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SOLVABILITY AND POSITIVE SOLUTIONS OF A
SYSTEM OF HIGHER ORDER FRACTIONAL BOUNDARY
VALUE PROBLEM WITH INTEGRAL CONDITIONS
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(Communicated by A. Ashyralyev)

Abstract. The main purpose of this paper is to study the problem of the existence, uniqueness and
positivity of solutions of a system of higher order fractional differential equations with bound-
ary value problem expressed by fractional and integral conditions. Using fixed point theorems,
we discuss the existence and the uniqueness of solutions of this problem, and we apply Guo-
Krasnoselskii’s fixed point theorem in cone to study the existence of positive solutions. We give
some examples to illustrate our results.

1. Introduction

Fractional differential equations have been of great interest. This is because of the
big numbers of applications in various fields of science and engineering [4, 5, 6, 7]. Re-
cently, many books about fractional calculus and fractional differential equations have
been appeared [1, 2, 3]. The main purpose of the present paper is to investigate suffi-
cient conditions for the existence, uniqueness and positivity solution of the following
higher-order fractional differential equation:

DY ui(t) = fit,u(r) S DB u(o), .. DY (1)), 0<1<T (1)

with fractional integral and integral conditions:

/ hi(s,u(s))ds, 0<k<nj—2
- @)
700 = w1+ [ i () s

where p € N*, i€ {l,...,p}, m; e N*\ {1}, m; e R, 0<% < < Dlmitny) u(z) =

Tt
(ur(t),.sup(t)), fi:]0,T] x RU—DXP R and forall 0 <k <nmj— 1, by : [0,T] x
RP — R are continuous functions. The non-local condition 7, +u,( ) has physical sig-
nifications such as total mass, moment, etc. Sometimes it is better to impose integral
conditions to get a more accurate measure than a local condition (see [21]).
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Various type of boundary value problems involving fractional derivative were stud-
ied by many authors using fixed point theorems on cones, fixed point index theory,
Adomian decomposition method, fixed point theorem combined with the technique of
measures of weak non-compactness, Leray-Schauder nonlinear alternative, Leggett-
Williams fixed point theorem, upper and lower solutions method (see [13, 12, 14, 15,
16, 17, 18, 19, 20]).

In [15], V. Daftardar-Gejji et al. discussed existence, uniqueness and stability of
solutions of the system of nonlinear fractional differential equations:

‘D +u,( ) = filt,u1(t),...,un(t)) =0, 0<t <1 3)
u?(0) =}, )
where 1 <i<<n, 1 <km;, mj <oy <mj+1.

In[l 4], K. Diethelm considered the following ordinary fractional differential equa-
tions with Caputo-type differential operators:

‘Dgiu(t) = g(tu(t), 0<r<1 (5)
u(0) = ul). 6)

K. Diethelm give a full characterization of the situations where smooth solutions exist
of (5)-(6). The results can be extended to a class of weakly singular Volterra integral
equations.

In [17]J. R. Graef et al. investigated the existence of positive solution of nonlinear
fractional boundary value problems of the form:

— D ult) +aDY.u(t) = f(t,u(t)), 0<1<1 )

DE.u(0) =0, DI 7u(1)=au(1) (8)
where DS‘+ is the a —th Riemann-Liouville fractional derivative and 1 < y < o < 2,
0<B<o—7,0<a<T(ax—y+1)and feC(]0,1] x Ry,R;). The existence of
positive solutions of a (7)—(8) can be established by finding fixed points of an associated
operator. The construction of such operators often involves the derivation of the Green’s
functions and is a key step in this approach.

In [12], J. Deng et al. studied the existence and uniqueness of solutions of initial
value problems for nonlinear fractional differential equations:

‘D¢u(t) = g(1.°DP u(r)), 0<1<1 9)
u®0) =, k=0,1,..m—1, (10)

withm—l<a<m,n—1<B<n,(mneN,m—12>n), g€ C([0,1] xR). Using
of the Schauder fixed point theorem, J. Deng et al. obtained some new results for the
existence and uniqueness of solutions of (9)—(10).

In [16], A. M. A. El-Sayed et al. studied the following fractional boundary value
problem:

u(e) = f(e,u(t), DYiu(r), D u(t), ... DSiu(r)) (11)
u(0) =¢j, j=0,1,...,n—1. (12)
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Two methods are used to solve this type of equations. The first is an analytical method
called Adomian decomposition method. Convergence analysis of this method is dis-
cussed. This analysis is used to estimate the maximum absolute truncated error of
Adomian’s series solution. The second method is a proposed numerical method. A
comparison between the results of the two methods is given.

For some recent contributions on fractional differential equations, we refer the
reader to (see [22, 23, 24, 25, 26, 27, 28, 29]). Our aim is to use Banach contraction
principle and Leray-Schauder nonlinear alternative to prove the existence and unique-
ness solutions of our problem. For this, we formulate the boundary value problem
as the fixed point problem. However, the Schauder fixed point theorem cannot en-
sure the solutions to be positive. Since only positive solutions are useful for many
applications, motivated by the above works, the existence of positive solution are ob-
tained by the Guo-Krasnosels’kii fixed point theorem. The particularity of our equation

(1)—(2) is that the nonlinear term contain the fractional order derivative Dgi"fzu(t),
and boundary condition involving fractional integral condition 7{u;(1) which leads
to extra difficulties. To the best of our knowledge, no one has studied the existence
and positivity of solutions for nonlinear differential fractional equation (1) jointly with
fractional and integral conditions (2). For p=1, oy =2, m; =0, 73 =1 we have
the second order problem u|(¢) = fi(¢,u;()), ¢ € [0,1] with classical boundary condi-
tions #(0) =0, ¥’ (0) = u(1) and for p=1, oy =2, ¥ = 0 we have the second order
problem u{(¢) = fi(¢,ui(r)), ¢ € [0,1] with the initial conditions u(0) = u'(0) =0. In
special cases our problem reduces to (3)—(4), (5)-(6), (9)—(10) and (11)—(12).

1.1. Lemmas

In this section we present the necessary definitions and lemmas from fractional
calculus theory. For details, see [8, 9, 10, 11].

DEFINITION 1. Let f € L'([a,b]) and & > 0. The Riemann-Liouville fractional
integral is defined by

I35 () = ﬁ/u (t=5)""'f(s)ds ifa>0 .
f(@) if 0 =0

where T is the gamma function.

DEFINITION 2. Let f € C"([a,b]), the Caputo fractional derivative of order o >0
of f is defined by

t
ﬁ/ (t—s)= ' f(s)ds ifn—1<a<n
SO if o = .

DY, f(r) = (14)

For o = 0 we have ‘D% f(t) = f(t).
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LEMMA 1. [9] Let &, B >0, f € L'([a,b]). Then

1810 p @) =17 pe) = 1018 £ (1) (15)

is satisfied almost everywhere on [a,b].
If additionally f € C([a,b]) or oc+ B > 1, then (15) is true for all t € [a,b].

LEMMA 2. Let B> a >0, f € L'([a,b]). Then almost everywhere on [a,b]
D 1P f(0) = 1P £ (r). (16)
LEMMA 3. Let o, 3 >0 and n =[]+ 1, then the following relations hold:

ena -1 L(B)  poa-
D(’*tﬁl_il“(ﬁ—a)tﬁ !

where B > n and "D8‘+tk =0,%k=0,1,2,....n—1.

LEMMA 4. For >0, g € C(0,1)NL'(0,1), the homogeneous fractional differ-
ential equation

“DE, g(t) =0 (17)

has a solution
gt =co+crt+et’ + ... 4cpt"! (18)

where, ¢, €R, i=0,...n—1 and n=[o] + 1.

LEMMA 5. Assume that g € C(0,1)NLY(0,1), with derivative of order n that
belongs to C(0,1)NLY(0,1), then

15Dy g(t) = g(t) +co+ecit + ot + ot eyt (19)

where, ¢, €R, i=0,...n—1 and n=[o] + 1.
LEMMA 6. Let o >0, f € L'([0,T],R..). Then, for all t € [0,T] we have

I8 f () < G- (20)
Proof. Let f € L'([0,T],R.), Lemma 1 we get

T t
1§ fllp = /O Dy I3 f(s)|ds > /O °Dy g5 f(s) ds = 1§ £(). O

Let peN*, ie{l,..,p}, m;ieN, n; 23, nj—1 <oy <m, forall je{l,..,
ni—2}, j—1<B;<jand By=0.
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E={(u1,....up) € ﬁC”i([O,T];R), DI (1)) € C((0,T];R), j € {0, ... — 2},
=1
ie{l,...pth

The space E is a Banach space equipped with the norm

lulf = i

Dl - e
i=1

where
1€ Do+(ul)Hoo— sup |[° D,0+( u;) (1) (22)

1€[0,1]

and CD? 6+ (u;)(¢) fractional derivatives with respect to the variable .

DEFINITION 3.

1. The function u = (uy,...,u,) is called a nonnegative solution of the system (1)-
(2) if and only if u satisfies (1)—(2) and for all i € {1,...,p}, ui(r) > 0 for
t€[0,T].

2. The function w= (uy,...,u,) is called a positive solution of the system (1)—(2) if

and only if u satisfies (1)—(2) and forall i € {1,...,p}, u;(t) >0 for t € (0,T).

LEMMA 7. Letic€ {l,...,p}, 0<k<n;—1. hj and g are continuous functions.
Then the fractional differential problem:

CDO+u,():hi(t) 0<t<T
k) r
0):/ gik(s)ds 0<k<n—2 (23)
0

(ni—1) m; T
u (®=W&MD+Agm4@M

has a unique solution u;(t / Gi(t,5)hi(s)ds+ @i(t) where G; is the Green’s func-
tion defined by
(zf_y)“ifl )/,'t"ifl (Til\.)mﬁoci—l .
T'(04) M(mj.n;, ;)T (mi+04) fOSs<t
Gi(t7s) = tn-fl(T )m-+0!~7l (24)
Yit"i —g)TN .
M(mj i, y)T (mi+0y) fr<s<T
iTni+mi71
andM(m,,n,,)/,):(nl—l)'<1—yr(m71)> > 0.
i—2 k+m;
" T /
i(f) = i
9i(t) M(mi,ni,)/,-) 2 T(k+m;+1) gik(s

s)ds| "1 / ; 5. 25
M(mi,ni,y) / 8ini— S:| +Zk' gk (25)
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Proof. Applying Lemma 5 we reduce equation CDS‘L u;(t) = h;(t) to an equivalent
integral equation

ui(t) = Igﬂ’r (hl)(l) +coitcrit+...+ Cni,27,'lni72 + Cni,17,'lni71 . (26)
From the boundary condition u / gix(s)ds, we deduce that

1 T
Cri = E/o gix(s)ds

Therefore, we have successively

. kT -
wi(r) = I (hi) () + Z F/ gik(s)ds+cp_y "

) = 000+ S, 0N [ w0,
" . m+0£ l‘k+m’
Iui(r) = I (1) = [ +2 D) / gik(s
F(nl) ni+m;—1
nie i1
+ Cni—1, T(n: +mi)
. o mo2 ktm;
BT = )+ 5, e [ aatods
1
I'(n;) i
U pnitmy 1 27
+Cn, l7lr(ni+mi) I ( )

T
u=1(0) =yl i )—l—/o im—1(s)ds

nj—2 k+m;
m T I
(ni = 1)ten 1= wlyt * (hi)(T )+%Z /g’k

T(k+m;+1)
Tn i+mi—
+ n,fll% +m / gln,fl
We denote by
%_Tn,--‘rm,-—l
Mm,-,n,-, 1) = n,'—l Ml— =
() = = 1 (1 E 2
We obtain that
) - Y (’)n++a'(hl)(T) ¥ n,z—f Tker, /-
L M(mh”i»%') M(mivni7%) k+mt+1 glk

1 T
[ i ds. 28
Sy Jo G614 (28)



HIGHER ORDER FRACTIONAL BOUNDARY VALUE PROBLEM 185
Then

Wl (T

wi(t) = Iyt (hi)(T) + M (% mi, ;)

+ @i(t), (29)

T
that can be written as u;(¢) = / Gi(t,s)hi(s)ds+ @;(t), where G; and ¢; are defined
0
by 24 and 25. The proof is complete. [J

Let T; the operator defined by

T, : E — C([0,T;R)
u—  Ti(u)

where for all 7 € [0, 7]
Ti(u)(1) = Fi(u)(z) + Qi(u) (7).
Pi(u) and Q;(u) are given by
1) = /OT Gi(t,s)fi(s,u(s), DY u(s), ...,Dgi"’zu(s))ds (30)

and

Y ”i*2 Tk+m,
i r)= ! hl
Qi(w)(®) M(m,,n,,y,) T(k+m+1) / k{s,uls

+W/ 2555 +2kv/h~<“
(3D

Let T, P and Q the operators defined by

T:E— E
u— (Ty(u),...,T,(u)),

P E— E

u — (Pi(u),...,P,(a)),
Q:E— E

u— (Ql(u)7"'aQn(u))

and

T(u) = P(u) + Q(u). (32)

LEMMA 8. Let i€ {1,...,p}, 0<k<ni—1, i€ C([0,T] x RUVXPR), by €
C([0,T] x RP,R) then u € E is a solution of the fractional differential boundary value
problem (1)—~(2) if and only if T(u)(t) = u(t) forall t € [0,T].
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2. Existence and uniqueness results

LEMMA 9. Forall i€ {l,...,n}, j€{0,...,n;—2}, (t,5) € [0,T] x [0,T],

0<° DY) Gilt.s) < Gjuls) (33)
where CDI%+ Gi(t,s) the Caputo derivative with respect to t of the function Gi(t,s) and
T — oc,-—[3_,-—1 ir ; T— mi+o04—1
6y = TP T (T —) e
: (o= Bj)  T(ni—Bj)M(mi,ni, y)T'(mi+ o)
(Note that Cng+ Gi(t,s) = Gi(t,s)).
Proof. Forall i€ {1,...,p}, j€{0,...,n;—2} we have
(t_s)ai*ﬁj*I %F(n,-)t""fﬁ-/’*l(T—s)’”iJro‘i*l .
cnPi _ T —B;) T T(ni—Bj )M (mj n;.y)T(mi+0;) if0<s<?
D Gi(t,s) = - (35)
3 %F(n,')t i~ Pj (T—S)’"i+‘1i71 lft < s < T
T(ni—B;)M(mjn;, ;)T (m;+oy) oA
It’s clear that "Df&G,-(t,s) >0.Letre[0,T].If 0<s<t, wehave
(t — S)aifﬁj—l y,-l—‘(n,-)t""*ﬁj*l (T — S)m,-+a,~—1
(o= Bj)  Tlni— By)M(mi,ni, )T (m; + i)
(T —s)%Pimt  yD(n) T Pim (T —s)mitei! (36)
T(oi—Bj)  T(ni—Bj)M(mi,ni, %)L (m; + o)’
IfO<r<s<T, wehave
) g 1N U0 i (e A o

T(oi—B;) ~ Tl(ei—B;)  Tlni—By)M(mi,ni, %)T(mi+04)
This achieves the proof. [

Now, we prove the existence and uniqueness of solutions in the Banach space E.
The uniqueness result is based on the Banach’s contraction principle Theorem [30].

LEMMA 10. Letr i € {1,...,p}, assume that the functions f; and h;x, k € {0, ...,
n; — 1} are continuous and there exist nonnegative functions @ ;x € L'([0,T],Ry),
k€ {0,..n;—2}, wix € L'([0,T],Ry), k € {0,...,n;— 1} such that for all k € {0, ...,
ni—2}, xp = (Xt gy Xpk)s Yk = Vi jes--»Vpk) € RP and forall t € [0,T].

n;j—2

14
1. |fl'(t7x07”'7xni72) _ﬁ(t7y07"‘7yn,'72)‘ < Z Z(Pl,i,k(l)‘xhk_yl,k‘
k=0 [=1
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2. |hix(t,x0) — hix(t,y0)] ZWltk yiol
P
3. max P)+A; ;(Q)] < 1.
ey e (P 415(Q)
where

A0 = |1 "'iz e zwzlk||l+;wmflnl
W M(m,-,nhyi) (k—f—m,—f—l L M(mi,ni, %) i HIL

r(ni)Tnifﬁjfl ni—2 Tk_ﬁ/‘
i, 38
% T(n;—B;) +Z T(k—Bit1); ZHWI o (38)
and
y ()T P! -1

%P ()l + I (i)l | -

kEE)lzl B T — Bj)M (mi,ni, i) L
(39)

Then the problem (1)—(2) has a unique solution u in E.

Proof. We need to verify that T is a contraction function.
Forall ie {1,....,p}, j€{0,...,n; =2}, u=(uy,...,up), v=(vi,...,vp) €E,
for each 1 € [0,T] we get

DY) Qi(w) (1)~ D) 0i(v)(0)]

Yi ni—2 Tktmi
< h d
M(mj,ni, %) = Z C(k+mi+1) / ik (s,u(s)) = hij(s,v(s))| ds

1 ' ﬁj i
UW /0 (i1 (s,0(8)) = i1 (5,¥(s))|ds | Dyt

n, ZCDﬁ/tk
/ i (s,u(s)) — ig(s,v(s))| ds

yi ni—2 Tkerl
M(mhnim)E T(k+mi+1) 2 1/ Viixls d”m/ Vi1 (s)ds

<

C(n))TH Bt "2 D(k41) /
e T ix(s)d
o —B) +sz)k'r(k ﬂ;+1 Z Viik(s)ds| lu—v]|

Y ni—2 Tk+m,- 1
< l i YT ini—
M(mj,l’lj,%‘) ]E{)F(k+ml+l) Z,”Wl J<||L1+ ( min 1;%)HWZ i 1||L1

C(n\T7—Bi—1 ni=2 - p
L) 57 lu—v]

Tni—B) (k [3+1 2 vl
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Then ‘ ‘
1D 04(u) =< DY 0i(v) . < As;(Q)[u—v] (40)

where A; j(Q) is given in (38). From (40) we deduce that

P
Q) —Q(v)| <, max }Ai.,j(Q)||u_VH~ (41)

0.2
On the other hand. For all i € {1,...,p}, j € {0,....,n; — 2} we have
D} Piw) (6) =< Dy P(¥) (1)
< /0 D) Gilt.5)| fils,u(s),<DPLu(s), ... D 2u(s)
§:f*v<s>>|ds

</O CDp’ Gi(t,s lz > ouik(s) 0+u1() CDgﬁVz(SN] ds

— fi(s,¥(s),S DPLv ()., D

k=0 =
Tn, /3!—1
(mi7ni,%)

}’1,‘—2
< [Z ilai_ﬁj((l)l,zk 1)+ Z Z ﬁ
=1 J

k=0 1= kOll

" (g, k)(T)] [Ju—v]|

ni—2 p (n.)Tni—ﬁj—l
< 1%~ LG "t —v|.
kg ; [|| / wllk)HLl+r(nz_ﬁj)M(mi7niayi)H / ((Pl, 7k)”Ll Hu VH

Then 5 5
1Dy Fi(w) = Dyt Pi(V) ||l < Ai j(P)[lu =], (42)
where A; j(P) is given in (39). From (42) we deduce that
P
[P(u) —P(v)[| <3, max A;;(P)u—v]. (43)
izle{O,...,ni72}

From (41) and (43) we deduce that

p
IT(w)=TW)[| <, max [A;;(P)+A;;(Q)][lu—v]. (44)
izlje{o,...,n,-—2}
Since
P
max  [A;;(P)+A;;(Q)] < 1. (45)
l-zle{O,...,ni72} X

Then T is contraction, hence it has a unique fixed point which is the unique solution of
(1)—(2). The proof is complete. [l

We establish an existence result using the nonlinear alternative of Learay—Schauder
type.
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LEMMA 11. (Leray—Schauder nonlinear alternative [30]) Let F be a Banach
space and Q be a bounded open subset of F, 0 € Q. T :Q — F be a completely
continuous operator. Then there exists x € dQ, A > 1 such that T (x) = Ax, or there
exists a fixed point x* € Q.

From nonlinear alternative of Learay—Schauder type we have the following result.

THEOREM 1. Let i € {1,...,p} and | € {1,...,p} assume that the functions
fi € C([0,T] x R=D*P R) and hix € C([0,T] x R?,R), k € {0,...,n; — 1} are con-
tinuous such that there exist nonnegative functions (p[fhk € LY([0,T],R,), k€ {0,...,
ni—1}, @f,; € 2(0,T),Ry), j€{0,..,n;—2}, 6] € I2([0,T],Ry) and nonde-
creasing l//l{’k, l[/if € C(Ry,Ry), k€ {0,...,nj — 1} and there exist r > 0 such that for
all xg = (X1 js -, xp ) €RP, k€ {0,...,n; — 2} forall t € [0,T]

p oni—
| fi(2,X0, -, Xn,—2 Z Z (|xlj\) +9 (1), (46)
&
ik (1,%0)] < X 0 (O Wik o)), (47)
=1
p
_max [B;;(Q)(r)+B;;(P)(r)] <r (48)
izle{O,...,ni72}
where
r fae S g
Bij(P)(r) = 1Gill 216/l +w! (N X X 0] 211G jill 2 (49)
=1 j=0
and
Y ni—2 Tk+m,- )4 A
B; i = ! .
J(0)(r) MO 7) kgf) Tktmt D) Wlk Ei||§0z7z7k||Ll
1 & [(n)T" ™ Pit
+7 lnf in'— T~ RN
W) Vi1 200l | 5o =5
n;—2 k— By P
r h
_ ) . 50
P F(k—ﬁk—Fl Wlk g,”(phuk”Ll ( )

Then the boundary value problem (1)—(2) has at least one nontrivial solution u* € E ..

Proof. The proof will be done in some steps. First let us prove that T is complete
continuous.

Step 1. It is easy to see that T is continuous since f;, h;; and G; are continuous.
Let By = {u € E; |Ju|| < n} be a bounded subset in £. We shall prove that T(By) is
relatively compact.
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Step 2. For u € By and using Lemma 9 we get

p ni—2

0. R /GH )6/ (s) ds+/ Gjils 22 o w (<D (s))) ds
p ni—2
/G,, (s)ds+ v/ (|[ul]) 2 / ol ()G i(s)ds
pn,——2

/G,, )6/ (s)ds+y! (n 22/ o/, j(5)Gji(s)ds.  (51)

Using Cauchy—Schwarz inequality we have for all i € {1,...,p}, forall € [0,T]

P n,-72
D)) P () < Gl 21612 +wf ()X Y 10112 1Galliz (52)
=1 j=0

Then forall i € {1,...,p}
1D} P.(w)l < Bij(P)(n). (53)

We deduce that
P

[P(u)[| < max _ B;;(P)(n) (54)
& je(o,m—2y
Using a similar technique, we get

Yi nj—2 Tker’
Dl i) < M(ml_,m)z Ty S ohaWlato)as

/zm (i (5)]) s

cDgir Z‘nifl
mhnh Yl

+Z a1 Zm (i (s))) ds

ni—2 k+m;
i rem
M i 2 ||<Pz,l,k
(mi,ni,y) S Tlk+m +1
P F(n-)T"i_ﬁf_l
- h P
+M(mi7nia%) V/tn,-—l ; (pl,z,ni1L1‘| r(ai_ﬁj)
ni—2 k—By P
T h
7(]{ Btl g |<Pz,i,kHLl~ (35)

Then )
||CD§iQi(u)Hoo < Bij(Q)(n). (56)
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We deduce that
p
QW< ¥, max | 5i(Q)n) 57)
Consequently
p
Tl <)  max B;;(Q)(n)+ max Bj;(P)(n) (58)

i—1J€{0,0.m; =2} J€{0,...,n;—2}

hence T(By,) is uniformly bounded.
Step 3 In the end we show that T'(By) is equicontinuous. In fact, we denote by:

ﬁni72

C(fi) = max {|fi¢u(r). DR u(r), .., DY “u(e)], 0<e < T ul| <mf (59)

and
C(hig) = max {|hix(t,u(t))], 0<t < T, [Ju| <n}. (60)

Let 71,1, € [0,T] such that #; <1, and u € B;, we have
Bj
|CD,0+ i) (1) = Dy g4 Pi(w) (12)]
ct) [/ D0y Gilt, ) PPy Gil. )| ds
L Cc ﬁ c ﬁj .
+ | t0+ i(t1,8)— D[O+G(t2, |dS—|— |DtO+ i(t1,8)— D[7O+G,(ZQ,S)|dS

/l (rp—s)% P! _(ll—S)o"_’}-"_1
I'(o; —Bj) I'(0; — Bj)

C(fi)

n,-fﬁjfl nifﬁjfl 'Y[F(l’li)(T—S)miJraiil
ot )r<ni—ﬁ,->M(mi7nim>r<mi+a,-ﬂ *
2Bt B (i) (T —s)"+ 0! (—s)%Pi-!
+/f 2 ~h ) T(o—Bj)M(m;,n;,y)T (mi+ai)+ I'(0—P;) ds
"t Bj—1 _ mi—Bj—1 ( )( )m,--&-oc,——l :|
+/ f ) I(n; — ﬁj) (mzanu%')r(mi‘FO‘i)ds
Dl A R R S e ] (61)
where
1
T M@+ “
and
_ %r(nl) T _omitoi—1
C2‘r(ni—ﬁ,->M(ml-,nl-,n>r<m,-+a,->/o (T =)™ ds. (63)
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Similarly, we have

DY) 0i(w)(12) — DL Qi) (1)
Yi N2 Clhig) C(hin—1) I'(n;)
M(mi,ni, %) S Tk+mi+1)  M(mi,ni, %) | T(ni— )
"G (P = i)

D (G eny

% (é’i*ﬁj*l _ﬂ’i*ﬁj*l

(64)

As 11y then D/ o+ Pi(w)(2)— CD%J( w)(c1)| and D} o+ Qi(w)(12)— CDﬁ6+Qz( u)(n)]
tend to O, consequently T (By) is equicontinuous. By means of Arzela-Ascoli theorem
[30] we deduce that T is complete continuous. Now, we apply Leray -Schauder non-
linear alternative to prove that T has at least a nontrivial solution in E. We denote by

Q={u€E;|u|| <r}. Then for u € JQ, such that u =AT(u), 0 <A < 1, we have

P
Jull = AT@) < [T <X max | Bi(Q))+ _ max Bii(P)(r).

Then
ul| < 2 E{O B;(0)(r)+B,(P)(r)] <r (65)

which is a contradiction to the fact that u € Q. Theorem 1 allows us to conclude that
T has a fixed point u* € Q, and then problem (1)—(2) has a nontrivial solution u* € E.
This achieves the proof. [

3. Existence of positive solutions

In this section, we will give some preliminary considerations and some lemmas
which are essential to establish a sufficient conditions for the existence of at least one
positive solutions for our problem. We make the following additional assumption.

(H1) Forall i € {1,...,p}, 0 <k <n— 1, the functions f; : [0,T] x Ri”f*””’ — R,
hiy:[0,T] x RE — R, are continuous.

(H2) Forall i€ {l1,...,p} thereexist [0, 7;] C (0,T) and m(f;) > 0 such that f;(¢,u) >
m(fz) forall r € [O'i,’[l-] ue R(n,—l)Xp

(H3) Forall i€ {1,...,p}, 0 <k <n;— 1 there exist M(f;) >0 and M(h; ;) > 0 such
that f;(r,u) < M(f;), and h;x(t,u) < M(h;x) forall u € RE .

THEOREM 2. (Guo-Krasnosel’skii fixed point theorem [31]) Let E be a Banach
space, and let K C E be a cone. Assume Q| and y be two bounded open subsets
in E with 0 € Qq, Q| C Q,. Let A: KN (Q\Q1) — K be a completely continuous
operator such that:
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L JA)|| < |lull, u € KNIQy and ||A(u)|| = ||ul|, u € KNIQ, or
2. JA@)|| = llul], ue KNIy and ||A(u)|| < ||ull, u € KNIQ,.

Then A has a fixed point in KN (Q;\Q1).
REMARK 1.
C={u=(uy,....up) €E, ui(t) 20,1 €[0,T], i €{l,...,p}}

is a cone of E.

We employ Guo—Krasnoselskii’s fixed point theorem in cone to prove the existence
of positive solutions of our problem, we have the following theorem.

THEOREM 3. Assume that the conditions (HI), (H2) and (H3) hold. Then the
equation (1)—(2) has at least one positive solution.

Proof. Remark 1 shows that C is a cone subset of £. Lemma 9 and (H1) show
that 7 : C — C. In addition, a standard argument involving the Arzela-Ascoli theorem
[30] implies that T is a completely continuous operator. For all i € {1,...,p}

% (7 — 5)%!

T(w)(e) > | Wﬁ(&u(s)ngiu(s),-~-,"D§T’2u(s))ds
K (t— o))"
- : 66
m(f) | = m) F (66)
Hence, forall i € {1,...,p}
(1 —0;)%
7} / 1)~/ -, 1\
Tl > m() Frr gy
Thus
(ti— o)
T(u)|| > i
I > Yl 2
Now, we choose a positive constant R such that R; < Z ( f,)ﬁ and define
i=1
Q) ={u€E:|u|| <R;}.Forany u e CNdQ, we find that
IT(w)[| = [[ul. (67)

Now, we prove the second inequality. Forall i € {1,...,p}, j€{0,...,n;—2}, 1 €[0,T],
ucC

\D,m i) ()] < MGl -
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‘We obtain
|P(u) ZM ) om s HGHHLI

On the other hand, forall i € {1,...,p}, j€{0,...,n;,—2},1€[0,T],ucC

y M2 TR () M(Big-1)
M(mi,niw) 2y Tkt mit 1) M(mi,ni, )

IDt0+ i(W)(1)] <

C(n)T"! +ni72 T PeM (i)
(o — Bj) k=0 Ck—PB+1)

X

We obtain

P
QI <Y, max Cj

l-zle{O,...,ni72}

where

" nj—2 Tk+l+miM(hi,k) M(hi.’n,——l)

Ci:—
M M(migng, ) C(k+mi+1)  M(mj,n;, %)

[(n)T" ! +”f—2 T BeM (hy z)
F(Oli—ﬁj) =0 r(k—ﬁk+l)

(68)
we deduce that

Tl < X M(f) {HGuHLlJer}

Let

Rz=maX{iM(ﬁ). max {||G i }

i=1 J€{0,....ni—

and we define Q) = {u € E : ||u|| < R,}. Clearly, Q; C Q, and for any u € CNJQy,
we obtain || T(u)|| < R, = ||u||. Thus, for any u € CNJ€,, it implies that

IT(u)[| < [[u]. (69)
Based on Theorem 2, we get from (67) and (69) that the operator T has at least one

fixed point. Thus, it follows (1)—(2) has at least one nonnegative solution and from (H1)
and (H2), (1)—(2) has at least one positive solution. [
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EXAMPLE 1. Consider the following system of boundary value problem.

5 1+1)2 1
‘D, (t) = 5 cos [(60;80 uy (1) + (6(%6)0 uz(t)]
. 2
+1sin {%10320 uy (1) + (;OBQO uz(l‘)} +é, 0<r<l1
C 1 ’ 1
D us(r) = heos [tk () + g a0
L. (1+f)4c % (l+t)5c %
+§ S | 5000 D0+I/L1(l)+ 60000 D0+I/L2(S)
1
u1(0>=/ el : Gl %
01 + 3000005+ 1) 1 20000(s12) (70)
S
i) (0) = /73 ki e (1) + / (s IO
1+ 35000 s+l T 20000(s+2)2
/ e - el %
0 1+ 20000 s+l 2+ 20000(s+2)2 )
_/ t | sin{ 5000 \+1 ”+|C°S[20003W“ds
VI a0
1" 15\/— u
uy(0) = ! +u2(1)+/0 |+ Ol Tl ds.
20000(s+1)* " 20000(s+2)*

The following notations can be easily specified as xp = (x1.0,%2,0), Yo = (y1,0.¥2.0)>

x = (o), = 0ny2), T=1Lp=2m=2,m=3, a1=3, ;=3,
Bo=0, p1= % i,mz—% Y1=153‘2/E,)/2=%.Wedenoteby
1 (1+41)? (1+1)3
t ==
fi( 7x1,07x2,07X1,1,X2,1) 2COS [ 60000 X1,0+ 60000 X2,0
+lsin ( +t)2x +(1+I)3x +é
2 60000 " 60000 ~*°
1 (1 —|—t)3 (1+1)*
t
Falt,#1,0,%2.0,31,1,%21) = 7 0 [ 60000 " 60000 ">°
+IS‘n (141)* (1+1)°
=si X 1l
27 | 60000 60000 '
t
hi0(t,x1,0,%2,0) = ol T
1+ 5000017 + 200000 +2)
t
hl’l(t’xl’o’x270) - 1+ [x1.0] + 2ol 7
20000+ 1) T 20000(142)3
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t
hao(t,x1,0,%2,0) = ;
[x10] 4 [x2,0]
20000(+1)2 " 20000(r-+2)2
| sin[sga001 7173 + <08 gop07277 ]
o1 (1,300,320 — 20000(r+1)3 20000(r+2)3 7
4/ 1 +x170+ \x270\
ho o (2t = !
22(t,x10,120) = 1+ [x1,0] + [0l 7
20000(l+1)4 20000(l+2)4
(1+1)? (1+41)3 (1+1)3
P110() = "go500 7 P1200) = "gag00 P2100) = “eh5a0
(1+10)* (1+1)* (141)°
222000 = "gi000 P11 ="go00 2nd P221(0) = “5560-
We have
(=t (1 1 () Jp———
VLW =500000+ 1) Y2 = 20000012y Y120 T 200000 + 1)2
()=t (0 : (p—
V22000 = 30000 + 2027 V12! 200000 + 15" 221 T 200000+ 23
(pp—— (0 . ()=~
Vi =500000+ 13 Y22 T 20000022 V22T 200000 + 1)
and
(l) — ;
Y2220 = 560000 + 2)+
We have
0 2
| fi(2,%1,0,%2,0,X1,1,%2,1) = f1 (5,910,520, 71,1,Y2.0) 1 < 2 D @) g — i,
k=01=1
1 2
f2(,X1,0,%2,0,%1,1,%2,1) — f2(£,91,0,52.0.01.1,52,0) | < D Y, @12k (t) Vil
k=01=1
R (2,%0) — hik(t,y0)| 2 Wik () |x10 — yi0l
A10(Q) =0.000131418, Ay o(Q) = 0.000159482, Ay 1 (Q) = 0.000176465, Ay o(P) =
0.000100849, Ay o(P) = 0.000371124, A, (P) = 0.000147162.
2
max [A,‘J(P) —|—A,'_,'(Q)] =0.000779857 < 1.
i=17€{0,0.m; =2} -

Then from Theorem 10 we conclude that the fractional differential boundary value

problem (70) has a unique solution u* =

(ul,ug) cE.
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EXAMPLE 2. Consider the following system of boundary value problem.

4 2

© () =3 (02

u® (1) JZE)IO(M (1) 0<t<1 a1
(0) =

~=u®(0)=0, u®(0) =1, u(1)

InthisexampleT—l p—l i=l,m=6,00=6,m=5n=1,j€{0,..,4},
Bi=j. ol () ="5. w[(x) =22, £i:0,1] xR’ — R, with

and
4,2

4
1,30, < 2 ﬁw zoqa{ L 0w ()
j:

where (p{ 1, and u/{ are nondecreasing functionson Ry 0 <k <5 and h1; =0

max [B1;(Q)(2)+ By ;(P)(2)] =0.893631 < 2.

By Theorem 1 the problem (71) has at least one nontrivial solution in E.

EXAMPLE 3. Consider the following system of boundary value problem.

Do+u1( )= @la@in@] | r2id 0<t<l

V142 V12437

1 1
sin | u] (I)JrCDOZ+ uy (1) +uy (I)JrCDOZJr uy (t):|

5
‘D, ux(t) =te

/ / 1 ds

1 sds
0 L4 |ui(s)|+ [uz(s)]
[

uy(0) = 3\Fl+u2 —|—/ [sinfu (s)] ds.
V1H(8) +a(s)]
Inthiscasewehavexo:(xlo,xzo) xl—(x“,xm) Zl,pzz n=2,n=3,
=3 0=3 By 2=B=0,Bno=p= =m=3n=p= f
cos? [x170 +x270] 2 +e

S1(t,x1,0,X%0,0,X1,1,X%2,1) = ,
( 121) VI+12 Vitt+2+1

ot Xx1,0,%2,0,X1,1,X2,1) = tesm[xl‘oﬂl‘l+X2‘O+x2‘l],
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1

h1o(t,%1,0,%2,0) = 11 (1,%1,0,%2,0) = h2,0(1,X1.0,%2,0) = 2.1 (1,X1,0,%2.0) = 55 ]

and

t

I'sin[x; o]

h2,2(t7x1,07x2,0) I e i
v/ 1 —i—xio + |X270|

Hence, from Theorem 3 we conclude that the problem (72) has at least one positive
solution.
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