b]. (3.6)

The function F has continuously derivatives with respect to all components and
∂F

∂D
γ j ,μ j ,ν j ,θ j
ρ j ,wj y

∈ HP[a,b] , for all j = 1, ...,n.

Proof. The boundary conditions in Definition 3.4 lead to the terminal condition
(3.5). Since η(x)∈C1[a,b] is an arbitrary function, we can use the fundamental lemma
in calculus of variations to get the relation (3.6). �

REMARK 3.6. Some special cases for the Euler-Lagrange equation (3.6):

1. In the case γ = 0, θ = 0 or γ = 0, θ = 1, we get the Euler-Lagrange equations
of Hilfer multiple fractional derivatives [1].

2. In the case γ = 0, ν = 0 and θ = 1, we get the Euler-Lagrange equations of
Caputo multiple fractional derivatives [2], [7].

3. In the case γ = 0, ν = 1 and θ = 1, we get the Euler-Lagrange equations of
Riemman-Lioville multiple fractional derivatives [5], [10].

4. In the case γ = 0, ν = 0 and θ = 1
2 , we get the Euler-Lagrange equations of

Riesz-Caputo multiple fractional derivatives [3], [6], [12].

5. In the case γ = 0, ν = 1 and θ = 1
2 , we get the Euler-Lagrange equations of

Riesz multiple fractional derivatives [3].

3.2. A functional containing multiple functions

PROBLEM 3.7. For all vector functions y∗(x) = (y∗1(x), · · · ,y∗n(x)) ∈ (C1[a,b])n

find the vector function y(x) = (y1(x), · · · ,yn(x)) ∈ (C1[a,b])n such that the functional

J[y] =
∫ b

a
F
(
x,y1, · · · ,yn,D

γ,μ,ν,θ
ρ ,w y1, · · · ,D γ,μ,ν,θ

ρ ,w yn

)
dx, (3.7)

with given boundary conditions attains the optimal value. The function F has con-

tinuously derivatives with respect to all components and y∗j(x) , y j(x) ,
∂F

∂D
γ,μ,ν,θ
ρ ,w y j

∈
HP[a,b] , for all j = 1, ...,n.
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Let ε ∈R and define a family of vector functions y∗(x)= y(x)+εη(x)∈ (C1[a,b])n

that satisfy the relation (3.7) and given boundary conditions where y∗j(x) = y j(x) +
εη j(x) , j = 1, · · · ,n, is the j -th argument of y∗(x) . Now, by similar discussion to
Theorem 3.5 we state the following theorem for the necessary conditions of extremum.

THEOREM 3.8. Let y(x)∈ (C1[a,b])n be a solution of Problem 3.7 with the bound-
ary conditions

[
θ
(

E−γ(1−ν)
ρ ,(1−ν)(1−μ),w,b−

∂F

∂D γ,μ,ν,θ
ρ ,w y j

)(
E−γν

ρ ,ν(1−μ),w,a+η j

)

+(1−θ )
(

E−γ(1−ν)
ρ ,(1−ν)(1−μ),w,a+

∂F

∂D γ,μ,ν,θ
ρ ,w y j

)(
E−γν

ρ ,ν(1−μ),w,b−η j

)]∣∣∣∣b
a
= 0, j = 1, · · · ,n,

(3.8)

where F has continuously derivatives with respect to all components and y∗j(x) , y j(x) ,
∂F

∂D γ,μ,ν,θ
ρ ,w y j

∈ HP[a,b] , for all j ∈ {1, ...,n} , then, y(x) must satisfy the following

fractional Euler-Lagrange equations

∂F
∂y j

−D γ,μ,1−ν,1−θ
ρ ,w

∂F

∂D
γ,μ,ν,θ
ρ ,w y j

= 0, j = 1, · · · ,n. (3.9)

4. Fractional Hamiltonian formulation

In this section, we intend to present the fractional Hamiltonian formulation in
terms of the GFHPD. In other words, instead of solving the multiple fractional dif-
ferential equations (3.9), we will make 2n fractional differential equations which are
equivalent to a system of Euler-Lagrange equations.

We express F
(
x,y1, · · · ,yn,D

γ,μ,ν,θ
ρ ,w y1, · · · ,D γ,μ,ν,θ

ρ ,w yn

)
∈ C2[a,b] in terms of a

new function H as

H = −F+
n

∑
j=1

p j (D γ,μ,ν,θ
ρ ,w y j), (4.10)

where

p j =
∂F

∂ (D γ,μ,ν,θ
ρ ,w y j)

, j = 1, · · · ,n. (4.11)

Also, F has twice continuously derivatives with respect to all components and y j(x) ,
p j , ∈ HP[a,b] for all j ∈ {1, ...,n} , In order to write (D γ,μ,ν,θ

ρ ,w y1), · · · ,(D γ,μ,ν,θ
ρ ,w yn) as

the functions of variables x, y1, · · · ,yn, we assume that the Jacobian is nonzero, i.e.,
[15]
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∂ (p1, · · · , pn)

∂ (D γ,μ,ν,θ
ρ ,w y1) · · ·∂ (D γ,μ,ν,θ

ρ ,w yn)

= det

⎡⎢⎢⎢⎢⎢⎢⎣

∂ 2F

∂ (D γ,μ,ν,θ
ρ ,w y1)2

· · · ∂ 2F

∂ (D γ,μ,ν,θ
ρ ,w y1)∂ (D γ,μ,ν,θ

ρ ,w yn)
... · · · ...

∂ 2F

∂ (D γ,μ,ν,θ
ρ ,w yn)∂ (D γ,μ,ν,θ

ρ ,w y1)
· · · ∂ 2F

∂ (D γ,μ,ν,θ
ρ ,w yn)2

⎤⎥⎥⎥⎥⎥⎥⎦ �= 0. (4.12)

The function H is called the Hamiltonian and the new variables x , y1, · · · , yn ,
p1, · · · , pn , H are called the canonical variables. We present how the Euler-Lagrange
equation (3.9) is in terms of the fractional canonical variables. By the relation (4.10),
we have

dH = −∂F
∂x

dx−
n

∑
j=1

(
∂F
∂y j

dy j +
∂F

∂ (D γ,μ,ν,θ
ρ ,w y j)

d(D γ,μ,ν,θ
ρ ,w y j)

)

+
n

∑
j=1

(
dp j (D γ,μ,ν,θ

ρ ,w y j)+ p j d(D γ,μ,ν,θ
ρ ,w y j)

)
, (4.13)

which by using equation (4.11) leads to

dH = −∂F
∂x

dx+
n

∑
j=1

(
− ∂F

∂y j
dy j +dp j (D γ,μ,ν,θ

ρ ,w y j)
)

. (4.14)

Now, as H = H (x,y1, · · · ,yn, p1, · · · , pn) and writing

dH =
∂H

∂x
dx+

n

∑
j=1

(
∂H

∂y j
dy j +

∂H

∂ p j
dp j

)
, (4.15)

we compare the equation (4.14) with (4.15) and use the equation (3.9) to get the canon-
ical system of Euler-Lagrange equations as

∂H

∂y j
= −D γ,μ,1−ν,1−θ

ρ ,w p j,
∂H

∂ p j
= D γ,μ,ν,θ

ρ ,w y j, j = 1, · · · ,n, . (4.16)

and
∂H

∂x
= −∂F

∂x
. (4.17)

REMARK 4.1.

1. In the case γ = 0, θ = 0 or γ = 0, θ = 1, we get the Hamiltonian formulation
of Hilfer fractional derivatives of multiple functions [1].
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2. In the case γ = 0, ν = 0 and θ = 1, we get the Hamiltonian formulation of
Caputo multiple fractional derivatives [13].

3. In the case γ = 0, ν = 1 and θ = 1, we get the Hamiltonian formulation of
Riemman-Lioville fractional derivatives of multiple functions [4], [25].

4. In the case γ = 0, ν = 0 and θ = 1
2 , we get the Hamiltonian formulation of

Riesz-Caputo multiple fractional derivatives [3].

Similarly, it should be noted that the Hamiltonian form of a functional with several
fractional derivatives of type GFHPD can be defined.

5. Sufficient condition

In this section, we present a sufficient condition for optimality of functionals in-
cluding multiple functions.

DEFINITION 5.1. i) For each x ∈ [a,b] , we define

Ωx = {u(x) ∈ R
2n|(x,u(x)

) ∈ DF}. (5.18)

ii) A function F is concave on convex set Ωx if and only if

F(x,z2)−F(x,z1) � (z2− z1)∇F(x,z1), for all z1,z2 ∈ Ωx. (5.19)

THEOREM 5.2. Let Ωx as

Ωx =
{(

y1(x), · · · ,yn(x),D
γ,μ,ν,θ
ρ ,w y1, · · · ,D γ,μ,ν,θ

ρ ,w yn

)
∈ R

2n :(
x,y1(x), · · · ,yn(x),D

γ,μ,ν,θ
ρ ,w y1, · · · ,D γ,μ,ν,θ

ρ ,w yn

)
∈ DF

}
, (5.20)

be a convex set. We suppose that in relation (3.7), F is a concave function on the convex
set Ωx and y(x) satisfies the fractional Euler-Lagrange equations (3.9) with terminal
conditions (3.8), then, J(y) has a global maximum at y(x) .

Proof. In Definition 5.1, we set u(x) =
(
y1, · · · ,yn,D

γ,μ,ν,θ
ρ ,w y1, · · · ,D γ,μ,ν,θ

ρ ,w yn
)
(x) ,

therefore for all u(x) and û(x) ∈ Ωx , we can deduce from (5.19)

F(x, û(x))−F(x,u(x)) �
n

∑
i=1

[(
(ŷi − yi)

∂F
∂yi

+D
γ,μ,ν,θ
ρ ,w (ŷi− yi)

)]
. (5.21)
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Now, we integrate the relation (5.21) over interval [a,b] to get

J(ŷ)−J(y) =
∫ b

a

[
F(x, û(x))−F(x,u(x))

]
dx

�
∫ b

a

n

∑
i=1

[
∂F
∂y j

−D
γ,μ,1−ν,1−θ
ρ ,w

∂F

∂D γ,μ,ν,θ
ρ ,w y j

]
(ŷi − yi)dx

+
n

∑
j=1

[
θ
(

E−γ(1−ν)
ρ ,(1−ν)(1−μ),w,b−

∂F

∂D
γ,μ,ν,θ
ρ ,w y j

) (
E−γν

ρ ,ν(1−μ),w,a+(ŷi − yi)
)

+(1−θ )
(

E−γ(1−ν)
ρ ,(1−ν)(1−μ),w,a+

∂F

∂D
γ,μ,ν,θ
ρ ,w y j

)(
E−γν

ρ ,ν(1−μ),w,b−(ŷi−yi)
)]∣∣∣∣b

a
.

(5.22)

At this point, by using the boundary conditions, replacing η j by (ŷ j−y j) and applying
the relations (3.8) and (3.9), the right hand side of relation (5.22) vanishes. Therefore,
we get

J(ŷ) � J(y), (5.23)

which completes the proof. �

6. Illustrative examples

EXAMPLE 6.1. We intend to find the maximizer y ∈ C1[0,1] for the following
functional with the associated boundary conditions

J(y) = −1
2

∫ 1

0
(D γ,μ,ν,θ

ρ ,w y)2(x)dx, (6.24)

where y(x) , and (D γ,μ,ν,θ
ρ ,w y) ∈ HP[0,1] . By using the relation (3.6), we get the Euler-

Lagrange equation as

D γ,μ,1−ν,1−θ
ρ ,w (D γ,μ,ν,θ

ρ ,w y) = 0, ∀ x ∈ [0,1]. (6.25)

• In the special case γ = 0 and θ = 1, we have

J(y) = −1
2

∫ 1

0
(Dμ,ν

0+ y)2(x)dx,

and by using (3.5), we know that the natural boundary conditions for this func-
tional is [(

I
(1−ν)(1−μ)
1−

∂F

∂D
μ,ν
0+ y

) (
I

ν(1−μ)
0+ η

)]1

0

= 0. (6.26)
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Also, the Euler-Lagrange equation (6.25) is reduced to D
μ,(1−ν)
1− (Dμ,ν

0+ y) = 0
and the solution of this fractional differential equation for α > 1

2 is [1]

y(x) = (2α −1)
Γ(α)
Γ(μ)

∫ x

0

dς
(1− ς)(1−α)(x− ς)1−μ , α >

1
2
, (6.27)

where α = μ + ν − μν .

• In the special case γ = 0, θ = 1 and ν = 0, we have

J(y) = −1
2

∫ 1

0
(CD

μ
0+y)2(x)dx,

and by using (3.5), we know that the natural boundary conditions for this func-
tional is [(

I
(1−μ)
1−

∂F

∂ D
μ,ν
0+ y

)
η

]∣∣∣1
0
= 0. (6.28)

We consider the boundary conditions for J(y) as

y(0) = 0 and y(1) = 1, (6.29)

and since a family of functions y(x) + η(x) ∈ C1 must satisfy these boundary
conditions, we have η(0) = 0 and η(1) = 0. Therefore, the terminal condition
(6.28) is established.

Also, the Euler-Lagrange equation (6.25) is reduced to Dμ
1−(CDμ

0+y) = 0 and the
solution of this fractional differential equation for μ > 1

2 is [1]

y(x) = (2μ −1)
∫ x

0

dς
[(1− ς)(x− ς)]1−μ , μ >

1
2
. (6.30)

In this sense, we will discuss on the sufficient conditions of maximizer solutions. For
this purpose, we set u1(x) = y(x) and u2(x) = (D γ,μ,ν,θ

ρ ,w y)(x) in (5.18) and choose(
y1(x),(D

γ,μ,ν,θ
ρ ,w y1)(x)

)
and

(
y2(x),(D

γ,μ,ν,θ
ρ ,w y2)(x)

)
∈ Ωx , where

Ωx =
{(

y(x),(D γ,μ,ν,θ
ρ ,w y)(x)

)
∈ R

2 :
(
x,y(x),(D γ,μ,ν,θ

ρ ,w y)(x)
)
∈ DF

}
, (6.31)

and
DF =

{(
x,y(x),(D γ,μ,ν,θ

ρ ,w y)(x)
)

: y(x) ∈ HP[0,1]
}
.

Hence we deduce
(
x,y1(x),(D

γ,μ,ν,θ
ρ ,w y1)(x)

)
and

(
x,y2(x),(D

γ,μ,ν,θ
ρ ,w y2)(x)

)
∈DF and

according to the linearity property of fractional derivative (D γ,μ,ν,θ
ρ ,w y)(x) for any λ ∈

[0,1]

λ
(
x,y1(x),(D

γ,μ,ν,θ
ρ ,w y1)(x)

)
+(1−λ )

(
x,y2(x),(D

γ,μ,ν,θ
ρ ,w y2)(x)

)
=
(
x,λy1(x)+ (1−λ )y2(x),

(
D γ,μ,ν,θ

ρ ,w [λy1(x)+ (1−λ )y2(x)]
)
(x)
)
∈ DF ,
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which implies that(
λy1(x)+ (1−λ )y2(x),

(
D γ,μ,ν,θ

ρ ,w [λy1(x)+ (1−λ )y2(x)]
)
(x)
)
∈ Ωx, 0 � λ � 1,

and Ωx is convex set. Also, F(x,u1,u2) =−1
2
u2

2,
∂ 2F
∂u2

1

= 0,
∂ 2F
∂u2

2

=−1 and
∂ 2F
∂u2

1

∂ 2F
∂u2

2

−
(

∂ 2F
∂u1∂u2

)2

= 0. We conclude that F is a concave function on the convex set Ωx

and by using Theorem 5.2, we deduce that the solutions (6.27) and (6.30) give the
global maximums of related functionals.

EXAMPLE 6.2. We intend to find the maximizer y(x)= (y1(x),y2(x))∈ (AC[0,1])2

for the following functional

J(y) =
∫ 1

0
[−y2

1(x)−3y2
2(x)−2(RC

0 Dμ
1 y1)2(x)− (RC

0 Dμ
1 y2)2(x)]dx, (6.32)

with boundary conditions

y(0) = (0,1) and y(1) = (1,0), (6.33)

where y1(x), y2(x), (RC
0 Dμ

1 y1)(x), (RC
0 Dμ

1 y1)(x) ∈C2[0,1] and μ ∈ (0,1) .
In this case, using (3.8) for F = −u2

1 − 3u2
2 − 2u2

3 − u2
4, u1(x) = y1(x) , u2(x) =

y2(x) , u3(x) = (RC
0 Dμ

1 y1)(x) and u4(x) = (RC
0 Dμ

1 y2)(x) , the terminal condition is re-
duced to [(

I
1−μ
1−

∂F
∂ RC

0 Dμ
1 y j

+I
1−μ
0+

∂F
∂ RC

0 Dμ
1 y j

)
η j

]1

0

= 0, j = 1,2. (6.34)

Since, a family of functions y1(x)+ η1(x) ∈ C1 and y2(x)+ η2(x) ∈ C1 must satisfy
the boundary condition (6.33), we have

η1(x) = 0 and η2(x) = 0 for x = 0,1. (6.35)

Thus, the terminal condition (6.34) and consequently the boundary conditions (6.33)
established for functional (6.32). On the other hand, we know

∂F
RC
0 D

μ
1 y2

= −RC
0 Dμ

1 y2, and
∂F

RC
0 D

μ
1 y1

= −4 RC
0 Dμ

1 y1, (6.36)

which by applying the relations (3.9) and (6.36), we get the Euler-Lagrange equations
for (6.32) as {

y1 +2 R
0D

μ
1

(
RC
0 D

μ
1 y1

)
= 0, ∀x ∈ [0,1],

3y2 + R
0Dμ

1

(
RC
0 Dμ

1 y2
)

= 0, ∀x ∈ [0,1].
(6.37)
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In this case, by using the relations (5.18) we define the set Ωx as

Ωx =
{(

y1(x),y2(x),(RC
0 Dμ

1 y1)(x),(RC
0 Dμ

1 y2)(x)
)
∈ R

4 :(
x,y1(x),y2(x),(RC

0 Dμ
1 y1)(x),(RC

0 Dμ
1 y2)(x)

)
∈ DF

}
(6.38)

where

DF =
(
x,y1(x),y2(x),(RC

0 D
μ
1 y1)(x),(RC

0 D
μ
1 y2)(x)

)
: y1(x), y2(x) ∈ AC[0,1]

}
.

Since, the fractional derivative (RC
0 Dμ

1 y)(x) has the linearity property, thus for any
λ ∈ [0,1] and (

x,y1(x),y2(x),(RC
0 Dμ

1 y1)(x),(RC
0 Dμ

1 y2)(x)
)
,(

x,z1(x),z2(x),(RC
0 Dμ

1 z1)(x),(RC
0 Dμ

1 z2)(x)
)
∈ DF ,

we have

λ
(
x,y1(x),y2(x),(RC

0 Dμ
1 y1)(x),(RC

0 Dμ
1 y2)(x)

)
+(1−λ )

(
x,z1(x),z2(x),(RC

0 Dμ
1 z1)(x),(RC

0 Dμ
1 z2)(x)

)
∈ DF

which implies that Ωx is a convex set. Also, the Hessian matrix H(F)

H(F) =

⎡⎢⎢⎣
−2 0 0 0
0 −6 0 0
0 0 −4 0
0 0 0 −1

⎤⎥⎥⎦
4×4

(6.39)

is negative definite. We conclude that F is a concave function and hence based on Theo-
rem 5.2, the solutions of Euler-Lagrange equations (6.37) with the boundary conditions
(6.33) give the sufficient conditions for the maximum. In other words, any y = (y1,y2)
which satisfy the equations⎧⎪⎪⎪⎨⎪⎪⎪⎩

y1 +2 R
0Dμ

1

(
RC
0 Dμ

1 y1
)

= 0, ∀x ∈ [0,1],

3y2 + R
0D

μ
1

(
RC
0 D

μ
1 y2

)
= 0, ∀x ∈ [0,1],

y1(0) = y2(1) = 0, y1(1) = y2(0) = 1,

(6.40)

gives the global maximum of functional J(y) in (6.32).
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