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ABOUT THE EXISTENCE OF SOLUTIONS FOR A HYBRID

NONLINEAR GENERALIZED FRACTIONAL PANTOGRAPH EQUATION

E. T. KARIMOV, B. LÓPEZ AND K. SADARANGANI

Abstract. The main purpose of this paper is to study the existence of solutions for the following
hybrid nonlinear fractional pantograph equation⎧⎪⎨

⎪⎩
Dα

0+

[
x(t)

f (t,x(t),x(ϕ(t)))

]
= g(t,x(t),x(ρ(t))), 0 < t < 1

x(0) = 0,

where α ∈ (0,1) , ϕ and ρ are functions from [0,1] into itself and Dα
0+ denotes the Riemann-

Liouville fractional derivative. The main tool of our study is a generalization of Darbo’s fixed
point theorem associated to measures of non-compactness. Also, we present an example illus-
trating our results.
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