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EXISTENCE OF POSITIVE SOLUTIONS FOR COUPLED
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(Communicated by S. K. Ntouyas)

Abstract. In this paper, we study coupled systems of the half-linear boundary value problems
involving left sided Caputo fractional derivatives. The main goal of this paper is restricted to the
existence verification of positive solutions for mentioned fractional boundary value problems. To
this aim we use nonlinear alternative of Leray-Schauder and Krasnoselskii-Zabreiko fixed point
theorems. At the end we present some numerical examples to illustrate the obtained theoretical
results.

1. Introduction

The fractional differential equations in recent decades have been recognized to be
excellent tools for studying natural phenomena, particularly in description of memory
and hereditary processes. Maybe this property can be considered as the main advan-
tage of the fractional differential equations with respect to the integer-order differential
equations, see [11], [13], [14], [17]. On the other hand studying each differential based
phenomenon leads us to a differential system, that is why we should estimate the solv-
ability possibility of such systems. In this way using nonlinear analysis techniques such
as fixed point theory provides us an effective tool for studying solvability of the differ-
ential systems. There are numerous fixed point theorems that have been applied for
proving existence of solutions for a nonlinear differential equations. Here we suggest
some of the most famous papers dealt with solvability of nonlinear fractional boundary
value problems and references cited therein.

Z. Bai and H. Lu in [2], considered nonlinear Riemann-Liouville fractional bound-
ary value problem

Dα
0+u(t)+ f (t,u(t)) = 0, 1 < α � 2, 0 < t < 1,

u(0) = u(1) = 0,
(1)

where f : [0,1]× [0,+∞) → [0,+∞) is continuous, then using Guo-Krasnoselskii and
Legget-Williams fixed point theorems obtained some existence and multiplicity results
for positive solutions of (1).
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S. Zhang in [20], studied the following nonlinear Caputo fractional boundary value
problem

cDα
0+u(t) = f (t,u(t)), 1 < α � 2, 0 < t < 1,

u(0)+u′(0) = 0, u(1)+u′(1) = 0,
(2)

where f : [0,1]× [0,+∞) → [0,+∞) is continuous. The author using the same fixed
point theorems obtained the same solvability results for (2).

The authors in [1], considered the following coupled system of Riemann-Liouville
fractional boundary value problems⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Dαu(t) = f (t,v(t),Dpv(t)), t ∈ (0,1),

Dβ v(t) = g(t,u(t),Dqu(t)), t ∈ (0,1),
u(0) = 0, u(1) = γu(η),
v(0) = 0, v(1) = γv(η),

(3)

where 1 < α,β < 2 and p,q,γ > 0, 0 < η < 1, α − q � 1, β − p � 1, γηα−1 < 1,
γηβ−1 < 1. They using the Schauder fixed point theorem, proved the existence results
for fractional coupled system (3).

Beside these papers, we invite eager followers to consultation in papers [1], [6]–
[10], [15], [16], [18], [19], [21] and references cited therein for more interesting results
about fractional boundary value problems.

S. Dhar and Q. Kong in [4], studied the half-linear ordinary differential equation(
φα2

(
φα1

(
x′
))′)′ +q(t)φα1α2(x) = 0, (4)

where q ∈ C(R,R), φp(x) = |x|p−1x, p ∈ (0,∞) . The authors imposing the boundary
conditions x(a) = x(b) = 0, −∞ < a < b < ∞ and some additional conditions, obtained
the following Lyapunov-type inequality∫ ξ

a
q−(s)ds+

∫ b

ξ
q+(s)ds >

(
2

b−a

)α
, ξ ∈ [a,b], α = (α1 +1)α2. (5)

In above inequality q− and q+ denote the negative and positive parts of the function
q , respectively.

Motivated by the above works, in this paper we consider the following coupled
system of the half-linear (λ ,μ)-parametric boundary value problems⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Θβ2

(
cDα

a+

(
Θβ1

(u)
))

+ λ Θβ1β2
( f (t,v)) = 0,

α,β ∈ (1,2), t ∈ (a,b),

Θγ2

(
cDβ

a+

(
Θγ1(v)

))
+ μΘγ1γ2 (g(t,u)) = 0,

(6)

subject to the Dirichlet boundary conditions{
u(a) = u(b) = 0,

v(a) = v(b) = 0,
(7)
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where Θp(u) = |u|p−1u and p,βi,γi ∈ (1,+∞) for i = 1,2. cDα
a+ denotes the left

sided Caputo fractional derivative of order α > 0 and λ ,μ are positive real parame-
ters. Throughout this paper f ,g ∈ C([a,b]×R,R+) . Our solvability results rely on
the nonlinear alternative of the Leray-Schauder and Krasnoselskii-Zabreiko fixed point
theorems rather than Guo-Krasnoselskii and Legget-Williams fixed point theorems. We
notice that in view point of terminology the half-linearity of the fractional coupled sys-
tem (6) turns to the solution space of the (6) that characterize the homogeneity but not
additivity of solutions. See [5] for details.

2. Preliminaries

In the sequel we represent some standard definitions and lemmas from theory of
fractional calculus.

DEFINITION 1. [3] Let α ∈ (0,+∞) . The operator Iα
a+ defined on L1[a,b] by

Iα
a+u(t) =

1
Γ(α)

∫ t

a
(t− s)α−1u(s)ds, (8)

for a � t � b , is called the left-sided Riemann-Liouville fractional integral operator of
order α .

Under same hypotheses, the right-sided Riemann-Liouville fractional integral op-
erator is given by

b−Iαu(t) =
1

Γ(α)

∫ b

t
(s− t)α−1u(s)ds. (9)

DEFINITION 2. [3] Suppose α > 0 with n = [α] + 1. Then the left and right
sided Caputo fractional derivatives defined on absolutely continuous functions space
ACn[a,b] are given by ( cDα

a+u
)
(t) =

(
In−α
a+ Dnu

)
(t), (10a)(

c
b−Dαu

)
(t) = (−1)n (

b−In−αDnu
)
(t), (10b)

where Dn ≡ dn/dtn .

LEMMA 1. [11] Assume that α > 0 . Then

(i) for u(t) ∈ L1(a,b) , we have

( cDα
a+Iα

a+u
)
(t) = u(t),

(
c
b−Dα

b−Iαu
)

(t) = u(t). (11)

(ii) for u(t) ∈ ACn[a,b] , we have

(
Iα
a+

cDα
a+u
)
(t) = u(t)−

n−1

∑
k=0

u(k)(a)
k!

(t−a)k, (12a)
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(
b−Iα c

b−Dαu
)

(t) = u(t)−
n−1

∑
k=0

(−1)ku(k)(b)
k!

(b− t)k. (12b)

In this position, the nonlinear alternative of the Leray-Schauder and Krasnoselskii-
Zabreiko fixed point theorems that will be applied to verify existence at least one posi-
tive solution for fractional coupled system (6) can be stated as follows, respectively.

THEOREM 1. [21], [10] Let C be a convex subset of a Banach space, U be an
open subset of C with 0 ∈U . Then every completely continuous map T : U →C has
at least one of the two following properties:

(E1) There exist an u ∈U such that Tu = u.

(E2) There exist an v ∈ ∂U and λ ∈ (0,1) such that v = λTv.

THEOREM 2. [12], [9] Let X be a Banach space. Assume that T : X → X is a
completely continuous mapping. If L : X → X be a linear bounded mapping such that
1 is not an eigenvalue of L and

lim
‖u‖→∞

‖Tu−Lu‖
‖u‖ = 0, (13)

then T has a fixed point in X .

At the end of this section we introduce the Banach spaces needed in what follows.

Y = X ×X , X = (C[a,b],‖.‖X) , (14)

endowed with the norm

‖(u,v)‖Y = ‖u‖X +‖v‖X , ‖u‖X = sup
t∈[a,b]

|u(t)|. (15)

3. Existence results

Taking the importance of the Green function of the coupled system (6) into ac-
count, we begin with characterization the Green function corresponding to the (6) as
follows.

LEMMA 2. Let h ∈ C(R) . Then for the fractional half-linear boundary value
problem {

Θβ2

(c
Dα

a+

(
Θβ1

(u)
))

+h(t) = 0, 1 < α < 2, a < t < b,

u(a) = u(b) = 0,
(16)

the equivalent unique integral equation reads as follows

u(t) = Θβ−1
1

(∫ b

a
Gα(t,s)Θβ−1

2
h(s)ds

)
, (17)
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where

Gα(t,s) =
1

(b−a)Γ(α)

{
(t−a)(b− s)α−1− (b−a)(t− s)α−1; a < s � t < b,

(t−a)(b− s)α−1; a < t � s < b.
(18)

Proof. Using the identity (12a), the fractional half-linear differential equation

Θβ2

(
cDα

a+

(
Θβ1

(u)
))

+h(t) = 0,

reduces to the fractional integral equation

Θβ1
(u)(t) = c0 + c1(t−a)−

∫ t

a

(t− s)α−1

Γ(α)
Θ−1

β2
h(s)ds. (19)

Imposing the boundary condition u(a) = 0, immediately it follows that c0 = 0. Next,
second boundary condition u(b) = 0, explicitly gives us the coefficient c1 as follows

c1 =
1

(b−a)Γ(α)

∫ b

a

(b− s)α−1

Γ(α)
Θ−1

β2
h(s)ds. (20)

Substituting c0,c1 obtained above in (19), implies that

Θβ1
(u)(t) =

t −a
b−a

∫ b

a

(b− s)α−1

Γ(α)
Θ−1

β2
h(s)ds−

∫ t

a

(t − s)α−1

Γ(α)
Θ−1

β2
h(s)ds

=
1

b−a

{
(t−a)

∫ b

a

(b−s)α−1

Γ(α)
Θ−1

β2
h(s)ds−(b−a)

∫ t

a

(t−s)α−1

Γ(α)
Θ−1

β2
h(s)ds

}

=
1

(b−a)Γ(α)

∫ t

a
[(t −a)(b− s)α−1− (b−a)(t− s)α−1]Θ−1

β2
h(s)ds

+
1

(b−a)Γ(α)

∫ b

t
(t−a)(b− s)α−1Θ−1

β2
h(s)ds

=
∫ b

a
Gα(t,s)Θβ−1

2
h(s)ds.

So we have

Θβ1
(u)(t) =

∫ b

a
Gα(t,s)Θβ−1

2
h(s)ds. (21)

Finally, taking inverse operator Θβ−1
1

on both sides of (21), we achieve the following

u(t) = Θβ−1
1

(∫ b

a
Gα(t,s)Θβ−1

2
h(s)ds

)
,

that completes the proof. �
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LEMMA 3. The Green function Gα(t,s) given by (18) satisfies in the following
properties:

(i) Gα(t,s) > 0 for (t,s) ∈ (a,b)× (a,b) .

(ii) sup
t∈(a,b)

Gα(t,s) = Gα(s,s), sup
s∈(a,b)

Gα(s,s) =
1

Γ(α +1)

(
(b−a)(α −1)

α

)α−1

.

(iii) There exists positive constant γα ∈ (0,1) such that

min
t∈
[

b(3+α)+3a(α−1)
4α ,

b(3α+1)+a(α−1)
4α

]Gα(t,s) � γα sup
t∈(a,b)

Gα(t,s).

Proof. Let us rewrite the Green function Gα(t,s) defined by (18) as below:

Gα(t,s) =
1

(b−a)Γ(α)

{
G1,α(t,s); a < s � t < b,
G2,α(t,s); a < t � s < b,

where
G1,α(t,s) = (t−a)(b− s)α−1− (b−a)(t− s)α−1, (22a)

and
G2,α(t,s) = (t−a)(b− s)α−1. (22b)

Obviously G2,α(t,s) > 0 and G2,α(t,s) > G1,α(t,s) . So for positivity of the Green
function Gα(t,s) it suffices that we prove the positivity of G1,α(t,s) . To this aim if we
take t = s , so Gα(t,s) is obviously positive, otherwise we proceed as follows:

G1,α(t,s) > 0⇔ (t−a)(b−s)α−1−(b−a)(t−s)α−1 > 0⇔ (b− s)α−1

b−a
>

(t− s)α−1

t −a
.

Now let us define

φ(w) =
(w− s)α−1

w−a
. (23)

Therefore

φ ′(w) =
(w− s)α−2[(α −1)− w−s

w−a ]
w−a

, w �= a,s.

Thus for each w < b+a(α−1)
2−α , φ is increasing and for each w > b−a(α−1)

2−α is decreasing.

Taking w = b in the first inequality, we conclude the obvious result b < b+a(α−1)
2−α . since

b > t , then φ(b) > φ(t) and consequently

(b− s)α−1

b−a
>

(t − s)α−1

t −a
.

Thereby G1,α(t,s) > 0. This completes the proof of the item (i) .
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Proving the item (ii) , we note that, since ∂
∂ t G2,α(t,s) > 0

sup
t∈(a,b),
s∈(a,b)

Gα(t,s) = sup
t,s∈(a,b),

t�s

G2,α(t,s) = sup
s∈(a,b)

G2,α(s,s).

On the other hand

G′
2,α(s,s) = (b− s)α−2[−αs+b+a(α−1)].

Thus for each s < b+a(α−1)
α , G2,α(s,s) is increasing and for each s > b+a(α−1)

α is
decreasing. Therefore we deduce that

sup
s∈(a,b)

G2,α(s,s) = G2,α

(
b+a(α −1)

α
,
b+a(α −1)

α

)
=
(

b−a
α

)α
(α −1)α−1.

Hence, it follows that

sup
s∈(a,b)

Gα(s,s) =
1

Γ(α +1)

(
(b−a)(α −1)

α

)α−1

.

To prove the last item (iii) , we set

γα =

min
t∈
[

b(3+α)+3a(α−1)
4α ,

b(3α+1)+a(α−1)
4α

]Gα(t,s)

sups∈(a,b) Gα(s,s)
. (24)

We know that mint,s∈(a,b) Gα(t,s) = G1,α(t,s) . Also we know that ∂
∂ sG1,α(t,s) > 0.

So it follows that
sup
s�t

G1,α(t,s) = G2,α(t,t), t ∈ (a,b).

Let us point out this fact that
b(3+ α)+3a(α−1)

4α
>

b+a(α −1)
α

. Since for each

t >
b+a(α −1)

α
, G2,α(t,t) is decreasing, so we have

min
t∈
[

b(3+α)+3a(α−1)
4α ,

b(3α+1)+a(α−1)
4α

]Gα(t,s)

= G2,α

(
b(3α +1)+a(α −1)

4α
,
b(3α +1)+a(α −1)

4α

)

=
1

4α Γ(α +1)

(
(b−a)(α −1)

α

)α−1

(3α +1).

(25)

Thereby, using item (ii) we conclude that

γα =

1
4αΓ(α +1)

(
(b−a)(α −1)

α

)α−1

(3α +1)

1
Γ(α +1)

(
(b−a)(α −1)

α

)α−1 =
3α +1

4α ∈ (0,1).
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This completes the proof of the item (iii) . �

We are preparing ourselves to link the fractional half-linear coupled system (6)
and introduced fixed point theorems. To this aim we define the integral operator A :
C ⊂ Y → Y as follows

A(u,v) = (A1v,A2(u)), (26)

where

(A1v)(t) = λ
1

β1β2 Θβ−1
1

(∫ b

a
Gα(t,s)Θβ1

( f (s,v))ds

)
, (27a)

and

(A2u)(t) = μ
1

γ1γ2 Θγ−1
1

(∫ b

a
Gβ (t,s)Θγ1 (g(s,u))ds

)
, (27b)

and

C = C1 ⊕C2,

C1 =
{

(0,v) ∈ Y

∣∣∣∣ v(t) � 0, t ∈ (a,b), min
t∈Δα

v(t) � γα‖v‖X

}
,

C2 =
{

(u,0) ∈Y

∣∣∣∣ u(t) � 0, t ∈ (a,b), min
t∈Δβ

u(t) � γβ‖u‖X

}
,

Δα =
[
b(3+ α)+3a(α−1)

4α
,
b(3α +1)+a(α −1)

4α

]
,

Δβ =
[
b(3+ β )+3a(β −1)

4β
,
b(3β +1)+a(β −1)

4β

]
.

(27c)

LEMMA 4. Assume the operator A and the cone C are given by (26) and (27c),
respectively. Then A leaves the cone C invariant, i.e. A(C) ⊂C.

Proof. Suppose (u,v)∈C . Trivially we observe that (A1v)(t)� 0 and (A2u)(t)�
0.

Consider the integral operator

(A1v)(t) = λ
1

β1β2 Θβ−1
1

(∫ b

a
Gα(t,s)Θβ1

( f (s,v))ds

)
.
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So we have

min
t∈Δα

(A1v)(t) = λ
1

β1β2 min
t∈Δα

[
Θβ−1

1

(∫ b

a
Gα(t,s)Θβ1

( f (s,v))ds

)]

� λ
1

β1β2 Θβ−1
1

(∫ b

a
min
t∈Δα

Gα(t,s)Θβ1
( f (s,v))ds

)

� λ
1

β1β2 Θβ−1
1

(∫ b

a
γ sup

t∈(a,b)
Gα(t,s)Θβ1

( f (s,v))ds

)

� γ
1

β1
α sup

t∈(a,b)

[
λ

1
β1β2 Θβ−1

1

(∫ b

a
Gα(t,s)Θβ1

( f (s,v))ds

)]

� γα‖A1v‖X .

(28)

Similarly one can show that

min
t∈Δβ

(A2u)(t) � γβ‖A2u‖X . (29)

Therefore by means of (28) and (29), we conclude that for each (u,v) ∈C ,

{
(A1v) (t),(A2u)(t) � 0, t ∈ (a,b),

min
t∈Δα

(A1v)(t) � γα‖A1v‖X ,

min
t∈Δβ

(A2u)(t) � γβ‖A2u‖X

}
. (30)

Equivalently has shown that A(C) ⊂C . The proof is completed now. �

LEMMA 5. The integral operator A : Y → Y defined by (26)–(27b) is completely
continuous.

Proof. First we notice that continuity of the Green function Gα(t,s) and half-
linear operator φpu for p ∈ (1,+∞) , ensure the continuity of the integral operator A1v
defined by

(A1v)(t) = λ
1

β1β2 Θβ−1
1

(∫ b

a
Gα(t,s)Θβ1

( f (s,v))ds

)
.

Let us consider the bounded set Ω1 ⊂ X . So there exists positive real constant L1 such
that

‖v‖X � L1, v ∈ X .

Also suppose that

M1 = sup
t∈(a,b),
‖v‖X�L1

| f (t,v)|.
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Therefore we have

|A1v(t)| =
∣∣∣∣∣λ

1
β1β2 Θβ−1

1

(∫ b

a
Gα(t,s)Θβ1

( f (s,v))ds

)∣∣∣∣∣
� λ

1
β1β2

(∫ b

a
Gα(t,s)|Θβ1

( f (s,v)) |ds

) 1
β1

� λ
1

β1β2

(∫ b

a
Gα(s,s)|( f (s,v)) |β1ds

) 1
β1

� λ
1

β1β2

(
1

Γ(α)

(
b−a

α

)α
(α −1)α−1Mβ1

1

) 1
β1

.

(31)

Thereby we conclude that

‖A1v‖X � M1.λ
1

β1β2

(
1

Γ(α)

(
b−a

α

)α
(α −1)α−1

) 1
β1

. (32)

Similarly we deduce that

‖A2u‖X � M2.μ
1

γ1γ2

(
1

Γ(β )

(
b−a

β

)β
(β −1)β−1

) 1
γ1

, (33)

in which there exists a bounded subset Ω2 ⊂ X and there exists a positive constant L2

such that for each u ∈ Ω2 , we have ‖u‖X � L2 . In addition

M2 = sup
t∈(a,b),
‖u‖X�L2

|g(t,u)|.

Thus one can conclude that

‖A(u,v)‖Y = ‖A1v‖X +‖A2u‖X

� 2max

{
M1.λ

1
β1β2

(
1

Γ(α)

(
b−a

α

)α
(α −1)α−1

) 1
β1

,

M2.μ
1

γ1γ2

(
1

Γ(β )

(
b−a

β

)β
(β −1)β−1

) 1
γ1
}

.

(34)

Therefore setting Ω = Ω1 ×Ω1 , it has shown that A(Ω) is bounded.
In the last step we are going to prove the equicontinuity of the integral operator

A(u,v) . Let v ∈ Ω1 and t1,t2 ∈ [a,b] with t1 < t2 . So we have
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|A1v(t2)−A1v(t1)| � M1.λ
1

β1β2

∣∣∣∣∣
∫ b

a
[Gα(t2,s)−Gα(t1,s)]ds

∣∣∣∣∣
1

β1

� M1.λ
1

β1β2

Γ
1

β1 (α)

∣∣∣∣∣
∫ t2

a

[
(t2−a)(b−s)α−1−(b−a)(t2−s)α−1

]
ds+

∫ b

t2
(t2−a)(b−s)α−1ds

−
∫ t1

a

[
(t1−a)(b− s)α−1− (b−a)(t1− s)α−1

]
ds−

∫ b

t1
(t1 −a)(b− s)α−1ds

∣∣∣∣∣
1

β1

� M1.λ
1

β1β2

Γ
1

β1 (α +1)

{∣∣∣∣(t2 −a)
[
(b−a)α − (b− t2)α

]
− (t1−a)

[
(b−a)α − (b− t1)α

]∣∣∣∣
+(b−a)

∣∣∣∣
[
(t2−a)α − (t1−a)α

]∣∣∣∣+
∣∣∣∣(t2−a)(b− t2)α − (t1−a)(b− t1)α

∣∣∣∣
} 1

β1

.

(35)

Therefore, one can derive that the right hand side of the inequality (35), tends to zero
provided that t2 → t1 . Hence the Arzela-Ascoli theorem implies that the integral op-
erator A1v is completely continuous. In similar manner one can prove that the inte-
gral operator A2u is also completely continuous. Thereafter completely continuity of
the operators A1v and A2u ensure the completely continuity of the integral operator
A(u,v) = (A1v,A2u) . The proof is completed. �

In order to apply the nonlinear alternative of Leray-Schauder fixed point theorem,
assume that the following stipulations are valid.

HYPOTHESES 1. There exist positive continuous functions φi,ψi, i = 1,2 with ψi

increasing, such that

(H1) | f (t,v)| � φ1(t)ψ1(|v|), (t,v) ∈ (a,b)×R ;

(H2) |g(t,u)|� φ2(t)ψ2(|u|), (t,u) ∈ (a,b)×R .

THEOREM 3. Let the hypotheses (H1 ) and (H2 ) are satisfied. Assume that there
exists real constant θ > 0 such that

1

λ
1

β1β2 Λ
1

β1
1

+
1

μ
1

γ1γ2 Λ
1
γ1
2

>
1
θ

{
ψ1(θ )

∫ b

a
|φ1(s)|ds+ ψ2(θ )

∫ b

a
|φ2(s)|ds

}
, (36)

where

Λ1 =
1

Γ(α +1)

(
(b−a)(α −1)

α

)α−1

,

Λ2 =
1

Γ(β +1)

(
(b−a)(β −1)

β

)β−1

.
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Then the coupled system of fractional half-linear boundary value problems (6) has at
least one positive solution in C.

Proof. Consider the coupled system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θβ2

(
cDα

a+

(
Θβ1

(u)
))

+ νλ Θβ1β2
( f (t,v)) = 0,

α ∈ (1,2), t ∈ (a,b),

Θγ2

(
cDβ

a+

(
Θγ1(v)

))
+ νμΘγ1γ2 (g(t,u)) = 0,

u(a) = u(b) = 0,

v(a) = v(b) = 0,

(37)

where ν ∈ (0,1) . We define

O = {(u,v) ∈C| ‖u‖X < θ ,‖v‖X < θ}. (38)

Now, we must prove that (v,u) �= νA(u,v) , with (u,v) ∈ ∂O and ν ∈ (0,1) . There-
fore assume on contrary that there exists (u,v) ∈ ∂O such that (v,u) = νA(u,v) =
ν(A1(v),A2(u)) . Thus it follows that:

‖v‖X = ν‖A1v‖X = νλ
1

β1β2 sup
t∈(a,b)

Θ 1
β1

(∫ b

a
Gα(t,s)Θβ1

f (s,v)ds

)

� λ
1

β1β2

∣∣∣∣∣
∫ b

a
sup

t∈(a,b)
Gα(t,s)Θβ1

f (s,v)ds

∣∣∣∣∣
1

β1

� λ
1

β1β2 Λ
1

β1
1

∫ b

a
| f (s,v)|ds � λ

1
β1β2 Λ

1
β1
1 ψ1(θ )

∫ b

a
|φ1(s)|ds.

(39)

So we have

θ � λ
1

β1β2 Λ
1

β1
1 ψ1(θ )

∫ b

a
|φ1(s)|ds.

Hence the following is immediate

1

λ
1

β1β2 Λ
1

β1
1

� 1
θ

ψ1(θ )
∫ b

a
|φ1(s)|ds. (40)

Similarly one can deduce

1

μ
1

γ1γ2 Λ
1
γ1
2

� 1
θ

ψ2(θ )
∫ b

a
|φ2(s)|ds. (41)

The inequalities (40) and (41), give us

1

λ
1

β1β2 Λ
1

β1
1

+
1

μ
1

γ1γ2 Λ
1
γ1
2

� 1
θ

{
ψ1(θ )

∫ b

a
|φ1(s)|ds+ ψ2(θ )

∫ b

a
|φ2(s)|ds

}
, (42)
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which contradicts with (36). Thus we conclude that for each (u,v) ∈ ∂O and for each
ν ∈ (0,1) , (v,u) �= νA(u,v) . Therefore in accordance with Theorem 1 particularly
the item (E1) , one has that the fixed point problem (v,u) = (A1v,A2u) = A(u,v) has at
least one fixed point (u,v) in cone C . Equivalently the coupled system of the fractional
half-linear boundary value problems (6) has at least one positive solution in C . This
completes the proof. �

In the sequel, in order to proper running of the mechanism of the Krasnoselskii-
Zabreiko fixed point theorem stated above, we introduce forthcoming hypotheses.

HYPOTHESES 2. Let the following hypotheses hold:

(K1) lim
‖v‖X→∞

A1v
v

� λ
1

β1β2 Θβ−1
1

(∫ b

a
G2,α(t,s)Θβ1

(ξ1(s))ds

)
;

(K2) lim
‖u‖X→∞

A2u
u

� μ
1

γ1γ2 Θγ−1
1

(∫ b

a
G2,β (t,s)Θγ1(ξ2(s))ds

)
.

THEOREM 4. Let the hypotheses (K1) and (K2) are satisfied. If

∫ b

a
G2,α(t,s)ds < ‖ξ1‖−β1

X ,

∫ b

a
G2,β (t,s)ds < ‖ξ2‖−γ1

X , (43)

then the coupled system of fractional half-linear boundary value problems (6) has at
east one positive solution in C.

Proof. We begin the proof with introducing the linear bounded mappings Li :Ci ⊂
X → X , i = 1,2 defined by

L1v(t) = λ
1

β1β2 Θβ−1
1

(∫ b

a
G2,α(t,s)Θβ1

(ξ1(s))ds

)
v(t),

L2u(t) = μ
1

γ1γ2 Θγ−1
1

(∫ b

a
G2,β (t,s)Θβ1

(ξ2(s))ds

)
u(t).

(44)

Using inequalities (43), it is clear that

‖L1v‖X < λ
1

β1β2 ‖v‖X , ‖L2u‖X < μ
1

γ1γ2 ‖u‖X . (45)

It means that 1 is not an eigenvalue of the operators Li for i = 1,2. Thus defining
L(u,v) = (L1v,L2u) , it follows that the linear bounded mapping L dos not admit the
pair (1,1) as eigenvalue. In the sequel, considering the hypotheses (K1) and (K2) , one
can deduce that for each arbitrary ε > 0 there exists a positive constant N > 0 such
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that ‖u‖X > N and ‖v‖X > N , imply that

∥∥∥∥A1v−λ
1

β1β2 Θβ−1
1

(∫ b

a
G2,α(t,s)Θβ1

(ξ1(s))ds

)
v

∥∥∥∥
X

< ε‖v‖X ,

∥∥∥∥A2u− μ
1

γ1γ2 Θγ−1
1

(∫ b

a
G2,β (t,s)Θγ1(ξ2(s))ds

)
u

∥∥∥∥
X

< ε‖u‖X .

(46)

Therefore we have

lim
‖v‖X→∞

‖A1v−L1v‖X

‖v‖X
= 0, (47a)

lim
‖u‖X→∞

‖A2u−L2u‖X

‖u‖X
= 0. (47b)

Using (47a) and (47b), we conclude that

lim
‖u‖X→∞,
‖v‖X→∞

‖A(u,v)−L(u,v)‖Y

‖(u,v)‖Y
= lim

‖u‖X→∞,
‖v‖X→∞

‖((A1v−L1v),(A2u−L2u))‖Y

‖u‖X +‖v‖X

� lim
‖v‖X→∞

‖A1v−L1v‖X

‖v‖X
+ lim

‖u‖X→∞

‖A2u−L2u‖X

‖u‖X

= 0.

Therefore the Krasnoselskii-Zabreiko fixed point theorem ensures that the coupled sys-
tem of fractional half-linear boundary value problems (6) has at least one positive solu-
tion in C . The proof is completed. �

4. Numerical examples

Implementing the obtained theoretical main results, we present some numerical
examples as follows.

EXAMPLE 1. Let us consider the following coupled system of fractional half-
linear boundary value problems⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
Θ2

(
cD1.5

0+ (Θ2(u))
)

+
1
10

Θ2×2 (et(1+ |v|)) = 0,

t ∈ (0,1),

Θ2

(
cD1.5

0+ (Θ2(v))
)

+
1
10

Θ2×2

(
e−t
(
1+ |u|

2

))
= 0,

(48)

with boundary conditions {
u(0) = u(1) = 0,

v(0) = v(1) = 0.
(49)
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Indeed, in the above system the setting

φ1(t) = et , φ1(t) = e−t ;

ψ1(|v|) = 1+ |v|, ψ2(|u|) = 1+
|u|
2

;

βi = γi = 2, i = 1,2, λ = μ =
1
10

, θ = 1, α = β = 1.5,

have implemented. As a result of positivity and increasing nature of the functions ψi ,
i = 1,2, we conclude that the hypotheses (H1) and (H2) are fulfilled. On the other
hand, a direct calculation shows that

1
θ

{
ψ1(θ )

∫ b

a
|φ1(s)|ds+ ψ2(θ )

∫ b

a
|φ2(s)|ds

}
=

3
2
(e− e−1),

1

λ
1

β1β2 Λ
1

β1
1

+
1

μ
1

γ1γ2 Λ
1
γ1
2

=

√
2

3
√

3π
×4×104.

So, it is clear that

1

λ
1

β1β2 Λ
1

β1
1

+
1

μ
1

γ1γ2 Λ
1

γ1
2

>
1
θ

{
ψ1(θ )

∫ b

a
|φ1(s)|ds+ ψ2(θ )

∫ b

a
|φ2(s)|ds

}
,

Consequently, since all of the conditions of Theorem 3 hold, then the fractional coupled
system (48)–(49) has at least one positive solution in C .

EXAMPLE 2. Consider the coupled system of fractional half-linear boundary value
problems⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Θβ2

(
cDα

a+

(
Θβ1

(u)
))

+ λ Θβ1β2
( f (t,v)) = 0,

α,β ∈ (1,2), t ∈ (0,1),

Θγ2

(
cDβ

a+

(
Θγ1(v)

))
+ μΘγ1γ2 (g(t,u)) = 0,

(50)

subject to the boundary conditions{
u(0) = u(1) = 0,

v(0) = v(1) = 0,
(51)

where f (t,v) = v and g(t,u) = u . Suppose that u and v are two positive increasing
continuous functions such that∫ 1

0
vβ1(s)ds < vβ1(t),

∫ 1

0
uγ1(s)ds < uγ1(t).

Before continuing estimation process let us point out the following key inequality.
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REMARK 1. Assume that both f and g are increasing(decreasing) on (a,b) .
Then (∫ b

a
f (x)dx

)(∫ b

a
g(x)dx

)
� (b−a)

∫ b

a
f (x)g(x)dx. (52)

If f is decreasing and g is increasing, then the counter-inequality is satisfied.

As we know, Gα(t,s) � G2,α(t,s) and G2,α(t,s) is a decreasing function with
respect to the variable s . On the other hand, increasing nature of the function v(t)
implies that

∫ 1

0
Gα(t,s) f β1(s,v(s))ds �

∫ 1

0
G2,α(t,s)vβ1(s)ds �

∫ 1

0
G2,α(t,s)ds

∫ 1

0
vβ1(s)ds

< vβ1(t)
∫ 1

0
G2,α(t,s)ds.

Hence, one can derive that

A1v
v

� λ
1

β1β2 Θβ−1
1

(∫ 1

0
G2,α(t,s)ds

)
,

A2u
u

� μ
1

γ1γ2 Θγ−1
1

(∫ 1

0
G2,β (t,s)ds

)
.

Thus the hypotheses (K1) and (K2 ) are satisfied. On the other hand, in accordance with
definitions of the functions f and g taking ξ1 = ξ2 = 1, we have

∫ 1

0
G2,α(t,s) = t

∫ 1

0
(1− s)α−1ds =

t
α

< 1, 1 < α < 2, t ∈ (0,1). (53)

Thereby ∫ 1

0
G2,α(t,s)ds < ‖ξ1‖−β1

X ,
∫ 1

0
G2,β (t,s)ds < ‖ξ2‖−γ1

X . (54)

Since all of the conditions of Theorem 4 hold, so the coupled system of fractional half-
linear boundary value problems (50)–(51) has at least one positive solution in C .
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