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TWO–WEIGHTED INEQUALITY FOR (p,q)–ADMISSIBLE

Bk,n –POTENTIAL OPERATORS IN WEIGHTED LEBESGUE SPACES

S. K. ABDULLAYEV, E. A. GADJIEVA AND F. A. ISAYEV

(Communicated by V. S. Guliyev)

Abstract. In this paper, we study the boundedness of (p,q) -admissible potential operators, asso-

ciated with the Laplace-Bessel differential operator Bk,n =
n
∑
i=1

∂ 2

∂x2
i
+

k
∑
j=1

γ j
x j

∂
∂x j

( (p,q) -admissible

Bk,n -potential operators) on a weighted Lebesgue spaces Lp,ω,γ(Rn
k,+) including their weak

versions. These conditions are satisfied by most of the operators in harmonic analysis, such
as the Bk,n -fractional maximal operator, Bk,n -potential integral operators and so on. Suffi-
cient conditions on weighted functions ω and ω1 are given so that (p,q) -admissible Bk,n -
potential operators are bounded from Lp,ω,γ(Rn

k,+) to Lq,ω1,γ (R
n
k,+) for 1 < p < q< ∞ and weak

(p,q) -admissible Bk,n -potential operators are bounded from Lp,ω,γ(Rn
k,+) to WLq,ω1,γ (R

n
k,+)

for 1 � p < q < ∞ .

1. Introduction and preliminaries

The singular integral operators that have been considered S. Mihlin [23] and A.
Calderon and A. Zygmund [7] are playing an important role in the theory of Har-
monic Analysis and in the theory of partial differential equations. M. Klyuchantsev
[22] and I. Kipriyanov and M. Klyuchantsev [21] have firstly introduced and investi-
gated the boundedness in Lp -spaces of multidimensional singular integrals, generated
by the B1,n -Laplace-Bessel differential operator (B1,n -singular integrals), where

B1,n = B1 +
n

∑
j=2

∂ 2

∂x2
j

, B1 =
∂ 2

∂x2
1

+
γ1

x1

∂
∂x1

, γ1 > 0,

I. A. Aliev and A. D. Gadjiev [5], A. D. Gadjiev and E. V. Guliyev [10] and E. V.
Guliyev [11] have studied the boundedness of B1,n singular integrals in weighted
Lp -spaces with radial and general weights consequently. The maximal functions, sin-
gular integrals, potentials and related topics associated with the Laplace-Bessel dif-
ferential operator Bk,n -which is known as an important differential operator in analy-
sis and its applications, have been the research areas many mathematicans such as I.
Kipriyanov and M. Klyuchantsev [21, 22], L. Lyakhov [26, 27], A. D. Gadjiev and I.
A. Aliev [4, 5], I. A. Aliev and S. Bayrakci [2, 3], V. S. Guliyev [12, 13, 14] and others.
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Suppose that R
n is the n -dimensional Euclidean space, x = (x1, . . . ,xn) , ξ =

(ξ1, . . . ,ξn) are vectors in R
n , (x,ξ ) = x1ξ1 + . . .+ xnξn , |x| =√(x,x) , x = (x′,x′′) ,

x′ = (x1 . . . ,xk) , x′′ = (xk+1, . . . ,xn) . Let R
k
++ = {x ∈ R

k : x1 > 0 . . . ,xk > 0} , R
n
k,+ =

{x = (x1, . . . ,xn) : x1,x2, . . . ,xk > 0} , 1 � k � n , Sk,+ = {x ∈ R
n
k,+ : |x| = 1} .

For x ∈ R
n
k,+ and r > 0, we denote by E(x,r) = {y ∈ R

n
k,+ : |x−y|< r} the open

ball centered at x of radius r , and by
�
E(x,r) = R

n
k,+ \E(x,r) denote its complement,

E
′
(x′,r) = {y′ ∈ R

k
++ : |x′ − y′| < r} ,

�
E

′
(x′,r) = R

k
++ \E

′
(x′,r) . For measurable set

E ⊂ R
n
k,+ let |E|γ =

∫
E(x′)γdx , then |E(0,r)|γ = ω(n,γ)rn+|γ| , where γ = (γ1 . . . ,γk) ,

|γ| = γ1 + . . .+ γk , (x′)γ = xγ1
1 . . .xγk

k and ω(n,γ) = |E(0,1)|γ .
An almost everywhere positive and locally integrable function ω : R

n
k,+ → R will

be called a weight. We shall denote by Lp,ω,γ (Rn
k,+) the set of all measurable functions

f on R
n
k,+ such that the norm

‖ f‖Lp,ω,γ (Rn
k,+) ≡ ‖ f‖p,ω,γ;Rn

k,+
=

(∫
R

n
k,+

| f (x)|pω(x)(x′)γdx

)1/p

, 1 � p < ∞

is finite. For ω = 1 the space Lp,ω,γ(Rn
k,+) is denoted by Lp,γ(Rn

k,+) , and the norm
‖ f‖Lp,ω,γ (Rn

k,+) by ‖ f‖Lp,γ (Rn
k,+) .

The operator of generalized shift (Bk,n -shift operator) is defined by the following
way (see [15], [27]):

Ty f (x) = Cγ,k

∫ π

0
...

∫ π

0
f
(
(x′,y′)β ,x′′ − y′′

)
dν(β ),

where

Cγ,k = π− k
2 Γ−1

( |γ|
2

) k
∏
i=1

Γ( νi+1
2 ) , (x′,y′)β = ((x1,y1)β1

...(xk,yk)βk
),(xi,yi)βi

= (x2
i −

2xiyi cosβi + y2
i )

1/2 , 1 � i � k , dν (β ) =
k
∏
i=1

sinγi−1 βi dβ1 . . .dβk .

Note that this shift operator is closely connected with Bk,n -Laplace-Bessel singu-
lar differential operators (see [15], [27], in the case n = 1 see also [24]).

The translation operator Ty generated the corresponding Bk,n -convolution

( f ⊗g)(x) =
∫

R
n
k,+

f (y)[T yg(x)](y′)γdy,

for which the Young inequality holds:

‖ f ⊗g‖Lq,γ � ‖ f‖Lp,γ ‖g‖Lr,γ , 1 � p,q,r � ∞,
1
p

+
1
r

=
1
q

+1.

The following generalized Hardy inequalities have an important role in proofs of
our main results see [9], Chapter 1 (see also [1, 8, 20]).
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LEMMA 1.1. Suppose that 1 � p � q � ∞ , p′ = p/(p− 1) and ω(x) and v(x)
are positive functions defined on R

n .
1. For the n-dimensional Hardy inequality(∫

Rn

(∫
|y|<|x|/2

| f (y)| dy

)q

ω(x) dx

)1/q

� C5

(∫
Rn

| f (x)|pυ(x) dx

)1/p

with a constant C5 , independent on f , to hold, it is necessary and sufficient that the
following condition be satisfied:

sup
r>0

(∫
|x|>2r

ω(x) dx

)1/q(∫
|x|<r

υ1−p′(x) dx

)1/p′

< ∞.

2. For the n-dimensional (dual) Hardy inequality(∫
Rn

(∫
|y|>2|x|

| f (y)| dy

)q

ω(x) dx

)1/q

� C6

(∫
Rn

| f (x)|pv(x) dx

)1/p

with a constant C6 , independent on f , to hold, it is necessary and sufficient that the
following condition be satisfied:

sup
r>0

(∫
|x|<r

ω(x) dx

)1/q(∫
|x|>2r

v1−p′(x) dx

)1/p′

< ∞.

This lemma could be directly deduced from results proved by P. Drabek, H. Heinig
and A. Kufner (see Theorem 2.1, p. 4 and Theorem 2.2, p. 7 in [18]).

In this paper we study the boundedness of (p,q)-admissible potential operators,

associated with the Laplace-Bessel differential operator Bk,n =
n
∑
i=1

∂ 2

∂x2
i

+
k
∑
j=1

γ j
x j

∂
∂x j

((p,q)-admissible Bk,n -potential operators) on a weighted Lebesgue spaces Lp,ω,γ(Rn
k,+)

including their weak versions. These conditions are satisfied by most of the operators in
harmonic analysis, such as the Bk,n -fractional maximal operator, Bk,n -potential integral
operators and so on. Sufficient conditions on weighted functions ω and ω1 are given
so that (p,q)-admissible Bk,n -potential operators are bounded from Lp,ω,γ(Rn

k,+) to
Lq,ω1,γ(R

n
k,+) for 1 < p < q < ∞ and weak (p,q)-admissible Bk,n -potential operators

are bounded from Lp,ω,γ(Rn
k,+) to WLq,ω1,γ(R

n
k,+) for 1 � p < q < ∞ .

2. Main results

The operator T is called sublinear, if for all λ ,μ > 0 and for all f and g in the
domain of T

|T (λ f + μg)(x)|� λ |T f (x)|+ μ |Tg(x)|.

DEFINITION 2.1. ( p -admissible Bk,n -singular operator). Let 1 < p < ∞ . A sub-
linear operator Tγ will be called p -admissible Bk,n -singular operator, if:
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1) Tγ satisfies the size condition of the form

χ
E(x,r) (z)

∣∣∣∣Tγ

(
f χ

R
n
k,+\E(x,2r)

)
(z)
∣∣∣∣

� Cχ
E(x,r) (z)

∫
Rn

k,+\E(x,2r)
Ty|x|−n−|γ| | f (y)| (y′)γdy (2.1)

for x ∈ R
n
k,+ and r > 0, where χE is the characteristic function of the set E ;

2) Tγ is bounded in Lp,γ(Rn
k,+) .

DEFINITION 2.2. (weak p -admissible Bk,n -singular operator). Let 1 � p < ∞ .
A sublinear operator Tγ will be called the weak p -admissible Bk,n -singular operator,
if:

1) Tγ satisfies the size condition (2.1).
2) Tγ is bounded from Lp,γ(Rn

k,+) to the weak WLp,γ(Rn
k,+) .

DEFINITION 2.3. ((p,q)-admissible Bk,n -potential operator). Let 1 < p < ∞ . A
sublinear operator Tα ,γ , 0 < α < n+ |γ| will be called (p,q)-admissible Bk,n -potential
operator, if:

1) Tα ,γ satisfies the size condition of the form

χ
E(x,r) (z)

∣∣∣∣Tα ,γ

(
f χ

R
n
k,+\E(x,2r)

)
(z)
∣∣∣∣

� Cχ
E(x,r) (z)

∫
Rn

k,+\E(x,2r)
Ty|x|α−n−|γ| | f (y)| (y′)γdy (2.2)

for x ∈ R
n
k,+ and r > 0;

2) Tα ,γ is bounded from Lp,γ(Rn
k,+) to Lq,γ (Rn

k,+) .

DEFINITION 2.4. (weak (p,q)-admissible Bk,n -potential operator). Let 1 � p <
q < ∞ . A sublinear operator Tα ,γ , 0 < α < n + |γ| will be called the weak (p,q)-
admissible Bk,n -potential operator, if:

1) Tα ,γ satisfies the size condition (2.2).
2) Tα ,γ is bounded from Lp,γ(Rn

k,+) to the weak WLq,γ(Rn
k,+) .

REMARK 2.1. Note that p -admissible singular operators were introduced and
studied their boundedness on vanishing generalized Morrey spaces in [28]. Also Φ-
admissible singular operators and weak Φ-admissible singular operators was intro-
duced and studied the boundedness of them on generalized Orlicz-Morrey spaces in
[16, 19]. Also, p -admissible singular operators, associated with the Laplace-Bessel
differential operator Bk,n were introduced and studied their boundedness on weighted
Lebesgue spaces in [17], see also [29].
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DEFINITION 2.5. A function k defined on R
n
k,+ , is said to be Bk,n -singular kernel

in the space R
n
k,+ if

i) k ∈C∞(Rn
k,+) ;

ii) k(rx) = r−n−|γ|k(x) for each r > 0, x ∈ R
n
k,+ ;

iii)
∫
Sk,+

k(x)xγdσ(x) = 0 , where dσ is the element of area of the Sk,+ .

The Bk,n -fractional maximal function (see [12, 13, 15]) is defined by

Mα ,γ f (x) = sup
r>0

1

ω(n,γ)rn+|γ|

∫
E(0,r)

Ty| f (x)| (y′)γdy, 0 � α < n+ |γ|

and the Bk,n -Riesz potential (see [4, 12, 13, 15]) is defined by

Iα ,γ f (x) =
∫

Rn
k,+

Ty|x|α−n−|γ| f (y) (y′)γdy, 0 < α < n+ |γ|.

Note that, Mγ ≡ M0,γ is the Bk,n -maximal function.
Let k is a Bk,n -singular kernel and Kγ be the Bk,n -singular integral operator (see

[5, 10, 11, 17, 21, 22, 26, 27])

Kγ f (x) = p.v.
∫

R
n
k,+

Tyk(x) f (y) (y′)γdy.

REMARK 2.2. Note that, the conditions p -admissible Bk,n -singular operators and
(p,q)-admissible Bk,n -potential operators are satisfied by many interesting operators
in harmonic analysis, such as the Bk,n -maximal operator, the Bk,n -fractional maximal
operator, Bk,n -potential operators, Bk,n -singular integral operators and so on.

First, we establish the boundedness from weighted Lp,γ(Rn
k,+) to weighted Lq,γ(Rn

k,+)
for a wide class of (p,q)-admissible Bk,n -potential operator.

THEOREM 2.1. Let 1 < p < q < ∞ and Tα ,γ , 0 < α < n + |γ| be a (p,q)-
admissible Bk,n -potential operator.

Moreover, let ω(x) , ω1(x) be weight functions on R
n
k,+ and the following three

conditions are satisfied:
(a) there exist b > 0 such that

sup
|x|/8<|y|�8|x|

ω1(y)1/q � bω(x)1/p for a.e. x ∈ R
n
k,+,

(b) A ≡ sup
r>0

⎛⎜⎜⎝ ∫
�E(0,2r)

ω1(x)|x|−(n+|γ|−α)q(x′)γdx

⎞⎟⎟⎠
1/q⎛⎜⎝ ∫

E(0,r)

ω1−p′(x)(x′)γdx

⎞⎟⎠
1/p′

<∞,

(c) B ≡ sup
r>0

⎛⎜⎝ ∫
E(0,r)

ω1(x)(x′)γdx

⎞⎟⎠
1/q
⎛⎜⎜⎝ ∫

�E(0,2r)

ω1−p′(x)|x|−(n+|γ|−α)(1−p′)(x′)γdx

⎞⎟⎟⎠
1/p′

<∞.
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Then there exists a constant c, independent of f , such that for all f ∈ Lp,ω,γ (Rn
k,+)(∫

R
n
k,+

|Tα f (x)|qω1(x)(x′)γdx

)1/q

� c

(∫
R

n
k,+

| f (x)|pω(x)(x′)γdx

)1/p

. (2.3)

Moreover, condition (a) can be replaced by the condition
(a′) there exist b > 0 such that

ω1(x)1/q

(
sup

|x|/8<|y|�8|x|

1

ω(y)1/p

)
� b for a.e. x ∈ R

n
k,+.

Similarly we can prove the following weak variant of the Theorem 2.1.

THEOREM 2.2. Let 1� p < q< ∞ and let Tα ,γ , 0< α < n+ |γ| be a weak (p,q)-
admissible Bk,n -potential operators. Moreover, let ω(x) , ω1(x) be weight functions on
R

n
k,+ and conditions (a) , (b) , (c) be satisfied.

Then there exists a constant c, independent of f , such that for all f ∈ Lp,ω,γ(Rn
k,+)(∫{

x∈Rn
k,+ : |Tα f (x)|>λ

}ω1(x)(x′)γdx

)1/q

� c
λ q

(∫
Rn

k,+

| f (x)|pω(x)(x′)γdx

)1/p

. (2.4)

Note that, the operators Mα ,γ and Iα ,γ are (p,q)-admissible Bk,n -potential op-
erator for 1 < p < q < ∞ , 0 < α < n + |γ| and 1/p− 1/q = α/(n + |γ|) and weak
(p,q)-admissible Bk,n -potential operators for 1 � p < q < ∞ , 0 < α < n + |γ| and
1/p−1/q = α/(n+ |γ|) . Thus, we have

COROLLARY 2.1. Let 1 < p < q < ∞ , 0 < α < n+ |γ| and 1/p−1/q = α/(n+
|γ|) . Moreover, let ω(x), ω1(x) be weight functions on R

n
k,+ and conditions (a) , (b) ,

(c) be satisfied. Then the operators Mα ,γ and Iα ,γ are bounded from Lp,ω,γ (Rn
k,+) to

Lq,ω1,γ(R
n
k,+) .

COROLLARY 2.2. Let 1 � p < q < ∞ , 0 < α < n+ |γ| and 1/p−1/q = α/(n+
|γ|) . Moreover, let ω(x), ω1(x) be weight functions on R

n
k,+ and conditions (a) , (b) ,

(c) be satisfied. Then the operators Mα ,γ and Iα ,γ are bounded from Lp,ω,γ (Rn
k,+) to

WLq,ω1,γ (R
n
k,+) .

THEOREM 2.3. Let 1 < p < q < ∞ and Tα ,γ , 0 < α < n + |γ| be a (p,q)-
admissible Bk,n -potential operator.

Moreover, let ω(x′) , ω1(x′) be a weight functions on R
k
++ and the following three

conditions be satisfied
(a1) there exists a constant b > 0 such that

sup
|x′ |/8<|y′|<8|x′|

(ω1(y′))1/q � bω(x′)1/p for a.e. x′ ∈ R
k
++,
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(b1) A1 ≡ sup
r>0

(∫
�E ′ (0,2r)

ω1(x′)|x′|(n−k)(1+q/p′)−(n+|γ|−α)q(x′)γdx′
)1/q

×
(∫

E ′ (0,r)
ω1−p′(x′)(x′)γdx′

)1/p′

< ∞,

(c1) B1 ≡ sup
r>0

(∫
E ′ (0,r) ω1(x′)(x′)γdx′

)1/q

×
(∫

�E ′ (0,2r)
ω1−p′(x′)|x′|−((n−k)(1/q+1/p′)−n−|γ|+α)(1−p′)(x′)γdx′

)1/p′

< ∞.

Then there exists a constant c, independent of f , such that for all f ∈ Lp,ω(Rn
k,+)

(∫
Rn

k,+

|Tα f (x)|qω1(x′)(x′)γdx

)1/q

� c

(∫
Rn

k,+

| f (x)|pω(x′)(x′)γdx

)1/p

. (2.5)

Moreover, condition (a) can be replaced by the condition
(a1

′) there exists a constant b > 0 such that

ω1(x′)1/q

(
sup

|x′ |/8<|y′|<8|x′|
1

ω(y′)1/p

)
� b for a.e. x′ ∈ R

k
++.

Similarly we can prove the following weak variant of the Theorem 2.3.

THEOREM 2.4. Let 1� p < q< ∞ and let Tα ,γ , 0< α < n+ |γ| be a weak (p,q)-
admissible Bk,n -potential operators. Moreover, let ω(x) , ω1(x′) be weight functions
on R

k
++ and conditions (a1) , (b1) , (c1) be satisfied.
Then there exists a constant c, independent of f , such that for all f ∈ Lp,ω,γ(Rn

k,+)

(∫{
x∈Rn

k,+ : |Tα f (x)|>λ
}ω1(x′)(x′)γdx

)1/q

� c
λ q

(∫
Rn

k,+

| f (x)|pω(x′)(x′)γdx

)1/p

.

(2.6)

COROLLARY 2.3. Let 1 < p < q < ∞ , 0 < α < n+ |γ| and 1/p−1/q = α/(n+
|γ|) . Moreover, let ω(x′), ω1(x′) be weight functions on R

k
++ and the following three

conditions be satisfied (a1) ,

(b1)′ sup
r>0

(∫
�E ′ (0,2r)

ω1(x′)|x′|−(k+|γ|)(1−α/(n+|γ|)q(x′)γdx′
)1/q

×
(∫

E ′ (0,r)
ω1−p′(x′)(x′)γdx′

)1/p′

< ∞,
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(c1)′ sup
r>0

(∫
E ′ (0,r) ω1(x′)(x′)γdx′

)1/q

×
(∫

�E ′ (0,2r)
ω1−p′(x′)|x′|(k+|γ|)(1−α/(n+|γ|))(1−p′)(x′)γdx′

)1/p′

< ∞.

Then the operators Mα ,γ and Iα ,γ are bounded from Lp,ω,γ(Rn
k,+) to Lq,ω1,γ(R

n
k,+) .

COROLLARY 2.4. Let 1 � p < q < ∞ , 0 < α < n+ |γ| and 1/p−1/q = α/(n+
|γ|) . Moreover, let ω(x′), ω1(x′) be weight functions on R

n
k,+ and conditions (a1) ,

(b1)′ , (c1)′ be satisfied. Then the operators Mα ,γ and Iα ,γ are bounded from Lp,ω,γ (Rn
k,+)

to WLq,ω1,γ(R
n
k,+) .

REMARK 2.3. Note that, if instead of ω(x) , ω1(x) respectively put ω(x′) , ω1(x′) ,
then from the conditions (a) , (b) , (c) will not follows the conditions (a1) , (b1) , (c1)
respectively.

3. Proofs of the main results

Proof of the Theorem 2.1. For l ∈ Z we define El = {x ∈ R
n
k,+ : 2l < |x| � 2l+1},

El,1 = {x ∈ R
n
k,+ : |x| � 2l−1}, El,2 = {x ∈ R

n
k,+ : 2l−1 < |x| � 2l+2}, El,3 = {x ∈

R
n
k,+ : |x| > 2l+2}. Then El,2 = El−1 ∪El ∪El+1 and the multiplicity of the covering{
El,2
}

l∈Z is equal to 3.
Given f ∈ Lp,ω,γ (Rn

k,+), we write

|Tα f (x)| = ∑
l∈Z

|Tα f (x)|χEl (x)

� ∑
l∈Z

∣∣Tα fl,1(x)
∣∣χEl (x)+ ∑

l∈Z

∣∣Tα fl,2(x)
∣∣χEl (x)+ ∑

l∈Z

∣∣Tα fl,3(x)
∣∣χEl (x)

≡ Tα ,1 f (x)+Tα ,2 f (x)+Tα ,3 f (x),

where χEl is the characteristic function of the set El, fl,i = f χEl,i , i = 1,2,3.

First we shall estimate ‖Tα ,1 f‖Lq,ω1,γ
. Note that for x ∈ El , y ∈ Ek,1 we have

|y| � 2l−1 � |x|/2. Moreover, El ∩ supp fl,1 = Ø and |x− y|� |x|/2. Hence, by (2.1)

Tα ,1 f (x) � c0 ∑
l∈Z

(∫
R

n
k,+

Ty|x|α−n−|γ| | fl,1(y)|(y′)γdy

)
χEl

� c0

∫
E(0,|x|/2)

|x− y|α−n−|γ|| f (y)| (y′)γdy

� 2n+|γ|−αc0|x|α−n−|γ|
∫

E(0,|x|/2)
| f (y)| (y′)γdy
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for any x ∈ El . Then we have

(∫
R

n
k,+

|Tα ,1 f (x)|qω1(x) (x′)γdx

)1/q

� 2n+|γ|−αc0

(∫
Rn

k,+

(∫
E(0,|x|/2)

| f (y)| (y′)γdy

)q

|x|−(n+|γ|−α)qω1(x) (x′)γdx

)1/q

.

Since A < ∞ , the Hardy inequality

(∫
Rn

k,+

ω1(x)|x|−(n+|γ|−α)q
(∫

E(0,|x|/2)
| f (y)| (y′)γdy

)q

(x′)γdx

)1/q

� C

(∫
R

n
k,+

| f (x)|pω(x) (x′)γdx

)1/p

holds and C � c′A , where c′ depends only on n and p . In fact the condition A < ∞
is necessary and sufficient for the validity of this inequality (see [1], [8]). Hence, we
obtain(∫

R
n
k,+

|Tα ,1 f (x)|qω1(x) (x′)γdx

)1/q

� c1

(∫
R

n
k,+

| f (x)|pω(x) (x′)γdx

)1/p

, (3.1)

where c1 is independent of f .
Next we estimate ‖Tα ,3 f‖Lq,ω1,γ

. As is easy to verify, for x ∈ El , y ∈ El,3 we have

|y| > 2|x| and |x− y|� |y|/2. Since El ∩ supp fl,3 = Ø, for x ∈ El by (2.1) we obtain

Tα ,3 f (x) � c0

∫
�E(0,2|x|)

Ty|x|α−n−|γ|| f (y)| (y′)γdy

� 2n+|γ|−αc0

∫
�E(0,2|x|)

| f (y)||x− y|α−n−|γ| (y′)γdy

� 2n+|γ|−αc0

∫
�E(0,2|x|)

| f (y)||y|α−n−|γ| (y′)γdy.

Hence we have (∫
R

n
k,+

|Tα ,3 f (x)|qω1(x) (x′)γdx

)1/q

� 2n+|γ|−αc0

(∫
Rn

k,+

(∫
�E(0,2|x|)

| f (y)||y|α−n−|γ| (y′)γdy

)q

ω1(x) (x′)γdx

)1/q

.
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Since B < ∞ , the Hardy inequality(∫
Rn

k,+

ω1(x)
(∫

�E(0,2|x|)
| f (y)||y|α−n−|γ| (y′)γdy

)q

(x′)γdx

)1/q

� C

(∫
R

n
k,+

| f (x)|pω(x) (x′)γdx

)1/p

holds and C � c′B , where c′ depends only on n and p . In fact the condition B < ∞
is necessary and sufficient for the validity of this inequality (see [1], [8]). Hence, we
obtain(∫

Rn
k,+

|Tα ,3 f (x)|qω1(x) (x′)γdx

)1/q

� c2

(∫
Rn

k,+

| f (x)|pω(x) (x′)γdx

)1/p

, (3.2)

where c2 is independent of f .
Finally, we estimate ‖Tα ,2 f‖Lq,ω1,γ

. By the Lp,γ(Rn
k,+)→ Lq,γ (Rn

k,+) boundedness

of Tα ,γ and condition (a) we have(∫
Rn

k,+

|Tα ,2 f (x)|qω1(x) (x′)γdx

)1/q

=

(∫
R

n
k,+

(
∑
l∈Z

∣∣Tα fl,2(x)
∣∣χEl (x)

)q

ω1(x) (x′)γdx

)1/q

=

(∫
R

n
k,+

(
∑
l∈Z

∣∣Tα fl,2(x)
∣∣q χEl (x)

)
ω1(x) (x′)γdx

)1/q

=

(
∑
l∈Z

∫
El

∣∣Tα fl,2(x)
∣∣q ω1(x) (x′)γdx

)1/q

�
(

∑
l∈Z

sup
y∈El

ω1(y)
∫

R
n
k,+

∣∣Tα fl,2(x)
∣∣q (x′)γdx

)1/q

� ‖Tα‖
⎛⎝∑

l∈Z

sup
y∈El

ω1(y)

(∫
Rn

k,+

∣∣ fl,2(x)∣∣p (x′)γdx

)q/p
⎞⎠1/q

= ‖Tα‖
(

∑
l∈Z

sup
y∈El

ω1(y)
(∫

El,2

| f (x)|p (x′)γdx

)q/p
)1/q

,

where ‖Tα‖ ≡ ‖Tα‖Lp,γ (Rn
k,+)→Lq,γ (Rn

k,+) . Since, for x ∈ El,2 , 2l−1 < |x|� 2l+2 , we have

by condition (a)

sup
y∈El

(ω1(y))p/q = sup
2l−1<|y|�2l+2

(ω1(y))p/q � sup
|x|/8<|y|�8|x|

(ω1(y))p/q � bω(x)
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for almost all x ∈ El,2 . Therefore(∫
Rn

k,+

|Tα ,2 f (x)|qω1(x)(x′)γdx

)1/q

� ‖Tα‖b
(

∑
l∈Z

∫
El,2

| f (x)|pω(x)(x′)γdx

)1/p

� c3

(∫
Rn

k,+

| f (x)|pω(x)(x′)γdx

)1/p

, (3.3)

where c3 = 3‖Tα‖b , since the multiplicity of covering
{
El,2
}

l∈Z is equal to 3.
Inequalities (3.1), (3.2), (3.3) imply (2.3) which completes the proof. �

Proof of the Theorem 2.3. For l ∈ Z we define Ẽl = {x∈ R
n
k,+ : 2l < |x′|� 2l+1},

Ẽl,1 = {x ∈ R
n
k,+ : |x′| � 2l−1}, Ẽl,2 = {x ∈ R

n
k,+ : 2l−1 < |x′| � 2l+2}, Ẽl,3 = {x ∈

R
n
k,+ : |x′| > 2l+2}. Then Ẽl,2 = Ẽl−1∪ Ẽl ∪ Ẽl+1 and the multiplicity of the covering{
Ẽl,2

}
l∈Z

is equal to 3.

Given f ∈ Lp,ω,γ (Rn
k,+), we write

|Tα f (x)| = ∑
l∈Z

|Tα f (x)|χẼl
(x)

� ∑
l∈Z

∣∣Tα fl,1(x)
∣∣χẼl

(x)+ ∑
l∈Z

∣∣Tα fl,2(x)
∣∣χẼl

(x)+ ∑
l∈Z

∣∣Tα fl,3(x)
∣∣χẼl

(x) (3.4)

≡ Tα ,1 f (x)+Tα ,2 f (x)+Tα ,3 f (x),

where χẼl
is the characteristic function of the set Ẽl, fl,i = f χẼl,i

, i = 1,2,3. We shall

estimate ‖Tα ,1 f‖Lp,ω1,γ
. Note that for x ∈ Ẽl , y ∈ Ẽl,1 we have |y′| � 2l−1 � |x′|/2.

Moreover, Ẽl ∩ supp fl,1 = Ø and |x′ − y′| � |x′|/2. Hence, by (2.1)

Tα ,1 f (x) � c4 ∑
l∈Z

(∫
R

n
k,+

| fl,1(y)|Ty|x|α−n−|γ|dy

)
χẼl

� c4

∫
Rn−k

∫
E ′ (0,|x′|/2)

Ty|x|α−n−|γ|| f (y)|(y′)γdy

� c5

∫
Rn−k

∫
E ′ (0,|x′|/2)

(|x′|+ |x′′ − y′′|)α−n−|γ| | f (y)|(y′)γdy′dy′′

for any x ∈ El . Using this last inequality we have(∫
R

n
k,+

|Tα ,1 f (x)|qω1(x′)(x′)γdx

)1/q

� c5

⎛⎜⎝ ∫
Rn

k,+

⎛⎜⎝ ∫
Rn−k

∫
E ′ (0,|x′|/2)

(|x′|+ |x′′ − y′′|)α−n−|γ| | f (y)|(y′)γdy′dy′′

⎞⎟⎠
q

ω1(x′)(x′)γdx

⎞⎟⎠
1/q

.
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For x = (x′,x′′) ∈ R
n
k,+ let

I(x′) =
∫

Rn−k

(∫
Rn−k

∫
E ′ (0,|x′|/2)

(|x′|+ |x′′ − y′′|)α−n−|γ| | f (y′,y′′)|(y′)γdy′dy′′
)q

dx′′

=
∫

Rn−k

(∫
E ′ (0,|x′|/2)

(∫
Rn−k

(|x′|+ |x′′ − y′′|)α−n−|γ| | f (y′,y′′)|dy′′
)

(y′)γdy′
)q

dx′′.

Using the Minkowski and Young inequalities we obtain

I(x′) �

⎡⎢⎣ ∫
E ′ (0,|x′|/2)

⎛⎝ ∫
Rn−k

| f (y′,y′′)|pdy′′
⎞⎠1/p⎛⎝ ∫

Rn−k

dx′′

(|x′|+ |x′′|)r(n+|γ|−α)

⎞⎠1/r

(y′)γdy′

⎤⎥⎦
q

=
(∫

E ′ (0,|x′|/2)
‖ f (·,y′)‖p,Rn−k(y′)γdy′

)q(∫
Rn−k

dx′′

(|x′|+ |x′′|)r(n+|γ|−α)

)q/r

=

⎛⎜⎝ ∫
E ′ (0,|x′|/2)

‖ f (·,y′)‖p,Rn−k(y′)γdy′

⎞⎟⎠
q⎛⎝ ∫

Rn−k

|x′|n−k−(n+|γ|−α)rdx′′

(|x′′|+1)r(n+|γ|−α)

⎞⎠q/r

= c6|x′|(n−k)q/r−(n+|γ|−α)q
(∫

E ′ (0,|x′|/2)
‖ f (·,y′)‖p,Rn−k(y′)γdy′

)q

.

Integrating in R
k
++ we get(∫

Rn
k,+

|Tα ,1 f (x)|qω1(x′)(x′)γdx

)1/q

� c7

⎛⎜⎝ ∫
Rk

++

ω1(x′)|x′|(n−k)q/r−(n+|γ|−α)q

⎛⎜⎝ ∫
E ′ (0,|x′|/2)

‖ f (·,y′)‖p,Rn−k(y′)γdy′

⎞⎟⎠
q

(x′)γdx′

⎞⎟⎠
1/q

.

Since A1 < ∞ , the Hardy inequality(∫
Rk

++

ω1(x′)|x′|(n−k)q/r−(n+|γ|−α)
(∫

E ′ (0,|x′|/2)
‖ f (·,y′)‖p,Rn−k(y′)γdy′

)q

(x′)γdx′
)1/q

� C

(∫
R

k
++

‖ f (·,x′)‖p
p,Rn−kω(x′)(x′)γdx′

)1/p

holds and C � c′A1 , where c′ depends only on n and p . In fact the condition A1 < ∞
is necessary and sufficient for the validity of this inequality (see [6], [20]). Hence, we
obtain(∫

R
n
k,+

|Tα ,1 f (x)|qω1(x′)(x′)γdx

)1/q

� c9

(∫
R

n
k,+

| f (x)|pω(x′)(x′)γdx

)1/p

. (3.5)
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Let us estimate ‖T3 f‖Lp,ω1,γ
. As is easy to verify, for x ∈ Ẽl , y ∈ Ẽl,3 we have |y′| >

2|x′| and |x′ − y′| � |y′|/2. Since Ẽl ∩ supp fk,3 = Ø, for x ∈ Ẽl by (2.1) we obtain

Tα ,3 f (x) � c5

∫
Rn−k

∫
�E ′ (0,2|x′|)

| f (y)|(|y′|+ |x′′ − y′′|)α−n−|γ| (y′)γdy′dy′′.

Using this last inequality we have∫
R

n
k,+

|Tα ,3 f (x)|qω1(x′)(x′)γdx

� cq
5

∫
Rn

k,+

⎛⎜⎜⎝ ∫
Rn−k

∫
�E ′ (0,2|x′|)

| f (y)|(|y′|+ |x′′ − y′′|)α−n−|γ| (y′)γdy′dy′′

⎞⎟⎟⎠
q

ω1(x′)(x′)γdx.

For x = (x′,x′′) ∈ R
n let

I1(x′) =
∫

Rn−k

⎛⎜⎜⎝ ∫
�E ′ (0,2|x′|)

∫
Rn−k

| f (y)|(|y′|+ |x′′ − y′′|)α−n−|γ| (y′)γdy′dy′′

⎞⎟⎟⎠
q

(x′)γdx′′.

Using the Minkowski and Young inequalities we obtain

I1(x′) �

⎡⎢⎣∫�E ′ (0,2|x′|)

⎛⎝ ∫
Rn−k

| f (y)|pdy′′
⎞⎠1/p⎛⎝ ∫

Rn−k

dy′′

(|y′|+ |y′′|)(n+|γ|−α)r

⎞⎠1/r

(y′)γdy′

⎤⎥⎦
q

= c6

⎛⎜⎜⎝ ∫
�E ′ (0,2|x′|)

|y′|(n−k)1/r−n−|γ|+α‖ f (·,y′)‖p,Rn−k(y′)γdy′

⎞⎟⎟⎠
q

×
⎛⎝ ∫

Rn−k

dy′′

(|y′′|+1)(n+|γ|−α)r

⎞⎠q/r

= c7

(∫
�E ′ (0,2|x′|)

|y′|(n−k)1/r−n−|γ|+α‖ f (·,y′)‖p,Rn−k(y′)γdy′
)q

.

Integrating over R
k
++ we get(∫

R
n
k,+

|Tα ,3 f (x)|qω1(x′)(x′)γdx

)1/q

� c8

(∫
R

k
++

(∫
�E ′ (0,2|x′|)

|y′|(n−k)1/r−n−|γ|+α‖ f (·,y′)‖p,Rn−k(y′)γdy′′
)q

ω1(x′)(x′)γdx′′
)1/q

.
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Since B1 < ∞ , the Hardy inequality(∫
Rk

++

ω1(x′)
(∫

�E ′ (0,2|x′|)
|y′|−k−|γ|+α‖ f (·,y′)‖p,Rn−1(y′)γdy′

)q

(x′)γdx′
)1/q

� C

(∫
R

k
++

‖ f (·,x′)‖p
p,Rn−k |x′|(n−k)1/r−n−|γ|+αω(x′)|x′|−((n−k)1/r−n−|γ|+α)(x′)γdx′

)1/p

= C

(∫
Rn

k,+

| f (x)|pω(x′)(x′)γdx

)1/p

holds and C � c′B1 , where c′ depends only on n , γ and p . In fact the condition
B1 < ∞ is necessary and sufficient for the validity of this inequality (see [6], [20]).
Hence, we obtain(∫

Rn
k,+

|Tα ,3 f (x)|qω1(x′)(x′)γdx

)1/q

� c10

(∫
Rn

k,+

| f (x)|pω(x′)(x′)γdx

)1/p

. (3.6)

Finally, we estimate ‖Tα ,2 f‖Lq,ω1,γ
. From Lp,γ(Rn

k,+) → Lq,γ (Rn
k,+) boundedness of

Tα ,γ and condition (a1) we have(∫
R

n
k,+

|Tα ,2 f (x)|qω1(x′)(x′)γdx

)1/q

=

(∫
Rn

k,+

(
∑
l∈Z

∣∣Tα fl,2(x)
∣∣χẼl

(x)

)q

ω1(x′)(x′)γdx

)1/q

=

(∫
Rn

k,+

(
∑
l∈Z

∣∣Tα fl,2(x)
∣∣q χẼl

(x)

)
ω1(x′)(x′)γdx

)1/q

=

(
∑
l∈Z

∫
Ẽl

∣∣Tα fl,2(x)
∣∣q ω1(x′)(x′)γdx

)1/q

�
(

∑
l∈Z

sup
y∈Ẽl

ω1(y′)
∫

Rn

∣∣Tα fl,2(x)
∣∣q (x′)γdx

)1/q

� ‖Tα‖
(

∑
l∈Z

sup
y∈Ẽl

ω1(y′)
(∫

Rn

∣∣ fl,2(x)∣∣p (x′)γdx

)q/p
)1/q

= ‖Tα‖
(

∑
l∈Z

sup
y∈Ẽl

ω1(y′)
(∫

Ẽl,2

| f (x)|p(x′)γdx

)q/p
)1/q

,

where ‖Tα‖≡ ‖Tα‖Lp,γ (Rn
k,+)→Lq,γ (Rn

k,+) . Since, for x∈ Ẽl,2 , 2l−1 < |x′|� 2l+2 , we have
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by condition (a1)

sup
y∈Ẽl

(ω1(y′))p/q = sup
2l−1<|y′|�2l+2

(ω1(y′))p/q � sup
|x′|/8<|y′|<8|x′|

(ω1(y′))p/q � bω(x′)

for almost all x ∈ Ẽl,2 . Therefore(∫
R

n
k,+

|Tα ,2 f (x)|qω1(x′)(x′)γdx

)1/q

� ‖Tα‖b ∑
l∈Z

(∫
Ẽl,2

| f (x)|pω(x′)dx

)1/p

� c11

(∫
R

n
k,+

| f (x)|pω(x′)(x′)γdx

)1/p

, (3.7)

where c11 = 3‖Tα‖b , since the multiplicity of covering
{

Ẽl,2

}
l∈Z

is equal to 3.

Inequalities (3.4), (3.5), (3.6), (3.7) imply (2.5) which completes the proof. �
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