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CONTROL CHAOS IN THE FRACTIONAL LORENZ–HAMILTON SYSTEM

MIHAI IVAN

Abstract. In this paper we discuss the dynamical behavior of a family of fractional differential
systems associated to Lorenz-Hamilton system. The stability analysis of equilibrium states of
the controlled fractional Lorenz-Hamilton system is studied.

1. Introduction

The fractional calculus has been found to be an important tool in various fields,
such as mathematics, physics, engineering, biology, chaotic dynamics and other com-
plex dynamical systems [1, 4, 8]. The interest in the study of fractional-order nonlinear
systems lies in the fact that fractional derivatives provide an excellent tool for the de-
scription of memory and hereditary properties, which are not taken into account in the
classical integer-order models [1, 2].

The paper is structured as follows. In Section 2 we introduce the fractional Lorenz-
Hamilton system (2.4) associated to Lorenz-Hamilton system [5, 6]. The problem of
the existence and uniqueness of solution for the fractional system (2.4) is discussed.
Section 3 is devoted to studying of the stability of equilibrium points for the fractional
system (2.4) . Also, the unstable equilibrium states of this system can be controlled
via fractional stability theory. In Section 4, the numerical integration for the controlled
fractional Lorenz-Hamilton system (4.1) are given.

2. On fractional Lorenz-Hamilton system

There are many definitions of fractional derivatives. One of the more common
definitions is the Caputo definition of fractional derivatives. Let f ∈C∞(R) and α ∈R ,
α > 0. The α -order Caputo differential operator [4], is described by

Dα
t f (t) = Jm−α f (m)(t), α > 0, (2.1)

where f (m)(t) represents the m-order derivative of the function f , m∈N∗ is an integer
such that m− 1 � α � m and Jβ is the β -order Riemann-Liouville integral operator
[8], which is expressed as follows

Jβ f (t) =
1

Γ(β )

∫ t

0
(t− s)β−1 f (s)ds, β > 0, (2.2)
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where Γ is the Euler Gamma function. If α = 1, then Dα
t f (t) = d f

dt .
In this paper we suppose that α ∈ (0,1].
We consider the following differential system of Maxwell-Bloch type on R3 :

ẋ1(t) =
1
2
x2(t), ẋ2(t) = −x1(t)x3(t), ẋ3(t) = x1(t)x2(t), (2.3)

where ẋi =
dxi(t)

dt
, i = 1,3 and t is the time.

The dynamical system (2.2) is called the Lorenz-Hamilton system [5].
The fractional Lorenz-Hamilton system associated to Hamilton-Poisson system

(2.3) is defined by the following set of fractional differential equations:

Dα
t x1(t) =

1
2
x2(t), Dα

t x2(t) = −x1(t)x3(t), Dα
t x3(t) = x1(t)x2(t), α ∈ (0,1).

(2.4)
The initial value problem of the fractional Lorenz-Hamilton system (2.4) can be

represented in the following matrix form:

Dα
t x(t) = Ax(t)+ x1(t)A1x(t), x(0) = x0, (2.5)

where 0 < α < 1, x(t) = (x1(t),x2(t),x3(t))T , t ∈ (0,τ) and

A =

⎛
⎝0 1

2 0
0 0 0
0 0 0

⎞
⎠ , A1 =

⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠ .

PROPOSITION 2.1. The initial value problem of the fractional Lorenz-Hamilton
system (2.5) has a unique solution.

Proof. Let f (x(t)) = Ax(t)+x1(t)A1x(t). It is obviously continuous and bounded
on D = {x ∈ R3|x1 ∈ [x1

0 − δ ,x1
0 + δ ]} for any δ > 0. We have f (x(t))− f (x1(t)) =

A(x(t)− x1(t))+ y(t) , where g(t) = x1(t)A1x(t)− x1
1(t)A1x1(t) . Then

(a) | f (x(t))− f (x1(t))| � ‖A‖ · |x(t)− x1(t)|+ |g(t)|, where ‖ · ‖ and | · | denote
matrix norm and vector norm respectively.

It is easy to see that g(t) = (x1(t)− x1
1(t))A1x(t)+ x1

1(t)A1(x(t)− x1(t)). Then

|g(t)| � |(x1(t)− x1
1(t))A1x(t)|+ |x1

1(t)A1(x(t)− x1(t))|.
We have |g(t)| � ‖A1‖(|x(t)| · |x1(t)− x1

1(t))|+ |x1
1(t)| · |x(t)− x1(t))| and using the

inequality |x1(t)− x1
1(t))| � |x(t)− x1(t))| one obtains

(b) |y(t)| � ‖A1‖(|x(t)|+ |x1
1(t)|)|x(t)− x1(t))|.

According to (b) , the relation (a) becomes

| f (x(t))− f (x1(t))| � (‖A‖+‖A1‖(|x(t)|+ |x1
1(t)|)|x(t)− x1(t)|.

Replacing ‖A‖ = 1
2 , ‖A1‖ =

√
2, from the above we deduce that

(c) | f (x(t))− f (x1(t))| � L|x(t)− x1(t)| , where L = 1
2 +

√
2(2|x0|+ δ ) > 0.
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The inequality (c) shows that f (x(t)) satisfies a Lipschitz condition. Based on
the results of Theorems 1 and 2 in [2], we can conclude that the initial value problem
of the system (2.5) has a unique solution. �

Solving the system of equations Dα
t xi(t) = 0, i = 1,3, we find the equilibrium

points of the fractional Lorenz-Hamilton system (2.4) as follows:

e0 = (0,0,0), em
1 = (m,0,0) and em

3 = (0,0,m) for all m ∈ R, m �= 0

REMARK 2.1. The Poisson geometry of the Lorenz-Hamilton system (2.3) has
been solved in [6].

3. Stability study of fractional Lorenz-Hamilton system

We start with the stability analysis of equilibrium points for the fractional system
(2.4) . The Jacobian matrix of the system (2.4) is

J(x) =

⎛
⎝ 0 1

2 0
−x3 0 −x1

x2 x1 0

⎞
⎠ .

For the study of stability of the system (2.4) we shall use the following proposi-
tion.

PROPOSITION 3.1. ([7]) Let xe be an equilibrium point of fractional system
(2.4) and J(xe) be the Jacobian matrix J(x) evaluated at xe . The point xe is lo-
cally asymptotically stable, iff all eigenvalues λ (J(xe)) of the matrix J(xe) satisfy the
condition:

|arg(λ (J(xe)))| > απ
2

.

PROPOSITION 3.2. The equilibrium points e0,em
1 (m �= 0) and em

3 (m �= 0) are
unstable for all α ∈ (0,1).

Proof. (1) Suppose that m ∈ R. The characteristic polynomial of the matrix

J(em
1 ) =

⎛
⎝0 1

2 0
0 0 −m
0 m 0

⎞
⎠ is pJ(em

1 )(λ ) = det(J(em
1 )−λ I) =−λ (λ 2 +m2). Then the char-

acteristic roots of J(em
1 ) are λ1 = 0 and λ2,3 = ±|m|i. Since |arg(λ1)| = 0 < π

2 α for
all α ∈ (0,1) , by Proposition 3.1, it follows that e0 and em

1 are unstable.
(2) Suppose that m ∈ R,m �= 0. The characteristic polynomial of the matrix

J(em
3 ) =

⎛
⎝ 0 1

2 0
−m 0 0
0 0 0

⎞
⎠ is pJ(em

3 )(λ ) = det(J(em
3 )−λ I) = −λ (λ 2 + m

2 ) with character-

istic roots λ1 = 0, λ2,3 = ± 1
2

√−2m if m < 0 and λ1 = 0, λ2,3 = ± i
2

√
2m if m > 0.

Applying again Proposition 3.1, one obtains the required result. �
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In the case when xe is a unstable equilibrium state of the fractional system (2.4) ,
we associate to (2.4) a new fractional system as follows.

The controlled fractional Lorenz-Hamilton system associated to (2.4) is defined
by: ⎧⎪⎪⎨

⎪⎪⎩
Dα

t x1 = 1
2x2− k1(x1 − x1

e)

Dα
t x2 = −x1x3− k2(x2 − x2

e), α ∈ (0,1),

Dα
t x3 = x1x2 − k3(x3 − x3

e),

(3.1)

where xe represents an equilibrium point of (2.4) and ki ∈ R , i = 1,3 are constants.
If one selects the parameters ki , i = 1,3 which then make the eigenvalues of the

linearized equation of the controlled system (3.1) satisfy the condition from Propo-
sition 3.1, then the trajectories of (3.1) asymptotically approaches the unstable equi-
librium state xe in the sense that limt→∞ ‖x(t)− xe‖ = 0, where ‖ · ‖ is the Euclidean
norm.

The Jacobian matrix of the controlled fractional system (3.1) is

J(x,k) =

⎛
⎝−k1

1
2 0

−x3 −k2 −x1

x2 x1 −k3

⎞
⎠ .

Let us we study the problem of stabilizing of the fractional system (2.4) at the
equilibrium points e0, em

1 (m �= 0) and em
3 (m �= 0).

PROPOSITION 3.3. The equilibrium state e0 of the controlled fractional system
(3.1) is locally asymptotically stable for ki > 0 , i = 1,3 and α ∈ (0,1) .

Proof. The characteristic polynomial of the Jacobian matrix J(e0,k) is pJ(e0,k)(λ )
= −(λ + k1)(λ + k2)(λ + k3) with characteristic roots λi = −ki for i = 1,3. Since

|arg(λi|= π >
απ
2

for i = 1,3, by Proposition 3.1, it follows that e0 is locally asymp-

totically stable. �

PROPOSITION 3.4. (i) If k1 > 0 , k2 + k3 > 0, then em
1 is asymptotically stable

for all m ∈ R , m �= 0 and α ∈ (0,1);
(ii) If k1 > 0 , k2 + k3 < 0, then em

1 is asymptotically stable for all

m ∈
(
−∞,−|k2− k3|

2

)
∪

( |k2− k3|
2

,∞
)

and 0 < α <
2
π

arctan

√−(k2− k3)2 +4m2

|k2 + k3| .

Proof. The Jacobian matrix of (3.1) at em
1 is J(em

1 ,k)=

⎛
⎝−k1

1
2 0

0 −k2 −m
0 m −k3

⎞
⎠ whose

characteristic polynomial pJ(em
1 ,k)(λ ) = det(J(em

1 ,k)−λ I) is

pJ(em
1 ,k)(λ ) = −(λ + k1)[λ 2 +(k2 + k3)λ + k2k3 +m2].
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The roots of the characteristic equation are

λ1 = −k1, λ2,3 =
−(k2 + k3)±

√
(k2− k3)2 −4m2

2
.

Denote Δ = (k2− k3)2 −4m2 and m1 = −|k2− k3|
2

, m2 =
|k2− k3|

2
.

(1) We have Δ < 0 iff m∈ (−∞,m1)∪(m2,∞). Then λ2,3 =
−(k2 + k3)± i

√−Δ
2

.

(1a) We suppose that k1 > 0 and k2 + k3 > 0. In this case we have λ1 < 0 and

Re(λ2,3) < 0. Since |arg(λ1)| = π and |arg(λ2,3)| = π >
πα
2

for all α ∈ (0,1) , by

Proposition 3.1, it implies that em
1 is locally asymptotically stable.

(1b) For k1 > 0 and k2 + k3 < 0, we have λ1 < 0 and Re (λ2,3) > 0. Applying
Proposition 3.1, em

1 is locally asymptotically stable, for

0 < α <
2
π

arctan

√−(k2− k3)2 +4m2

|k2 + k3| .

Therefore, the assertion (ii) holds.

(2) We have Δ = 0 for m = ±|k2− k3|
2

. The eigenvalues of the matrix J(em
1 ,k)

are λ1 = −k1, λ2,3 =
−(k2 + k3)

2
. If k1 > 0 and k2 + k3 > 0, then λi < 0 for i = 1,3.

Since the eigenvalues are all negative, it follows that em
1 is asymptotically stable.

If k1 > 0 and k2 + k3 < 0, then λ1 < 0 and λ2,3 > 0 and em
1 is unstable.

(3) We have Δ > 0 iff m ∈ (m1,m2). Then λ2,3 =
−(k2 + k3)±

√
Δ

2
.

(3a) We suppose that k1 > 0 and k2 + k3 > 0. Then λi < 0 for i = 1,3. Since
the eigenvalues are all negative, it follows that em

1 is asymptotically stable.
(3b) We suppose that k1 > 0 and k2 + k3 < 0. In this case, J(em

1 ,k) has at least a
positive eigenvalue and so em

1 is unstable.
Therefore, according to (1a),(2) and (3a) it follows that the assertion (i) holds.

�

EXAMPLE 3.1. By choosing the control parameters ki, i = 1,3 that satisfy one
condition from Proposition 3.4, then the trajectories of the controlled fractional system
(3.1) are driven to the unstable equilibrium point em

1 (m �= 0). For example, if we
select k1 > 0, k2 = k3 = � < 0, then the condition (ii) of Proposition 3.4 is achieved.
This implies that, the trajectories of the system (3.1) converge to e1 = (m,0,0) and

α ∈
(
0,

2
π

arctan
∣∣∣m
�

∣∣∣) . For example, substituting k1 = 1, k2 = k3 = −1 in (3.1) we

obtains that the controlled fractional system is asymptotically stable at e1 = (
√

3,0,0)
for α ∈ (0, 2

3 ) , although the real part of the eigenvalues λ2,3 = 1± i
√

3 is positive.

PROPOSITION 3.5. (i) If k1 + k2 > 0 , k3 > 0, then em
3 is asymptotically stable

for all m ∈ (−2k1k2,∞)\ {0} and α ∈ (0,1);
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(ii) If k1 + k2 < 0 , k3 > 0, then em
3 is asymptotically stable for all

m ∈
((k1 − k2)2

2
,∞

)
and 0 < α <

2
π

arctan

√
−(k1− k2)2 +2m

|k1 + k2| .

Proof. The Jacobian matrix of (3.1) at em
3 is J(em

1 ,k)=

⎛
⎝−k1

1
2 0

−m −k2 0
0 0 −k3

⎞
⎠ whose

characteristic polynomial pJ(em
3 ,k)(λ ) = det(J(em

3 ,k)−λ I) is

pJ(em
3 ,k)(λ ) = −(λ + k3)

[
λ 2 +(k1 + k2)λ + k1k2 +

m
2

]
.

The roots of the characteristic equation are λ1,2 =
−(k1 + k2)±

√
Δ

2
, λ3 = −k3, with

Δ = (k1− k2)2 −2m.

(1) We have Δ < 0 iff m ∈
( (k1− k2)2

2
,∞

)
. Then λ1,2 =

−(k1 + k2)± i
√−Δ

2
.

(1a) We suppose that k1 + k2 > 0 and k3 > 0. In this case we have λ3 < 0 and

Re(λ1,2) < 0. Since |arg(λ3)| = π and |arg(λ1,2)| = π >
πα
2

for all α ∈ (0,1) , by

Proposition 2.1(i), it implies that em
3 is asymptotically stable.

(1b) For k1 + k2 < 0 and k3 > 0, we have λ3 < 0 and Re (λ1,2) > 0. Applying

Proposition 3.1, em
3 is asymptotically stable, for 0 < α <

2
π

arctan

√−(k1− k2)2 +2m
|k1 + k2| .

Therefore, the assertion (ii) holds.

(2) We have Δ = 0 for m =
(k1− k2)2

2
. The eigenvalues of the matrix J(em

3 ,k)

are λ1,2 =
−(k1 + k2)

2
, λ3 = −k3. If k1 + k2 > 0 and k3 > 0, then λi < 0 for i = 1,3.

Since the eigenvalues are all negative, it follows that em
3 is asymptotically stable.

If k1 + k2 < 0 and k3 > 0, then λ1,2 > 0 and λ3 < 0 and em
3 is unstable.

(3) We have Δ > 0 iff m ∈
(
−∞,

(k1− k2)2

2

)
. Then λ1,2 =

−(k1 + k2)±
√

Δ
2

.

(3a) We suppose that k1 + k2 > 0 and k3 > 0. Then λ2 < 0 and λ3 < 0. Also,

we have λ1 =
−(k1 + k2)+

√
Δ

2
< 0 iff m > −2k1k2. In this case, the eigenvalues are

all negative and so em
3 is asymptotically stable for m ∈

(
−2k1k2,

(k1− k2)2

2

)
, m �= 0.

(3b) We suppose that k1 + k2 < 0 and k3 > 0. In this case, J(em
3 ,k) has at least a

positive eigenvalue and so em
3 is unstable.

According to (1a) , (2) and (3a) , it follows that the assertion (ii) holds. �

EXAMPLE 3.2. By choosing the control parameters ki , i = 1,3 that satisfy one
condition from Proposition 3.5, then the trajectories of the controlled fractional system
(3.1) are driven to the unstable equilibrium point em

3 (m �= 0) . For example, we select
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k1 = 2, k2 =−1, k3 = 3, then the stability condition (i) of Proposition 3.5 is achieved.
This implies that, the trajectories of the system (2.4) converge to the equilibrium point
e3 = (0,0,m) when m ∈ (4,∞) and α ∈ (0,1). For example, the controlled fractional
system is asymptotically stable at e3 = (0,0,4.5) for α ∈ (0,1) .

4. Numerical integration of the fractional system (4.1)

In this section we discuss the numerical solution of controlled fractional Lorenz-
Hamilton system (3.1) .

Consider the fractional differential equations

{
Dα

t xi(t) = gi(x1(t),x2(t),x3(t)), t ∈ (0,τ), α ∈ (0,1)

x(0) = (x1
0,x

2
0,x

3
0)

(4.1)

where g1(t)= 1
2x2(t)−k1(x1(t)−x1

e) , g2(t)=−x1(t)x3(t)−k2(x2(t)−x2
e) and g3(t) =

x1(t)x2(t)− k3(x3(t)− x3
e).

Since g(t) = (g1(t),g2(t),g3(t)) is continuous, the initial value problem (4.1) is
equivalent to the nonlinear Volterra integral equation ([3]), which is given as follows:

xi(t) = xi
0 +

1
Γ(α)

t∫
0

(t− s)α−1gi(x1(s),x2(s),x3(s))ds, i = 1,3. (4.2)

Diethelm et al. have given a predictor-corrector scheme [3], based on the Adams-
Bashforth-Moulton algorithm to integrate the equation (4.2) . We apply this scheme to

the controlled fractional system (4.1) . For this, let h =
τ
N

, tn = nh for n = 0,1, . . . ,N.

We use the following notations: xi[n] = xi(nh) , i = 1,3 and xi
p[n] = xi

p(nh) , i = 1,3.

The controlled fractional system (4.1) can be discretized as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1[n+1] = x1
0 +

hα

Γ(α +2)

( n

∑
j=0

a[ j,n+1]
(1

2
x2[ j]− k1(x1[ j]− x1

e)
)

+
(1

2
x2

p[n+1]− k1(x1
p[n+1]− x1

e)
))

,

x2[n+1] = x2
0 +

hα

Γ(α +2)

( n

∑
j=0

a[ j,n+1](−x1[ j]x3[ j]− k2(x2[ j]− x2
e))

+(−x1
p[n+1]x3

p[n+1]− k2(x2
p[n+1]− x2

e))
)
,

x3[n+1] = x3
0 +

hα

Γ(α +2)

( n

∑
j=0

a[ j,n+1](x1[ j]x2[ j]− k3(x3[ j]− x3
e))

+(x1
p[n+1]x2

p[n+1]− k3(x3
p[n+1]− x3

e))
)
,

(4.3)
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⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1
p[n+1] =

hα

αΓ(α)

( n

∑
j=0

b[ j,n+1]
(1

2
x2[ j]− k1(x1[ j]− x1

e)
))

,

x2
p[n+1] =

hα

αΓ(α)

( n

∑
j=0

b[ j,n+1](−x1[ j]x3[ j]− k2(x2[ j]− x2
e))

)
,

x3
p[n+1] =

hα

αΓ(α)

( n

∑
j=0

b[ j,n+1](x1[ j]x2[ j]− k3(x3[ j]− x3
e))

)
,

(4.4)

where

a[0,n+1] = nα+1− (n−α)(n+1)α,

a[ j,n+1] = (n− j +2)α+1 +(n− j)α+1−2(n− j +1)α+1, j = 1,n,

b[ j,n+1] = (n+1− j)α − (n− j)α , j = 0,n.

The above scheme given by the relations (4.3) and (4.4) is called the predictor-
corrector Moulton-Adams algorithm for controlled fractional differential system (4.1) .

The error estimate for the algorithm described by (4.3) and (4.4) is

max
0� j�N

{ xi[ j]− xi
p[ j]|i = 1,3 } = O(hα+1).

Applying the algorithm (4.3)–(4.4), the system (4.1) is numerically integrated for
α = 0.8, k1 = 2, k2 = −1, k3 = 3 and xe = (0,0,4.5) (see Example 3.2).

For this, we consider h = 0.01, ε = 0.01, N = 500, t = 502 and the initial con-
ditions x1(0) = ε , x2(0) = ε , x3(0) = ε +4.5.

Using the software Maple 11, the orbits (n,xi(n)) , i = 1,3 of system (4.1) are
represented in the figures Fig. 1–3.

Fig.1. (n,x1(n)) Fig.2. (n,x2(n)) Fig.3. (n,x3(n)

In the coordinate system Ox1x2x3, the orbits (x1(n),x2(n)),x3(n)) for the solu-
tions of equations (4.1) are represented in the figure Fig. 4.
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Fig.4. (x1(n),x2(n),x3(n)) for k1 = 2, k2 = −1, k3 = 3 and α = 0.8.

The numerical simulations show the validity of the theoretical analysis.

CONCLUSIONS. The dynamics of the fractional Lorenz-Hamilton system (2.4)
was discussed in this paper. The analysis of the fractional stability of equilibrium states
for the controlled fractional Lorenz-Hamilton system (3.1) was studied. Finally, the
numerical simulation for the fractional system (4.1) is given.

Acknowledgements. The author has very grateful to be reviewers for their com-
ments and suggestions.
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