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ABOUT THE EXISTENCE OF SOLUTIONS FOR A HYBRID

NONLINEAR GENERALIZED FRACTIONAL PANTOGRAPH EQUATION

E. T. KARIMOV, B. LÓPEZ AND K. SADARANGANI

Abstract. The main purpose of this paper is to study the existence of solutions for the following
hybrid nonlinear fractional pantograph equation⎧⎪⎨

⎪⎩
Dα

0+

[
x(t)

f (t,x(t),x(ϕ(t)))

]
= g(t,x(t),x(ρ(t))), 0 < t < 1

x(0) = 0,

where α ∈ (0,1) , ϕ and ρ are functions from [0,1] into itself and Dα
0+ denotes the Riemann-

Liouville fractional derivative. The main tool of our study is a generalization of Darbo’s fixed
point theorem associated to measures of non-compactness. Also, we present an example illus-
trating our results.

1. Introduction

Fractional differential equations have recently been studied by a lot of number of
researchers due to the fact that they are valuable tools in the mathematical modelling
of many phenomena appearing in the fields of physics, chemistry, aerodynamics, eco-
nomics, control theory, signal and image processing, etc... For details, see, for example,
[1–4] and the references therein.

In the literature, differential equations with proportional delays are usually referred
to as pantograph equations. The name pantograph originated from the work [5] on the
collection of current by the pantograph head of an electric locomotive. There are a great
number of papers devoted to the qualitative properties and numerical solutions of these
equations (see, for example, [6–10]).

The pantograph equation has the form{
y′(t) = ay(t)+by(λ t), 0 � t � T

y(0) = y0,

where 0 < λ < 1.
Recently, in [11], the authors considered the fractional version of the pantograph

equation, namely {
Dα

0+u(t) = g(t,u(t),y(λ t)), 0 � t � T

u(0) = u0,
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where α,λ ∈ (0,1) and Dα
0+ denotes the Riemann-Liouville fractional derivative. The

main tool used in this study was the Banach contraction principle.
On the other hand, the following hybrid differential equation of first order⎧⎪⎨

⎪⎩
d
dt

[
x(t)

f (t,x(t))

]
= g(t,x(t)), 0 � t < T,

x(t0) = x0

was studied in [12] under the assumptions f ∈C ([0,T )×R,R\ {0}) and g ∈C([0,T )
×R,R) .

In [13], the authors discussed the fractional version of the last equation, i.e.,⎧⎪⎨
⎪⎩

Dα
0+

[
x(t)

f (t,x(t))

]
= g(t,x(t)), 0 � t � T

x(0) = 0,

where α ∈ (0,1) , f ∈ C ([0,T ]×R,R\ {0}) and g ∈ C ([0,T ]×R,R) , being a fixed
point theorem in Banach algebras the main tool used by the authors.

Recently, in [14] the authors studied the following hybrid fractional pantograph
equation ⎧⎪⎨

⎪⎩
Dα

0+

[
x(t)

f (t,x(t),x(μt))

]
= g(t,x(t),x(σ t)), 0 < t < 1

x(0) = 0,

where α,μ ,σ ∈ (0,1) , f ∈ C ([0,1]×R×R,R\ {0}) and g ∈ C ([0,1]×R×R,R),
being a generalization of Darbo’s fixed point theorem by using comparison functions
the main tool used in the paper.

We also note work [15], where using a measure of non-compactness argument
combined with the generalized version of Darbo’s theorem, authors provide sufficient
conditions for the existence of at least one solution to the functional equation

x(t) = F

⎛
⎝t,x(a(t)),

f (t,x(b(t)))
Γq(α)

t∫
0

(t −qs)(α−1)u(s,x(s))dqs

⎞
⎠ , t ∈ I,

where α > 1, q∈ (0,1), I = [0,1], f ,u : [0,1]×R→R, a,b : I → I and F : I×R×R→
R .

In this paper, we study the following hybrid generalized fractional pantograph
equation ⎧⎪⎨

⎪⎩
Dα

0+

[
x(t)

f (t,x(t),x(ϕ(t)))

]
= g(t,x(t),x(ρ(t))), 0 < t < 1

x(0) = 0,

(1)

where α ∈ (0,1) , ϕ , ρ : [0,1] → [0,1] are given functions.
The main tools in our study are a fixed point theorem for the product of two oper-

ators and a generalization of Darbo’s fixed point theorem.
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2. Basic facts about fractional calculus

In this section, we recall some definitions and basic results about fractional calcu-
lus. These results appear in [1].

DEFINITION 1. The Riemann-Liouville fractional derivative of order α > 0 of a
continuous function f : (0,∞) → R is given by

Dα
0+ f (t) =

1
Γ(n−α)

(
d
dt

)(n) t∫
0

f (s)
(t− s)α−n+1 ds,

where n = [α]+1, [α] denotes the integer part of α and Γ denotes the classical gamma
function, provided that the right side is point-wise defined on (0,∞)) .

DEFINITION 2. The Riemann-Liouville fractional integral of order α > 0 of a
continuous function f : (0,∞) → R is defined by

Iα
0+ f (t) =

1
Γ(α)

t∫
0

(t− s)α−1 f (s)ds,

provided that the right side is point-wise defined on (0,∞)) .

LEMMA 1. Suppose that f ∈ L1(0,1) and 0 < α < 1 . Then
(i) Dα

0+Iα
0+ f (t) = f (t) .

(ii) Iα
0+Dα

0+ f (t) = f (t)− Iα
0+ f (t)|t=0

Γ(α) tα−1 a.e. in (0,1) .

Following the same argument which appears in the proof of Lema 2.4 of [14], the
following lemma can be proved.

LEMMA 2. Let 0 < α < 1 and suppose that f ∈ C ([0,1]×R×R,R\ {0}) and
h ∈C[0,1] . Then the unique solution of the fractional hybrid initial value problem

⎧⎪⎨
⎪⎩

Dα
0+

[
x(t)

f (t,x(t),x(ϕ(t)))

]
= h(t), 0 < t < 1

x(0) = 0,

where ϕ : [0,1] → [0,1] is a continuous function, is given by

x(t) =
f (t,x(t),x(ϕ(t)))

Γ(α)

t∫
0

h(s)
(t− s)1−α ds, t ∈ [0,1].
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3. Background about measures of non-compactness

In this section we present some facts and basic results about measures of non-
compactness which will be used later.

Assume that E is a real Banach space with nor || · || and the zero element 0. By
B(x,r) we denote the closed ball in E centered at x with the radius r . By Br we denote
the ball B(0,r) . If X is non-empty subset of E , then X and ConvX denote the closure
and the closed convex closure of X , respectively. When X is a bounded subset, diamX
denotes the diameter of X and ||X || the quantity given by ||X || = sup{||x|| : x ∈ X} .
Further, by ME we denote the family of the non-empty and bounded subsets of E and
by NE its subfamily consisting of the relatively compact subsets.

In the paper, we accept the following definition of measure of non-compactness
which appears in [16].

DEFINITION 3. A mapping μ : ME → R = [0,∞) will be called a measure of
non-compactness in E if it satisfies the following conditions:

1◦. The family Kerμ = {X ∈ ME ; μ(X) = 0} is non-empty and Kerμ ∈ NE .
2◦. X ⊂ Y ⇒ μ(X) � μ(Y ) .
3◦. μ(X) = μ(ConvX) = μ(X) .
4◦. μ(λX +(1−λ )Y) � λ μ(X)+ (1−λ )μ(Y) for λ ∈ [0,1] .
5◦. If (Xn) is a sequence of closed subsets of ME such that Xn+1 ⊂ Xn for n =

1,2,3, ..., and lim
n→∞

μ(Xn) = 0 then X∞ =
∞⋂

n=1
Xn �= /0 .

The family Kerμ appearing in 1◦ is called the kernel of the measure of non-
compactness μ . Notice that the set X∞ appearing in 5◦ belongs to Kerμ . Indeed,
since μ(X∞) ⊂ μ(Xn) for any n = 1,2,3, ..., it follows that μ(X∞) � lim

n→∞
μ(Xn) = 0.

In connection with measures of non-compactness, in [17] Darbo proved the fol-
lowing fixed point theorem.

THEOREM 1. Let Ω be a nonempty, bounded, closed and convex subset of a Ba-
nach space E and let T : Ω → Ω be a continuous mapping. Suppose that there exists
k ∈ [0,1) such that

μ(TX) � kμ(X),

for any non-empty subset X of Ω , where μ is a measure of non-compactness in E .
Then T has a fixed point in Ω .

Recently, some generalizations of Theorem 1 have appeared in the literature (see
[18–21], for example). The following generalization of Darbo’s fixed point theorem
appears in [21] and it is the version in the context of measures of non-compactness
of a recent result about fixed point theorem which appears in [22]. For the paper is
self-contained, we present this result. Previously, we need to introduce the class F of
functions. By F we denote the class of functions ϕ : (0,∞) → (1,∞) satisfying the
following condition:

For any sequence (tn) ⊂ (0,∞)

lim
n→∞

ϕ(tn) = 1 ⇔ lim
n→∞

tn = 0.
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Examples of functions belonging to the class of F are ϕ(t)= e
√

t , ϕ(t)= 2− 2
π arctan( 1

tα )
with 0 < α < 1 [21] and ϕ(t) = (1+ t2)β with β > 0.

THEOREM 2. Let Ω be a nonempty, bounded, closed and convex subset of a Ba-
nach space E and let T : Ω → Ω be a continuous mapping. Suppose that there exist
ϕ ∈ F and k ∈ (0,1) such that, for any nonempty subset X of Ω with μ(TX) > 0 ,

ϕ (μ(TX)) � (ϕ (μ(X)))k ,

where μ is a measure of non-compactness in E . Then T has a fixed point in Ω .

Next, we introduce the following concept which appears in [23] which will be
important for our purposes.

DEFINITION 4. Let E be a Banach algebra. A measure of non-compactness μ in
E said to satisfy condition (m) if it satisfies the following condition:

μ(XY ) � ||X ||μ(Y )+ ||Y ||μ(X)

for any X ,Y ∈ ME , where XY = {xy : x ∈ X ,y ∈ Y} .
In the paper we work in the space C[0,1] of the real functions defined and contin-

uous on [0,1] , with the usual supremum norm given by ||x|| = sup{|x(t)| : t ∈ [0,1]}
for x ∈C[0,1] . Notice that (C[0,1], || · ||) is a Banach algebra, where the multiplication
is defined as the usual product of real functions.

Next, we present measure of non-compactness in C[0,1] which will be used in our
study. Fix a set X ∈ MC[0,1] and ε > 0. For x ∈ X , by w(x,ε) we denote the modulus
of continuity of x , i.e.,

w(x,ε) = sup{|x(t)− x(s)| : t,s ∈ [0,1], |t− s| � ε}.
Further, put

w(X ,ε) = sup{w(x,ε) : x ∈ X}
and

w0(X) = lim
ε→0

w(X ,ε).

In [16], it is proved that w0 is a measure of non-compactness in C[0,1] .

4. Main result

Problem (1) will be studied under the following assumptions:
(H1): f ∈C ([0,1]×R×R,R\ {0}) and g ∈C ([0,1]×R×R,R).
(H2): ϕ ,ρ : [0,1] → [0,1] are continuous function.
(H3): The functions f and g satisfy

| f (t,x1,y1)− f (t,x2,y2)| � (max(|x1− x2|, |y1 − y2|)+1)k −1

and
|g(t,x1,y1)−g(t,x2,y2)| � (max(|x1− x2|, |y1− y2|)+1)r −1,
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respectively, for any t ∈ [0,1] and x1,x2,y1,y2 ∈ R , where k,r ∈ (0,1) .
Notice that assumption (H1) gives us the existence of two nonnegative constants

K1 and K2 such that

K1 = sup{| f (t,0,0)| : t ∈ [0,1]} , K2 = sup{|g(t,0,0)| : t ∈ [0,1]} .

(H4): There exists r0 > 0 such that

(
(r0 +1)k −1+K1

)
((r0 +1)r−1+K2) � r0Γ(α +1)

and

(r0 +1)r−1+K2 � Γ(α +1).

THEOREM 3. Under assumptions (H1)–(H4), Problem (1) has at least one solu-
tion in C[0,1] .

Proof. Consider the operator T defined on C[0,1] by

(Tx)(t) =
f (t,x(t),x(ϕ(t)))

Γ(α)

t∫
0

g(s,x(s),x(ρ(s)))
(t− s)1−α ds,

for x ∈C[0,1] and t ∈ [0,1]
In virtue of Lemma 2.4, a fixed point of T gives us the desired result.
Let F and G be the operators defined on C[0,1] by

(Fx)(t) = f (t,x(t),x(ϕ(t)))

and

(Gx)(t) =
1

Γ(α)

t∫
0

g(s,x(s),x(ρ(s)))
(t − s)1−α ds,

for any x ∈C[0,1] and t ∈ [0,1] .
Then Tx = (Fx) · (Gx) for any x ∈C[0,1] .
For a better readability, we divide the proof in several steps.
Step 1: T applies C[0,1] into itself.
In fact, since the product of continuous functions is a continuous function, it is

sufficient to prove that Fx,Gx ∈C[0,1] for any x ∈C[0,1] .
It is clear, by (H1) and (H2), that if x ∈ C[0,1] then Fx ∈ C[0,1] . Next, we will

prove that if x ∈C[0,1] then Gx ∈C[0,1] .
To do this, we fix t0 ∈ [0,1] and let (tn) be a sequence in [0,1] such that tn → t0 .



HYBRID NONLINEAR GENERALIZED FRACTIONAL PANTOGRAPH EQUATION 101

In fact, without loss of generality, we can suppose that tn > t0 . Then,

|(Gx)(tn)− (Gx)(t0)| = 1
Γ(α)

∣∣∣∣∣∣
tn∫

0

g(s,x(s),x(ρ(s)))
(tn − s)1−α ds−

t0∫
0

g(s,x(s),x(ρ(s)))
(t0 − s)1−α ds

∣∣∣∣∣∣
� 1

Γ(α)

∣∣∣∣∣∣
tn∫

0

g(s,x(s),x(ρ(s)))
(tn− s)1−α ds−

tn∫
0

g(s,x(s),x(ρ(s)))
(t0 − s)1−α ds

∣∣∣∣∣∣
+

1
Γ(α)

∣∣∣∣∣∣
tn∫

0

g(s,x(s),x(ρ(s)))
(t0− s)1−α ds−

t0∫
0

g(s,x(s),x(ρ(s)))
(t0 − s)1−α ds

∣∣∣∣∣∣
� 1

Γ(α)

tn∫
0

∣∣(tn − s)α−1− (t0− s)α−1
∣∣ |g(s,x(s),x(ρ(s)))|ds

+
1

Γ(α)

tn∫
t0

|t0− s|α−1 |g(s,x(s),x(ρ(s)))|ds.

Since g∈C ([0,1]×R×R,R), g will be bounded on the compact [0,1]× [−||x||, ||x||]×
[−||x||,‖x‖] and we put

L = sup{|g(s,x,y)| : s ∈ [0,1], x,y ∈ [−||x||,‖x‖]} .

From the last estimate, we get

|(Gx)(tn)− (Gx)(t0)| � L
Γ(α)

tn∫
0

∣∣(tn− s)α−1− (t0− s)α−1
∣∣ds+

L
Γ(α)

tn∫
t0

|t0− s|α−1ds.

Taking into account that 0 < α < 1 and tn > t0 , we infer

|(Gx)(tn)− (Gx)(t0)|

� L
Γ(α)

⎡
⎣ t0∫

0

∣∣(tn − s)α−1− (t0− s)α−1
∣∣ds+

tn∫
t0

∣∣(tn − s)α−1− (t0− s)α−1
∣∣ds

⎤
⎦

+
L

Γ(α)

tn∫
t0

|s− t0|α−1ds

=
L

Γ(α)

⎡
⎣ t0∫

0

[
(t0 − s)α−1− (tn− s)α−1]ds+

tn∫
t0

ds
(tn − s)1−α +

tn∫
t0

ds
(s− t0)1−α

⎤
⎦

+
L

Γ(α)

tn∫
t0

ds
(s− t0)1−α <

4L
Γ(α +1)

(tn − t0)α ,
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where we have used the fact that tα
0 − tα

n < 0.
From the last estimate, we deduce that (Gx)(tn) → (Gx)(t0) when n → ∞ . This

proves that if x ∈C[0,1] .

Step 2: An estimate of ||Tx|| for x ∈C[0,1] .
Fix x ∈C[0,1] and t ∈C[0,1] . In view of assumptions, we have

|(Tx)(t)| = |(Fx)(t)| · (Gx)(t) = | f (t,x(t),x(ϕ(t)))| ·
∣∣∣∣∣∣

1
Γ(α)

t∫
0

g(s,x(s),x(ρ(s)))
(t − s)1−α ds

∣∣∣∣∣∣
� [| f (t,x(t),x(ϕ(t)))− f (t,0,0)|+ | f (t,0,0)|]

× 1
Γ(α)

∣∣∣∣∣∣
t∫

0

g(s,x(s),x(ρ(s)))−g(s,0,0)
(t − s)1−α ds+

t∫
0

g(s,0,0)
(t − s)1−α ds

∣∣∣∣∣∣
� 1

Γ(α)

[
(max(|x(t)|, |x(ρ(t))|)+1)k −1+K1

]

×
⎡
⎣ t∫

0

(max(|x(s)|, |x(ϕ(s))|)+1)r −1
(t− s)1−α ds+K2

t∫
0

ds
(t− s)1−α

⎤
⎦

� 1
Γ(α)

[
(max(||x||, ||x||)+1)k −1+K1

]
[(max(||x||, ||x||)+1)r +K2]

×
t∫

0

ds
(t− s)1−α

� 1
Γ(α)

[
(||x||+1)k −1+K1

]
[(||x||+1)r−1+K2]

tα

α

� 1
Γ(α +1)

[
(||x||+1)k −1+K1

]
[(||x||+1)r−1+K2] .

Therefore,

||Tx|| � 1
Γ(α +1)

[
(||x||+1)k−1+K1

]
[(||x||+1)r −1+K2] .

By assumption (H4), we infer that the operator T applies Br0 into itself. Moreover,
from the last estimates, it follows that

||FBr0 || � (r0 +1)k −1+K1

and

||GBr0 || �
1

Γ(α +1)
[(r0 +1)r −1+K2] .
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Step 3: The operators F and G are continuous on the ball Br0 .

In fact, firstly we prove that F is continuous on Br0 . To do this, we fix ε > 0 and
we take x,y ∈ Br0 with ||x− y||� ε . Then, for t ∈ [0,1] , we have

|(Fx)(t)− (Fy)(t)| = | f (t,x(t),x(ϕ(t)))− f (t,y(t),y(ϕ(t)))|
� (max(|x(t)− y(t)|, |x(ϕ(t))− y(ϕ(t))|)+1)k−1

� (max(||x− y||, ||x− y||+1)+1)k−1

= (||x− y||+1)k−1 � (ε +1)k −1

and, since (ε +1)k −1 → 0 when ε → 0, we have proved that F is continuous in Br0 .

Next, we prove that G is continuous in Br0 . In order to do this, we fix ε > 0 and
we take x,y ∈ Br0 with ||x− y||� ε . Then, for t ∈ [0,1] , we get

|(Gx)(t)− (Gy)(t)|= 1
Γ(α)

∣∣∣∣∣∣
t∫

0

g(s,x(s),x(ρ(s)))
(t − s)1−α ds−

t∫
0

g(s,y(s),y(ρ(s)))
(t− s)1−α ds

∣∣∣∣∣∣
� 1

Γ(α)

t∫
0

|g(s,x(s),x(ρ(s)))−g(s,y(s),y(ρ(s)))|
(t− s)1−α ds

� 1
Γ(α)

t∫
0

(max(|x(s)− y(s)|, |x(ρ(s))− y(ρ(s))|)+1)r−1
(t− s)1−α ds

=
1

Γ(α)

t∫
0

(max(||x− y||, ||x− y||)+1)r−1
(t − s)1−α ds

=
[(||x− y||+1)r−1]

Γ(α)

t∫
0

(t − s)α−1ds

=
[(||x− y||+1)r−1]

Γ(α)
· t

α

α
� (ε +1)r−1

Γ(α +1)

and, as (ε+1)r−1
Γ(α+1) → 0 when ε → 0, we have proved that G is continuous on Br0 .

Consequently, since T = F ·G , it follows that T is continuous on Br0 .

Step 4: Estimates of ω0(FX) and ω0(GX) for /0 �= X ⊂ Br0 .

Firstly, we estimate ω0(FX) . For ε > 0 given, since ϕ : [0,1]→ [0,1] is uniformly
continuous, we can find δ > 0 (which can be taken with δ < ε ) such that, for |t1−t2|<
δ we have |ϕ(t1)−ϕ(t2)| < ε .
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Now, we take x ∈ X and t1,t2 ∈ [0,1] with |t1 − t2| � δ < ε . Then

|(Fx)(t1)− (Fx)(t2)| = | f (t1,x(t1),x(ϕ(t1)))− f (t2,x(t2),x(ϕ(t2)))|
� | f (t1,x(t1),x(ϕ(t1)))− f (t1,x(t2),x(ϕ(t2)))|

+ | f (t1,x(t2),x(ϕ(t2)))− f (t2,x(t2),x(ϕ(t2)))|
�

[
(max(|x(t1)−x(t2)|, |x(ϕ(t1))−x(ϕ(t2))|)+1)k−1

]
+w( f ,ε)

�
[
(w(X ,ε)+1)k −1

]
+w( f ,ε),

where w( f ,ε) denotes the quantity

w( f ,ε) = sup{| f (t1,x,y)− f (t2,x,y)| : t1,t2 ∈ [0,1], |t1− t2| � δ , x,y ∈ [−r0,r0]} .

Therefore,

w(FX ,δ ) �
[
(w(X ,ε)+1)k −1

]
+w( f ,ε).

Since f (t,x,y) is uniformly continuous on the compact [0,1]× [−r0,r0]× [−r0,r0] ,
w( f ,ε) → 0 when ε → 0, and, consequently, from the last inequality, we infer

ω0(FX) �
[
(ω0(X)+1)k−1

]
Next, we estimate ω0(GX) . Fix ε > 0, and we take x ∈ X and t1,t2 ∈ [0,1] with
|t1− t2| � ε . Without loss of generality, we can suppose that t1 < t2 . Then, we have

|(Gx)(t2)− (Gx)(t1)| = 1
Γ(α)

∣∣∣∣∣∣
t2∫

0

g(s,x(s),x(ρ(s)))
(t2− s)1−α ds−−

t1∫
0

g(s,x(s),x(ρ(s)))
(t1 − s)1−α ds

∣∣∣∣∣∣
� 1

Γ(α)

⎡
⎣ t1∫

0

|(t2 − s)α−1− (t1− s)α−1||g(s,x(s),x(ρ(s)))|ds

+
t2∫

t1

(t2 − s)α−1|g(s,x(s),x(ρ(s)))|ds

⎤
⎦

=
1

Γ(α)

⎡
⎣ t1∫

0

[
(t1− s)α−1− (t2− s)α−1] |g(s,x(s),x(ρ(s)))|ds

+
t2∫

t1

(t2 − s)α−1|g(s,x(s),x(ρ(s)))|ds

⎤
⎦ .

Since g(t,x,y) is continuous on [0,1]×R×R , it is bounded on the compact subset
[0,1]× [−r0,r0]× [−r0,r0] . Put M = sup{|g(t,x,y) : t ∈ [0,1], x,y ∈ [−r0,r0]} . then,
from the last estimate, we infer that
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|(Gx)(t2)− (Gx)(t1)| = M
Γ(α)

⎡
⎣ t1∫

0

[
(t1 − s)α−1− (t2− s)α−1]ds+

t2∫
t1

(t2 − s)α−1ds

⎤
⎦

� M
Γ(α +1)

[(t2− t1)α + tα
1 − tα

2 +(t2− t1)α ]

� 2M
Γ(α +1)

(t2− t1)α � 2M
Γ(α +1)

εα ,

where we have used the fact that tα
1 − tα

2 � 0. Therefore,

w(Gx,ε) � 2M
Γ(α +1)

εα

and this gives us ω0(GX) = 0.

Step 5: An estimate of ω0(TX) for /0 �= X ⊂ Br0 .
Taking into account that ω0(XY ) � ||X ||ω0(Y )+ ||Y ||ω0(X) from the estimates

obtained in steps 2 and 4, we deduce

ω0(TX) = ω0(FX ·GX) � ||FX ||ω0(GX)+ ||GX ||ω0(FX)
� ||FBr0 ||ω0(GX)+ ||GBr0||ω0(FX)

� 1
Γ(α +1)

[(r0 +1)r −1+K2]
[
(ω0(X)+1)k −1

]
.

By assumption (H4), 1
Γ(α+1) [(r0 + 1)r − 1 + K2] � 1 and, from the last estimate, we

infer that
ω0(TX) � (ω0(X)+1)k−1

or, equivalently,
ω0(TX)+1 � (ω0(X)+1)k.

Therefore, the contractive condition appearing in Theorem 1 is satisfied with ϕ(t) =
t +1, where ϕ ∈ F . By Theorem 2, the operator T has at least one fixed point in Br0 .

This completes the proof. �

5. Examples and comparison with other results

In this section we present an example illustrating our results. Previously, we will
need the following lemma:

LEMMA 3. Let ϕ : [0,∞) → [0,∞) be the function defined by ϕ(t) = (t +1)k−1
for t ∈ [0,∞) , where k ∈ (0,1) . then, we have

(a) ϕ is nondecreasing;
(b) |ϕ(t)−ϕ(t ′)| � ϕ(|t− t ′|) for any t,t ′ ∈ [0,∞) .

Proof. (a) It is clear since ϕ ′(t) = k(t +1)k−1 > 0 for t ∈ [0,∞) .
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(b) Since ϕ ′′(t) = k(k−1)(t +1)k−2 < 0 for t ∈ [0,∞) , ϕ is a concave function.
Moreover, ϕ(0) = 0.

It is a well known fact that the concavity of ϕ and ϕ(0) = 0 imply the subaddi-
tivity of the function ϕ , i.e. ϕ(t + t ′) � ϕ(t)+ ϕ(t ′) for any t, t ′ ∈ [0,∞) .

In order to prove (b), we can suppose without loss of generality that t < t ′ . Then

ϕ(t ′) = ϕ(t ′ − t + t) � ϕ(t ′ − t)+ ϕ(t)

and, consequently, ϕ(t ′)−ϕ(t) � ϕ(t ′ − t) and this proves (b). �

EXAMPLE 1. Consider the following fractional hybrid problem⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

D1/2
0+

⎡
⎣ x(t)

1
2

(
4
√

1+ |x(t)|+ 4
√

1+
∣∣x(

t
1+t

)∣∣)
⎤
⎦

=
1
β

[
3
√

1+ |x(t)|+ 3
√

1+ |x(arctg t)|
]
, 0 < t < 1

x(0) = 0,

(2)

where α,β > 0.
Notice that Problem (2) is a particular case of Problem (1), with α = 1/2, ϕ(t) =

t
1+t , ρ(t) = arctg t, f (t,x,y) = 1

α
(

4
√

1+ |x|+ 4
√

1+ |y|) and g(t,x,y) = 1
β
(

3
√

1+ |x|
+ 3

√
1+ |y|) .
It is clear that assumptions (H1) and (H2) of the Theorem 3 are satisfied. On the

other hand, for any t ∈ [0,1] and x,y,x1,y1 ∈ R , we have

| f (t,x,y)− f (t,x1,y1)|

=
∣∣∣∣ 1
α

(
4
√

1+ |x|+ 4
√

1+ |y|
)
− 1

α

(
4
√

1+ |x1|+ 4
√

1+ |y1|
)∣∣∣∣

� 1
α

∣∣∣ 4
√

1+ |x|− 4
√

1+ |x1|
∣∣∣+ 1

α

∣∣∣ 4
√

1+ |y|− 4
√

1+ |y1|
∣∣∣

� 1
α

(
4
√

1+ |x|−1
)
−

(
4
√

1+ |x1|−1
)

+
1
α

(
4
√

1+ |y|−1
)
−

(
4
√

1+ |y1|−1
)

� 1
α

(
4
√
||x|− |x1||+1−1

)
+

1
α

(
4
√
||y|− |y1||+1−1

)
� 2

α

(
4
√

max(|x− x1|, |y− y1|)+1−1
)

,

where we have used Lemma 3.
By using a similar argument, we can prove

|g(t,x,y)−g(t,x1,y1)| � 2
β

(
3
√

max(|x− x1|, |y− y1|)+1−1
)

for any t ∈ [0,1] and x,y,x1,y1 ∈ R .
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Therefore, assumption (H3) of the Theorem 3 is satisfied when α,β � 2 with
k = 1/4 and r = 1/3.

In our case, K1 = sup{| f (t,0,0)| : t ∈ [0,1]} = 2
α and K2 = sup{|g(t,0,0)| : t ∈

[0,1]} = 2
β .

The inequality appearing in (H4) of Theorem 3 has the expression(
(r0 +1)1/4−1+

2
α

)(
(r0 +1)1/3−1+

2
β

)
� r0Γ(3/2).

For α = 4 and β = 3, we have(
(r0 +1)1/4− 1

2

)(
(r0 +1)1/3− 12

3

)
� r0Γ(3/2).

This inequality is satisfied for r0 = 0.8. Moreover,(
(r0 +1)1/3− 1

3

)
= 3

√
1.8−1/3∼= 0.8832 � Γ(3/2) = 0.8862.

Therefore, Problem (2) has at least one solution x(t) ∈ C[0,1] for α = 4 and β = 3
with ||x|| � 0.8.

An interesting question is the non-oscillatory character of the solutions of Problem
(1), i.e., that the solutions of Problem (1) have a constant sign. Notice that if f (t,x,y)
and g(t,x,y) have the same sign (this means that f (t,x,y) > 0 and g(t,x,y) � 0 or
f (t,x,y) and g(t,x,y) � 0 for any t ∈ [0,1] and x,y ∈ R) and assumptions of Theorem
3 are satisfied, then the solutions x(t) of Problem (1) are nonnegative due to the fact
that these solutions satisfy the integral equation

x(t) =
f (t,x(t),x(ϕ(t)))

Γ(α)

t∫
0

g(s,x(s),x(ρ(s)))
(t − s)1−α ds, 0 � t � 1.

In connection with the above-mentioned question, we have the following result.

PROPOSITION 1. Under assumptions of Theorem 3 and suppose that g(t,x,y) has
constant sign and g(t,x,y) �= 0 for t ∈ [0,1] and x,y ∈ R , we have that the solution
x(t) of Problem (1) obtained in Theorem 3 satisfies that x(t) �= 0 for 0 < t < 1 .

Proof. Suppose the contrary case. Then we can find t∗ ∈ (0,1) with x(t∗) = 0.
Since x(t) satisfies the last integral equation, we have

0 = x(t∗) =
f (t∗,x(t∗),x(ϕ(t∗)))

Γ(α)

t∗∫
0

g(s,x(s),x(ρ(s)))
(t∗ − s)1−α ds.

Taking into account that f (t,x,y) �= 0 for any t ∈ [0,1] and x,y ∈ R we infer that

t∗∫
0

(t∗ − s)1−αg(s,x(s),x(ρ(s)))ds = 0.
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Since g(t,x,y) has constant sign and (t∗ − s)1−α > 0 for s ∈ [0,t∗) it follows that

g(s,x(s),x(ρ(s))) = 0 a.e. s ∈ [0, t∗).

This contradicts the fact that g(t,x,y) �= 0 for any (t,x,y) ∈ [0,1]×R×R . Therefore,
x(t) �= 0 for t ∈ (0,1) . �

As an application of Bolzano’s theorem, we have the following corollary.

COROLLARY 1. Under assumptions of Proposition 2, the solution x(t) of Prob-
lem (1) obtained in Theorem 3 satisfies that x(t) > 0 for t ∈ (0,1) or x(t) < 0 for
t ∈ (0,1) .

On the other hand, if we perturb the data function in Problem (1) of the following
way ⎧⎪⎨

⎪⎩
Dα

0+

[
x(t)

f (t,x(t),x(ϕ(t)))

]
= g(t,x(t),x(ρ(t)))+ η(t), 0 < t < 1

x(0) = 0,

where η ∈C[0,1] , α ∈ (0,1),ϕ ,ρ ∈ C[0,1] , f ∈ C ([0,1]×R×R,R\ {0}), and g ∈
C ([0,1]×R×R,R). In this case, assumptions (H1), (H2) and (H3) of Theorem 3 if
f (t,x,y) and g(t,x,y) satisfy (H3) of Theorem 3 and, only, we would have to check
assumption (H4). This fact makes that Theorem 2 is applicable to a great number of
cases.

In the sequel, we compare our results with ones appearing in the literature. In [13],
the authors studied the fractional hybrid differential equation⎧⎪⎨

⎪⎩
Dα

0+

[
x(t)

f (t,x(t))

]
= g(t,x(t)), a.e. t ∈ [0,1]

x(0) = 0
(3)

under the following conditions:
(i) α ∈ (0,1), f ∈C ([0,1]×R×R,R\ {0}) and g ∈C ([0,1]×R×R,R).
(ii) The function x → x

f (t,x) is increasing in R almost everywhere for t ∈ [0,1] .
(iii) There exists a constant L > 0 such that

| f (t,x)− f (t,y)| � L|x− y|,

for any t ∈ [0,1] and x,y,∈ R .
(iv) There exists a function h ∈ L1 ([0,1],R+) such that |g(t,x)| � h(t) a.e. t ∈

[0,1] for all x ∈ R .
(v)

L||h||L1

Γ(α +1)
< 1.

In the above-mentioned paper, the authors proved the following theorem.
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THEOREM 4. Under assumptions (i)–(v), Problem (3) has a solution in C[0,1] .

It is clear that Problem (3) is a particular case of Problem (1) where the functions
f (t,x,y) and g(t,x,y) are independent of y .

Notice that if in Example 1 we consider as f (t,x,y) = 1
α

4
√

1+ |x| and g(t,x,y) =
1
β

3
√

1+ |x|, then this variant of Example 1 can be studied by Theorem 3 while it can-

not be treated by Theorem 4 since the function g(t,x) = 1
β

3
√

1+ |x| does not satisfy
assumption (iv) of Theorem 4.
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