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TIME-FRACTIONAL DIFFUSION EQUATION
WITH DYNAMICAL BOUNDARY CONDITION

MYKOLA KRASNOSCHOK

(Communicated by N. Vasylyeva)

Abstract. We establish the unique solvability in Holder spaces for an initial-boundary problem
for fractional diffusion equation with fractional dynamic boundary condition.

1. Introduction

Let DY, (0 < o < 1) be the Caputo derivative of order o

Dfi,u(xﬁ) = ﬁ% /Ot(t — 1) %(u(x,7) — u(x,0))dr,

here T is Euler’s Gamma function (see [5]).

Let Q be a bounded domain in R" with C2*%-boundary X (6 € (0,1). Denote
Qr =Qx(0,T], =y == x (0,T], T > 0.

We need to find the function u(x,?), satisfying the equation

d
Diuet) o (x5 Jutw) = fls). () €. m
’ X
with initial
M(X,O) = uO(x)a X e Q; @)
and dynamical boundary conditions

DY u(x, t)—l—%( X5 ) ulx,r) =wy(x,1), (x1)€r, (3)

where

427(,,8) Zauxtaaxj Za,xt——ao(xt)

i,j=1 i=1
@xti bet +b(xt)
778x 0
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We assume that the inequalities

VER Y aij(x,1)EE; < p&?, forall (x,1) € Qr, 4)
i,j=1
Y bi(x,t)ni(x) < =86 <0, forall (x,7) € Zr, 5)

i=1

are valid (here n(x) is the unit outward normal to X at the point x) and compatibility
condition

v(x,0)— A ()6707 %) up(x) = o (x,O, %) up(x)+ f(x,0), xeX (6)

is fulfilled.

This problem is obtained from the standard one (see, for exaple, [1, 3,7, 9, 27]) for
a second-order parabolic equation with dynamical boundary condition by replacing the
first-order time derivatives with the Caputo derivatives of order o.. We refer the reader
also to [8] for an extensive derivation and physical interpretation of dynamic boundary
condition for the heat equation.

Fractional partial differential equations received much attention in the literature
because of numerous applications in physics, chemistry, hydrology and engineering
([10, 20, 21, 23, 30]).

As for equation (1), S. D. Eidelman and A. N. Kochubei constructed and inves-
tigated in [6] the fundamental solution in R”. Ph. Clément, S.-O. Londen and G. Si-
monett obtained in [4] existence, uniqueness and continuation on abstract quasilinear
parabolic equation with time-fractional derivative. In [25] A. V. Pskhu construct a
fundamental solution of a diffusion-wave equation with Dzhrbashyan-Nersesyan frac-
tional differentiation operator with respect to the time variable. He give a solution of the
Cauchy problem and prove the uniqueness theorem in the class of functions satisfying
an analogue of Tychonoff’s condition.

Other results regarding to solvability of initial-boundary problems to fractional
diffusion equation can be found in [11, 13, 14, 18,22, 24, 26, 28] and literature therein.

As for mathematical treatment of condition (3), M. Kirane, N. Tatar in [12] have
analyzed the issue of local and global solutions for elliptic systems with nonlinear frac-
tional dynamic boundary condition. N. Vasylyeva obtained in [31, 32, 33] coercive
estimates of the solution to the Poisson equation with a boundary condition comprising
the fractional derivative in time and prove the existence and uniqueness of the classical
solution for corresponding moving boundary problems locally in time.

In this paper we prove the well-posedness and regularity of the solution to problem
(1)—(3). Here we extend the results of [16], where this problem (1)—(3) was considered
in one-dimensional case. In our analysis we follow very closely the approach of G. 1.
Bizhanova and V. A. Solonnikov (see [3]).

Below constants (always independent on x and ¢) will be denoted by the same
letter C, even if they may vary from line to line. Sometimes we write, e.g., C(p,q),
when we want to emphasize the dependence of C on particular parameters p, g.
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2. Functional spaces and main result

Let 6 € (0,1), ¥ = (x1,...,x,—1) throughout this paper. Let Q be a domain in
R", Or =0 x (0,7].
We shall use the following notations ch —Il A=, 0 0), 20, i=
X n
Lo, [l =i+ A1y 1
We define C¥79(Q), (k € NU{0}), as the space of functions f(x), x € Q, with
the norm

7157 =115+ 11577,
here

715 =Y IDslo. Iflo= supl /()]

[ <k

WA = 3 sup [DLF(x) = DL b —y] .
|i|=k*YEQ

By C2(Qr) we denote the set of functions f(x,#) having a finite norm

A1, = flor + 1A,

where

[flor = sup sup|f(x.)],
1€(0,T7) x€0

10, = + (el

(N, = sup sup [f(x,1)— F,0)[]x—y|7°,
1€(0,T) x,yeQ

<f>,(2T= sup Sup|f(x,t)—f(x’T)Ht_T‘—‘?.
1,7€(0,7) x€Q

By definition, the space Ckt9(Qr), k € N consists of functions f(x,z) with a finite
norm

Mo = 3 108" Diflor + Mgy

|1]4+2m<k
k+6 k+6 (k+6)%)
ASED = (St (o
k+6 m 0
(NS = 3 (D% DAY,
|1]+2m=k
k+6)% m 1+60)%
ST =3 (2Dl Y
|1]4+-2m=k—1

The symbol CQBG(QT) denotes the subspace of Cf,"™®(Qr), whose elements f/(x,z)

have the property (D%,)" f|;—o =0, where m =0,..., [59]. With the help of local

coordinates and partition of unity, all these spaces can be introduced on manifold X7.
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REMARK 1. We emphasize that in definition of CK™®(Qr) we use “repeated”
derivative (DZ,)" rather then “multiple” one (D{}"). Our choice is explained by the
following example. As is well-known (see for instance [28]) Fourier method for frac-
tional diffusion equation is based on the application of the Mittag-Leffler functions

Eqp(z) = kgo F(#k-‘rb) . By the definition of the Caputo derivative we have

D, (DY Eq,1 (At%)) = A2Eq 1 (A1%)
and (for example o < 1/2)

At

200
DB (M%) = r(1-2a)

+A%Eq (M%),
ie. (Dﬁt)zEa71(lt“) is smooth, but in the contrary Di‘}‘Ea,l(Ma) is singular at the
point r = 0.

An important role in the investigation of problem (1)—(3) is played by the estimates
of the following model problem in R", = {x, > 0}:

DY w(x,t) —Aw(x,t) =0, (x,1) €R} 7, (7)
w(x,0) =0, xeRY, (8)
w(x, )—>0 x| = oo, 9)
D w(x,t) —|—2h x,t) =o' ,t), x,=0. (10)
& axl
We assume that constants %;, (i =1,...,n) and the function ¢ are such that
@ eCyY(REY), keN, (11)
@(x,1) =0, [|>Ro, hy<—0, [W|<Mo 12)

for some fixed positive parameters Ry, &y, My.
The main results of this paper are the following.

THEOREM 1. Suppose that assumptions (11)—(12) hold. Then model problem (7)—
(10) has a unique solution w € C]&TOHG(R?T)’ D¢ wly,=0 € Cﬁjroe (REY), satisfying
estimate €+146) (16) (16)
+
wlir k1Dl ol 1) < (1)l E (13)

aRY 7 o RI 1 S o R
THEOREM 2. Suppose that
2eC? ajai,a0 €CY(Qr), bibo€Cy(Zr), ij=1,....n (14

and assumptions (4), (5), (6) hold. Then for every functions ug € C2+9(Q), fe
C8(Qr), w e CLH9(Zr), problem (1)~(3) has a unique solution u € C%9(Qr), satis-
fying the estimate

(2+0) (1+6 (2+0) (1+6)
ulg oy +1D%uly3) < () (luolg™ + 17150, +1wlez,) . a9)
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REMARK 2. Assumptions of this theorem implies (see (6))
0
o ()6707 a) uo(x) + f(x,0) € C'TO(2). (16)

3. Model problem

3.1. Preliminaries

First of all we present some definitions and results concerning with fractional cal-
culus that will be used in the sequel. For more information see [5, 26, 29].
Let v € R, . The Riemann-Liouville fractional integral is defined by

110 = g5 [ 0= e
The Riemann-Liouville fractional derivative is defined by
D/ f(t) =DV f(t), m=[v]+1.
For v =0 we set J'f(¢) = f(t), Df(¢) = f(t). It easy to see that
Dy f(t) =D, f(t), if f(0)=0, ve(0,1). 17)
Below we use the Wright functions (see [25, 26])

oo k

87 = ,;)kvra ak)’

with properties (see [25, 26, 15]) (z > 0)

Loy )L if Yy € NUo,
|¢’(—0‘»—%—Z)|<CCXP(_GZ' ){Z, if ye NUO. (18)
D;y671¢(_a767_cy7a):y67V71¢(_a76_v7_cy7a)7

J)‘;/yé_l(p(_ava?_cy_a):y6+v_l¢(_a76+v7_cy_a)a (19)
d
d_Z(p(_a,a’_Z) - —¢>(—a,6— OC,—Z)
and
¢(—,0,—z) = azd(—o, 1 — o, —z) / ¢(—a,1—o,—z)dz=1.  (20)

We remind that the fundamental solution I'y, to the Cauchy problem for the equa-
tion DY, u(x,t) — Au(x,t) = f(x,t) in R" x (0,T] can be represented in the form (see
(15D

x|

To(x,1) = (47:)*"/2/0 A7 exp(— |4;L

:/wl"l(x,k)t_lq)(—a,o,—/lt_o‘)d?t,
0

o (—a,0,—Ar%)dA
(21
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where Ty(x,7) = (4m)~"/2"/? exp(—%) ia the fundamental solution for the heat
equation. It is easy to check

D% To(x,1) — AT (x,1) =0, x#0, 1 #0. (22)

Besides we use the inequality (see (3.27) in [15])

i( —hiL)? Zx +A%)+ (23)

i=1 i=1

here x,,, A >0 and C depends on &, My from (12).

3.2. Representation of Green function G and solution w

We take the Fourier transform on the tangent spatial variables x’ and the Laplace
transform on ¢

Fv] = /an v(X X, 1) exp(—ix' - E)dx, &= (&,...& 1),

L] = /O (1) exp(—pt)di.
Problem (7)—(10) reduces then to the ordinary differential equation (w = F[L[w]])
POTE 0, )+ | PE 0, ) — Py (&, 50,0) =0, 33> 0,
with the boundary conditions
(POW + hyWo, +il' - EW)|y,—0 = @(E,p), W—0, x,— oo.

Assumption (12) allows us to write

exp(_vpa+|é‘2x") (“p’(é p)
p% —hy \/mﬂh’-é ’
— [ exp( /6P~ ) i EA = pPA)AR G p)
= G(& 0 P)9(E 1)

Since (see formula (3.2.7) in [26]) L[t~ '¢(—c,0,—At~%)] = exp(—p?*) and (see
[15)) L' F'~Vexp(—+/p® + & [Px) = 222450 e get similar to [3]

w(&,xn, p) =

Gle,t) = -2 (‘g“ *z—1¢(—a,o,-)) ()

1

t oo
= —Z/dr/ aFO‘(X_Q)};)L’I_1’-)'L"1<;)(—()z707—7L1'*°‘)d/l7
O n

(24)
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and

w(x,1) = (G*@)(x,1) /d’L’ / G =y xp,t —1)0(y,7)dy'. (25)
Rn-1
Besides we remark that the change of variables A — ¢ = A1~% leads to

t oo
o
Glx,1) = —2/dr/ara XhOT =) ety (g0 —o)de.  (26)
0 0

3.3. Properties of Green function G
LEMMA 1. The following identities are valid
L JdG dly
DtaG('xJ)_'_EhiT(xat):_z axn (.X,l), (27)

=1 O

G
8—xn(x7t) = —ZFa(xJ)

Lof L aTal—hnT) -
+2i§/dr/h,a—xi(t—r) o(—0,0,—n(t—1)"%)dn

t oo
+200 [ [Tola—hn.7)( =)' 9(~et.0.~n(t— 7)),
(28)
here A’:élg—z2

Proof. From (24) and change the order of integration we obtain (see (24))

6= 2 (Gt s g(-a0,)
n 1

Then we use (19) and change the corresponding variables to set

t oo
Jtl’“G(x,t):—Z/ds/%za( —h(i—5)%0,5)0(—a, 1 — &, —G)do.

(compare with (26)).
By definition D*G(x,1) = D;(J1~*G(x,t)). Relations (20) lead to

ara

D[OCG(XJ) = —2E()€7Z)

" t w82]"a ) N
#2270, =) (0~
(29)
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Clearly from (26) we have

=

ZhngG XI :—22/611/}1 8 x hT o,f— ) Oc 1¢(_a,0,—6)d0, (30)
i= 1

i=1 ! 0

Comparing (29) and (30), we get (27).
By (24), (22), we obtain

Gy, (x,1) ——Z/d’v/

- Z/dTO/A’Fa(x—hJL,T)(t ) (=0, 0,—A (1 — 7)"%)dA

(x—hA,7)(t— 1) (0,0, —A(t — T) " %dA

- 2/dr/D2‘Fa(x—h7L,r)(t— 7)o (—0t,0,— A (1 — 1) %)dA

= G (x,1) + Ga(x,1).

In view of (21), (19) we see D®T'y, = D, (J17%Ty) = J~%(D,T). The rule of frac-
tional integration by parts (see [26]) and (19) yield

Gax,1) = —2/dr/ra,f(x—ha,r)(t )Y (—a, 1 — o, At — )" %)dA.

First we integrate by parts with respect with respect to 7. The estimates of I’y , obtained
in [15], and second identity in (20) lead to

t o
Galx,1) = —2Fa(x,t)+2/dr/Fa(x—h?L,T)DS(T_O‘q)(—a,l—a,—?ts_o‘))\Ft_Td?L.
0 0

(31)
Then we apply
4
dA
(see (19)) and integrate by parts with respect to A in (31). In this way we established
(28) from (29), (31). O

(T o(—0,0,— A7 %) =D (T %¢(—0t, 1 — o, AT~ %))

LEMMA 2. The function G satisfies the following estimates
/ IDLG(x,1)|dr < CIx2~0 0, oy i > 2, (32)
0

/ \DEG(x,0)|dx’ < Ct* 'k k=01, (33)



TIME-FRACTIONAL DIFFUSION EQUATION 159

/\Dth‘*“G(x,t)wx’gcrk, k=0,1,2, (34)
Rnfl
/ |DfGZ,.(z’7xmz)|z’\9dz’gc:“z*e”*’: k=0,1, i=1,.,n—1, (35)

Rn—1
Proof. In accordance with definition of G we have

L= / \DLG(x,1)|dt
0

oo t oo oo
<cfarfar [au [ 1001, (= im.p)
0 0 0 0

X T 9(—0,0,—pt %) (1 = 1) |9 (—0,0,—n (1 — )" %)[dn,

Formula (20), changes of the variable t — { = # and the order of integration lead

to the inequalities

I <C/dr/dt/du/IDiH,xn(x—hn,u)\
0 T 0 0

ol o nl— 0 dn @6)

X T_l|¢(_a707_”1_a)| (t T

< C/dr/du/\DiFm (x—hn,w)|t ¢ (—a,0,—put *)|dn.
0 0 0

The classical estimate
Ut fi]+n 2
IDEDLT (x0)] G177 2 exp (4@) (37)

and (23) with the change of variables n — z = # gives

ot ot o " 2 2
I < C/dr/du/;ﬁw+2+1 exp (—C%) 9 (—a,0,—put%)|dn
0 0 0

|[1]+n

o e 2
<C/d1' U~ T exp (—C%) T o(—0,0,— T *)|du.
0o 0

_ b

u

u

We use (18), (20), change of variables T — p = = and then u — to deduce

oo

I <C|x|2*("+|”>/C"*'”*exp(—Cﬁ)dC < C‘x‘27(n+\l|),
0
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when n+ j—3 > 1. This proves (32).
Since

x,,—b[.t x2
/ i, (x— b, 1)|dx' < C R eXP(—C%>,
Rn—1

we have

I= / |G (x,t)|dx’

<c /dx/d(/du/ 3ﬂ p(—ci%?f)@—n*

Ri-1
X)¢(‘“”“‘@f2w>hfw¢<_“‘x_%%ﬂd”

We divide an integral over (0,7) into the ones on the intervals (0,7/2) and (¢/2,1).
We denote corresponding integrals by I’ and I”.

We have
t/2 oo
/ - ldf/ (-0~ )| [Eaenp (~c )
0
t/2 (38)

C _ _
<?/T“ Ydar < cr* !,

here we change the variables 1 — { = T%, u—&= % and use estimate (18). In

I" we apply again (18) to estimate Wright functions

x—buf?
1" < /dr/d / 3/2 p(—CT>

1/2 0

Summing up (38), (39) we obtain (33) for k =0.
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Next we calculate G;, Jtl’O‘G, D?G, D*G. Similarly [2] we have
Py t/2 oo
Gi1) = —25- /dr/ra,xn (= ht — )7 (=0, 0, —n T @ )dn+
t/2 oo

+0/dro/l"wn(x—hn,r)(t—r)‘l(b(—a,o,—n(t—r)‘o‘)dn

_ —4/ra,x,, (v —h1,1/2)(1/2) " é (=, 0, -1 (1/2)%)dn (40)
0

t/2 oo
—2/dr/1"aﬁxnt(x—hn,t—r)r‘l(p(—a,o,—nr‘“)dn

t/2 oo

2 0/ dt O/ Tov (x— 1, 1) (1 — )20 (—et, 1, — T %)dn

By (19) we obtain

JPG(x,1) = —2/dr/1"a,xn (x—hn,t—1)t % (—a, 1 —o,—m7 %)dn.  (41)

We rewrite (27) in the form

0G oI’
o - _ i _rZa
D¥G(x,t) = Zihl 7 (x,1) —2 . (x,1), (42)
It follows from (42) that
32r
o+1 o
DY G(x,1) Eh& & 8xn8 (x,1). 43)

Arguing as above we established the rest of estimates in (33), (34) from representations
(40), (41), (42), (43).
By the same reason we restrict our attention in (35) to the case k = 0.
Preliminary we have from (23), (37)

/ 821"1

3xnaxi ()C/ _y/ - h/naxn - hn”l;li)
Rn—1

W —y'1%ay’ < u®2 3 2exp(—Cn? /).

Then this estimate yields

[ 1o < fas [ oo (o)< o a0 -2)
0 0

Rn—1

X (t—r)‘l)q)(—a,o,— n )‘du.

(1 — 1)
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We divide this integral into two ones on the intervals (0,7/2), (¢/2,t) and denote its by
L' and L". Next we use (18), (20) to obtain

/2 oo oo

0/2 2
L’<C/d1:/d / “"/2 /—’37 exp(—Cn—>
32 u
0 0

0

oA el

/2 oo o
< Ct 11/1'052 1d1/exp<—C(t%>wx)@/exp(—C%)%<CtaZG 1,
0 0 0
and
2 e e
L”gct/dc/du/z“"/z (%)9/2“ 3/2exp(_c%2>
0 0 0

7 Nn\==\ 1 8
x/exp(—C(F> )Gl+adG<Ct2 .
0

The proof of Lemma is finished. [

Next we study properties of the function

/Gxxt

LEMMA 3. The following inequalities hold

T

J K0l <(r), @
0
T

J 1K Gnt) = Kzt < C(T.0) b, = " @5)
0

Proof. By (28), (24) we have

K (xp,t :—Z/Faxtdx—h /Gxt (46)
Rn—1 Rn—1
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The first integral is estimated in [15] (see Lemma 3.5)

[ Fatxnlad <o,
Rn—l
the second one is estimated in (33). Thus we have

T

T T
/\K(xn,t)\dt <C /t"‘/zfldt+/t°‘*1dt <C(T).
0 0

0

We use inequalities (%, < 0 by (12))

exp(—C(xn — hyn)?/1t) < exp(—Cixy /1t — (8om)*/10),

6

exp(—Cx2/p) < x0Tt
,u

T exp(—Cx2 /) <x0 7'

and representation (46) to get after routine calculations

T

163

(47)

J 1K Gs0.0) = Kzt < /d& / a6, dt|+/d5 /|cx,1, 1l

0

C/dg/ge 210 < T30 e — 2P

The proof of (45) is finished. [

To this end we need the following result.
LEMMA 4. Let j#n, a > 0, then the estimate is valid
I,= / ij(x/—y’,xn,t)dy’ dt <C,

0 |¥—y|<a

here the constant C doesn’t depend on a.

Proof. We shall closely follow the line of the paper [3] (see estimate of L3).

If n > 3, then we get from (36), (]I| =0)

= =

(48)

1, :/ / G(x’_y’,xn,t)dSyr dr <C / /|G(xl—y/,xn,t)|dt dSy/

0 ||x¥—y|=a [x =y |=a 0

dSr
<C <C.
‘n W -2

=y I—a
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If n =2, then we denote by ¢ a semicircle € = {z = (z1,22) € R? : (2} + (22 —
)2 =a, zp > x}. By (36), (|l| = 1) we have

a_/\G —a,x0,1) — Glayx2,1)|dt = //VGzt )-dl, dt<C/ o<
Z

The proof is finished. [

3.4. Main estimates of w

LEMMA 5. Suppose that assumption (12) is valid and ¢ € C};Be (R21Y. Then the
Jollowing estimates hold (i=1,..,n)

e, SCTIO) (49)

©9) ©)
<Wxi>t,]R’jmT < C(T)<¢>a,]R’fl’ (50)
(D) <T@} 0,10 7€ (0.1), (51

Proof. We construct the solution w of (7)—(10) in the form (25).
We get
wy, = (G x9), j=1,....n. (52)

First we estimate the Holder constant (ka))((%%n . We consider the difference
T

p=lx—z)

1) =)

_/dT / Xj( /—yl,xn,t—T)(p(y/,T)dy/
W—1<2p
t
—/dT / G, (& =yt =)oy, T)dy’
0 X —Z1<2p
t
:/dr / G, (¥ — Yt — T) (9, T) — @ (¥, 7))y’
0 [x'—2'|<2p
t
~[ar [ Gy~ m=Dle0 1) — o T)ay
0 [x'—2'|<2p
t
+ [ —opdr [ G~y — 1)y

0 [x'—=2'|<2p
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+ [ar / (G (4 =t = 7) = Gy (& =t =) (0, 7) = 9l 7))y

t
/ / (G, (¥ =¥ st = T) — Gy (& — ¥ 2nst — D))y

Rn-1

By (32), we obtain

¢] —n —n
|11+12<c<<p>§_ﬂg,;1< [ow=yetay s [y “dy’)
=Y |<2p ' —y'|<3p

() 0
<C . .
<(P>X7RT 1P

(53)
If j # n then we use (48)
5] < Clo) 5y 1p°. (54)
Let j =n in 5. By (28) we have
n—1 a
Gy, (x,1) = —2T g (x,1) — 2h,G(x,1) +22 e i(x,1) (55)
here
i(x,1 :/d7/<hl"ax hn,t)+ 3 (x—hn 1:))
0 0
x(t—1)7'9(~0,0,—n(t — 1)~ *)dn,
(compare the last expression with (24)). It is easy to show
/ (& 0)|dr < CP, n>2, (56)
0
/|(~;,-7xm(x,t)|dt <O, n=2, m<n (57)
0
in a similar manner as estimate (32).
The estimate
t
/ / G, (v xa,1)dy | dT < C(T) (58)
0 y[<2p
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follows from (48). We consider each term in (55) separately. From (47) and (33) we

have
/dr / T (s 0, 1) [dY <c/ 1221 4r < 0T (59)
0 <2
and
t t
/dr / |G(y’,xn,t)|dy’gC/T""ldT<CT°‘. (60)
0 <2 0
The proof of inequality
(61)

t ~
2G;
/ / 5 (¢ xp1)|dy' |dT < C, m#n
0 fyl<2p "
parallels that of integral (48) in view (56), (57). Inequalities (59), (60), (61) follows

from (58) and consequently (54) for j =n.
For I, we have

L=[ar [ (o=l 0)ay

0 [x—z|=2p

o ]
X// Z XjXm Z +)L )C _Z) y/7Zn+7L(Xn—Zn),l—T)(Zm xm)dzf
0o Mt

Estimate (32) gives

[SE

1 _
|1y <C|x—z|/d?t / ly —7|° ((Z/—y’-l—?t(x/—z’))z-i-(zn + A (xn zn))2> dy’
0 [x—z|=2p
(62)
Routine calculations show
(63)

VI =y <2l +A( =)=y

x—z| < |+ A —2)—
We denote § = z+ A(x —z). With the help of (63) we can continue (62)

1
2 !
A <C|x—z|/d7t (E, ,||n) 4y

0 =Y [=p—z|
1

<Cl—1] / dn
0 g—yizkd

(64)

18— 187"ay < Clx—2p® ' < Cpf.
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One can easily observe that

Is=0, if j#n. (65)
If j =n, then we have

|I5] = /(p(z',T)(K(xn,t—T)—K(z,,,t—r))dr <(I(T)T9%<(p>te]§n,l|xn—zn|9, (66)
WRT
0

here we used (45).

Summing up (53), (54), (64), (66) we establish (49).
Next we estimate (h=t—17 > 0)

Wy, (X,1) — wy, (x,7) = /dT / Gy, — V. xmt —1)(0(Y,7) — (X', 7))dy
1—2h el

/ dr / Gy (=31 = h=T) (. 7) — (. 1)

+ /(p(x’,T)dT / ij(x’—y/,xn,t—r)dy’

0 Rn—1
! 4
_/qo(x/7’[)d’[/Gx( Y Xp,t—h ’L')dy] >
i=1
0 Rn-1

Estimate (35) gives

t

1l <o) [ (-0 e [ e Flar) <clp)l it
xR
t—2h t—2h
(67)
By (35) we get
t—2h t—1T t—2h

|| < C{op) Rnl/dT / n 772(17] Clop R,,l/d”l:/t—‘[ 7245

—oe t—h—1
t—2h

e l/ds/ (t—1—5)°2 21 (68)

h
< c<qo>)‘jR,;,l /(2h —5)%5 s < C<¢>3’R,%,lh9%.
0
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It is obvious that
I, =0, j#n (69)
If j =n, then

1

I4=/(p(x’,1:)K Xp,t /(p K(xp,t —h—1)dt
0 0
t—h

/(p(x’ﬁ)K(xmt—r dr—/qox,r K(xp,t —h—1)dT

1

0
- /(<p(x', ) — 0,7 — h)K (a1 — T)dT.
0

So from (44) we see
a] < Clo)g 0% (70)

Inequalities (67), (68), (69), (70) prove estimate (50).
The derivative DZ,w(x,t) is represented as

t
Dewixt) = [dr [ DIGW ~ ¥ 5, 2) (9,1~ ) — @)y
0 (71)

+ / JTOG( =y x0,0) (Y 1)dY = vi(x,1) 4+ va(x,1).
Rn—l

In fact we have

t
o) = I G @) ) = [de [ ILGW ~y 3 0) o c0l D)
0 RrRn—1

We use (17). Then we differentiate with respect to ¢ the function

t—6
s (6,1) = / dt / TG Y 3, 0ot @ T)dy
0 Rn-1
and get
Jd .
8_W6 (x,1) /dT / DEG(X —y %0, 0)|o=i—c (Y, T)dY
Rn—1

+ [ IEOGE 00001 — )y
RrRn—1
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_/dT / DYG(x' —y xp, 1)@, 1 — 7)dy

Rn-1

+ [ U5 G =Y 0 0)loms — I UG =Y ) ol 1 = 8)dy
Rn-1

+ / JIG( =y xa, ) (Y 1 — 8)dy

_/‘” / DG —y xp, D)@y ,t — T)dy

—/dT / DIG(X =y ,xn, 1)@y 1 — 8)dy
i) Rn-1

+ / IO —y xa, ) (Y 1 — 8)dy

- / dt / DG —y 50, ) (@0 1 — ) — @Y1 — 8))dy

+ / JTOGH —y x )@yt — 8)dy.
Rnfl

Letting 6 — 0, we derive (71).

Let 0 <7 <t.Denote h =t —1. We consider the cases a) h > 4 b)) h< 4
First we estimate v, (x,7) — v,(x,7). In the case a) we apply estimate (34)

va(x,8) = va(x,2)[ < [va(x,2)] + 2 (x, )] <C<<P>,Y_R,Fl(fy+fy) <{9)! . W (72)

In the case b) we have

va(x, 1) —va(x,7) = / (JtlfaG(x’—y’,xn, ) — Jl G =y xn, D)o t)dy
Rn—l

[ IO Y D0 ) — ol D)y
Rn—1

13

7 Rn—1

+ / TG =y xa, D) (@(y 1) — @(v,7))dy .
Rnfl
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By (34) we get

t

_ dt _
vat) =2 D) < Clo) gy (17 [ T le =117
A (73)

h
< C<¢>zR¥—l (ty? + h')’) < C<(p>ZR;7lh’ya

. - - 1 _ 4 4
since 4h = 4(1 —1) <t and 7 < 3 < gy -

In the case a) first term v are estimated as follows (see (34))

t

M0 SClo) gy [a=T) T <Clp) 17
t,R7 R
0
and

) = D) < ()] (D) < CO)Ty (7 +) < (@) B (74)

In the case b) we evaluate the difference vy (x,7) — vi(x,7) in this way

i () — vy (x,7) = / T/DO‘ (& =320, 0) |- (@, T) — @(s1))dy
_ Rn—1
t—h

~ [ dv [ DG 50,0 omin (01T =)y

t—2h  Rn-1
t—2h

+ [ dr [ DEGW=y 0 0)lomi-c(01 1)@t —h))dY

Rn—1
t—2h

+ [ dr [ (DEGH~ 50,0 lomr-—DEGW Y 30, 0) ot o)
0 Rn—1

< (o0, 1) — @y ,t —h))dy' —Zl
Besides in /3 we integrate with respect to T

L= /Jrl_“G(X'—y’,xn,t)(fp(y’,t)—<P(y’,t—h))dy'
Rnfl

— [ B Y im0 1) — 00— )y
Rn—1
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Estimate (34) yields
1]+ 1B+ || < Cl@) g, (75)
We observe that t —2h > % in the case b) and get
/2 —7
L=+l = / ar [ dg [ DEIGE -y w000 D)~ 900y
t—h—1 Rn—1

t—2h -1

+/d1: / d¢ / DEGH Y 2, §)(0(Y,T) — @ 1))y
t/2 t=h—-1 Rl

We employ (34) again
t/2 —1 /2 -7
IARS tR,,l/dr / 2t —1)dg < Clo R,, 1t”/dr / ¢2dg
t—h—1
/2 (76)

B hdt 1/2
_ C<¢>ZR,;II7/O/ e SO s

<C<(P>er} I 1h<C<(P> LRI VY,

since h < t/4 in the case b). Then we estimate I as follows

t—2h -7 t—=2h
HI<Clo)y [ ar [ 1=veac<cie), i [ -0 2ar
t/2 t—h—71 /2
W4 (1/27) < Cl) gy 11,

(77)

<C‘<(lo> Rn 1

Tnequality (51) follows from (72), (73), (74), (75), (76), (77). O

3.5. Proof of Theorem 1

We need estimates of the Holder constants

(k+1+0) (k+1+6)9)
<W>O‘=R$T . >t7R’i,T e

We claim that (41+0)%)
+1+6)% (k+1+46)
<W>th’i,r 2) < C<W>“7R’i,r . (78)
First we prove (78) for k = 1. We use the identity

1

w(x, ) = w(x,0)+ ﬁ /(t — T)O‘*lDf’Tw(x, 7)dT,
0



172 M. KRASNOSCHOK
and Theorem 2.5 from [5] to obtain
Dewl.N® < D% (&) 79
<W( J) W( 7T)>XR” X |t | < *,IW>X,R:’>#T (79

Then the interpolation inequality (see [19])

210)\ 2 o 5
(79) and Young’s inequality give
((1+6)%) (2+6) .
<ij>t,]R’i#T ’ <C<W>QMT, j=1,....n (80)

ie. (78) fork=1.

Now we consider derivatives (D%, )"Dw(x,t), 2m+ |I| = k. Since w is solution
of (7) we have (D%,)"Diw(x,t) = A"Diw(x,t). Denote [ = (I1,..,l; —1,..,l,). We
deduce

k+1+9 ¢ m 1+60)% m 1+60)%

Rn
o 2m+\z|:k 2|l =k '
& 71- (( % ’. 2+9 %)
<C) 3 <$Dx W>tw ®Y 3 ok
||=k 4 j=1l|=k
(k+1+6)
< C(k)<w>a,R$T .
Inequality (78) is proved.
We just estimate (w)EfElee) . We consider derivatives (2m+|l| =k+1)

(D))" Diw(x,1) = (DZ,)"D\(G * 9).

Since the function w satisfies equation (7), one can take [, = 0,1. If /; %0 for some
j€{1,..,n}, then we have

m a m I
(D%)"D (G @) = 5~(G+ (D2,)" DY ).
J
By (49), (50) we get
J o \m (6) (k+6)
< .
75 @0y Dle] L <cmioliy 81)

If [I| =0 then 2m=k+1
(D2)"(G @) =DZ,(G*(DZ,)" ')
By (51) we obtain
m, (05 o
(D% % < c)gln). (82)

n—1
o, Ry
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To this end we estimate the Holder constant of (DY,)"(G * ¢) with respect to x. By
analogy with (71) we obtain

(D&Y (G * @) (x,1) /dr / G =y 2t — T) (D% @) (v )y
= / dr [ DEGE ~y v 1)(D%e)" ), )i
Rn— 1

—/dT / DEG(x' —y xn, 0)(D2)" L o(y 1)dy
0 —1

+ / TG —y x5 t) (D) (v 1)dy.

Rn—1
(83)
We represent D¥G from (27) as
or L dG
D*G(x,1) = —2—=—2(x,1) = ¥ hi=(x,1).
PGl = -2 ) = Xz )

Lemma 3.7 from [15] and estimate (49) give bound for the first and second term in (83).
Third term is estimated by (34). Thus we have

<(Di“,r)’”W>(?1§n <c(1)[p]*T, . (84)

xR, T Q,R;L !
The inequalities (81), (82), (84) result in estimate (13).

4. Proof of Theorem 2

4.1. Local in time solvability

We set
) =1:0)+ o (20,5 Jolo), xe . (55)

d
uz(x) = y(x,0) — A ()6,07 3—> up(x), xeX. (86)
X
Assumptions of Theorem 2 imply (see (16))
u €C%(Q), weCO(T), wueCtl().
We look for solution of the problem (1), (2), (3) as

u(x,1) =V (x,1) +v(x,1),
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where

V(x,0) = ug(x), Dg,v(x,t)|t:0 =u;(x), x€Q &N
Vec;t?Qr), DVecC,?(zr)
and v is the new unknown function such that

Dfitv—ﬂ<x,t,%)v=flEf—Di‘,tVﬂLﬂf(x,t,%)V, (x,1) €Qr,  (88)
v(x,0) =0, xeQ, (89)

Dg,v+,@<x7z,%>v:wlEW—DQ,V—%’<x,t7%) V, (xt)eZr.  (90)

It is easy to see
f1eCho(Qr), wieCf(Zr) o1

under conditions that relations (14), (87) are fulfilled.

THEOREM 3. Suppose that assumptions (4), (5), (6), (14), (91) hold. Then for
sufficiently small T there exists a unique solution v of problem (88), (89), (90): v €
Cot2(Qq), D% v € G310 (21), and

246 1+6 °] 146
Maar +1D4vlase <) (Al +lwles!) - ©2)

This theorem can be established by the construction of a regularizer (see §4-§7 from
Chapter IV [17]). This approach is based on freezing the coefficients of the operators
o/, # and study of two model problems: problem (7)—(10) and Cauchy problem for
the equation DY ,u — Au(x,t) = f(x,t).

As is follows from what will be said below, in order to construct the function 1%
we need the function V' such that

V(x,0)=0, DZV(x,t)[=0=us(x), x€X

(93)
Ve (zr), D%V ecCy ().
We use the approach similar to [3] and cover the boundary X with balls B, = {|x —
xXm| <d}, (m=1,...,N) for sufficiently small d. Let @, be C?+% _mapping of the set
Om = (B, on a domain in R"*~!. Let 1,,(x), N,.(x) be the sets of smooth functions
such that

M=

SUpp Nim < O, ﬁm(x)nm(x) = Nm(x), NMm(x) =1 x€ X. (94)

m=1

We define functions V,,(y,?) as the solutions to Cauchy problem

Dith(yat)_AVm(yJ):Fm(y7t)a (yat)€R¥il7

(95)
Viu(»,0)=0, yeR" !
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where
F(y) = (Nmuz) 0 ®,,' (y) € C O (RG).

By virtue of results [15] we have
V250, SC(T,Z) w2,y (96)

nl\
Ry~

Now we define V' as follows

V(x,t) = N (Vi o @p) (x,2). 97)

M=

m=1

In view of (94), (95) the function V satisfies (93). Then we define V as the solution of
Dirichlet problem

DaV Q{(a?;)f}:f? (xvt)GQT7

V(x,0)=uy, x€Q, (98)
‘728(3@1)5%04—% (x,1) € Zr.
From (93), (86),(6) we see that compatibility conditions
g(x,0) =up(x), xexX,
(99)

Dalclio = (0.5 () ), xe

are fulfilled. Hence by virtue of resglts [15] there exists unique s0~lution of (98): Ve
CZ™9(Qr). By (98) we deduce D%V =DV on I'r, so that D,V € C4*%(Z7) and

| (2+6) | (1+0) (2+6)

(14-6)
VIS +10%, V1532 < (T, %) (fuol G T + gy + lual G £ (100)

To this end the statements of Theorem 2 for sufficiently small 7 follows from estimate
(100) and Theorem 3.

4.2. Solvability on interval (0,T]

Now we extend the obtained solution on interval (7,T).

LEMMA 6. There exist functions W, W such that

W ey (Zr), DAW eCLo(3r), Wx)=v(x,t) (x,1) €, (101)
W € C(2x+e(QT)v DZIW € C(lJc+e(ZT)7 W(XJ) = v(x,t) (XJ) € Qq, (102)

here v is the solution of (88), (89), (90).
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Proof. We use the functions ®@,,, N, N, again. Define
_ —1
Wm = (nmv) Oq)m (103)
and s,, as a solution to Dirichlet problem

Asy, =0, y,>0,

104
Sm = Wm, Yn= 0. ( )
Then we set
8m = Ditwrn — Sm,yn (105)
and
gm(y, for t € 10,7),
gy = {500 0,7) (106)
gm(y,7) for r€[r,T].

To this end we define (s/,, w/,) as a solution of the problem

Asy =0, y,>0,
S =W DEWo =S, = 8u(Ys1), yn =0, (107)
=0, t=0, y,=0.
Following [33], we conclude that there exists a unique solution of (107) such that w/, €
CLPORF), D%, wy, € CLTO(R}1). By uniqueness of solution of (107) we see from
(103), (104), (105), (106) that
w (V1) =wa(y1), 1€[0,7). (108)

It can be shown in a standard way that the function
N
2 (wh, 0 @y, (x)
satisfies (101). The function W is defined as a solution of the problem

0\ ~
Df‘,W o ( X1, = ) W= fi(x,1), (x,1)€Qr
W‘t:() = 0, X € Q,
W=W, (x1)eXr.
‘We conclude from results of [15] that W exists and satisfies the estimate

(2+0) (146) (2+0) 146)

WG o) + 102 WL <o) (1l + ey +IDelaz)) . (109)
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Once the function W is constructed, we look for the solution of (D), (2), (3), as

u(x,t) =V(x,t)+v(x,t),

with

v(x,t) = W(x,1) +w(x,1),

where w(x,1) is the new unknown function

Dg,w—% (x,t, %) w=hfH=1f —DZ,W—}—% (x,t, %) W, (x,1) € Qr,
w(x,0)=0, x€Q, (110)

DifW‘F@(X,I,%)W: Vo =i _Dg,tW_‘@(x)ta%) Wa (.X,t) €Xr.

Routine calculations shows

HeCHQr), v eCy (), (111)
fryp=0, te€[0,1]. (112)

We apply Theorem 3 to problem (110). In view of (112) and the uniqueness of solution
to (110)
w(x,t) =0, r€]0,1].

This identity allows us as in [16] shift variable + — # — 7 and apply Theorem 3 on the
segment [7,27]. Then we repeat this procedure to get the solution of (1), (2), (3) on
any interval [0,mt], m € N. This ends the proof of Theorem 2.
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