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AN INVERSE FRACTIONAL SOURCE PROBLEM IN
A SPACE OF PERIODIC SPATIAL DISTRIBUTIONS

ANDRZEJ LOPUSHANSKY, HALYNA LOPUSHANSKA AND OLGA MYAUS

(Communicated by M. Kirane)

Abstract. For a time fractional diffusion equation and diffusion-wave equation with Caputo par-
tial derivatives we prove the correctness of an inverse problem. This problem is to find a solution
of direct problem, which is classical in time with values in the space of periodic spatial dis-
tributions, and a source term of the equation. A time integral over-determination condition is
used.

1. Introduction

Sufficient conditions of classical solvability of fractional Cauchy problems and
boundary-value problems to a time fractional diffusion equation were obtained, for
example, in [1, 5, 9, 10, 18]. Inverse problems to equations of fractional order with
respect to time with different unknown quantities, under different over-determination
conditions, are actively studied in connection with their applications (see, for instance,
[2,4,6,7,12, 16, 19]).

In this paper, for a time fractional diffusion (or diffusion-wave) equation we study
the inverse problem consisting in the restoration of a solution for the direct problem,
which is classical in time with values in the space of periodic spatial distributions and
a source term of the equation. We use a time integral over-determination condition.

Note that the solvability of some nonclassical direct problems for partial differ-
ential equations with integral initial conditions, in particular, in the space of periodic
spatial variable functions have been established, for example, in [15]. The inverse prob-
lem for restoration of an initial data of the solution, classical in time with values in a
space of periodic spatial distributions was studied in [7]. The inverse fractional source
problem with a space integral over-determination condition was studied in [4]. The
existence of a solution to the fractional Cauchy problem, which is classical in time
with values in Bessel potential spaces, was proved in [8], the existence and uniqueness
theorems to the boundary-value problems for partial differential equations in Sobolev
spaces were obtained by Yu. Berezansky, Ya. Roitberg, J.-L. Lions, E. Magenes, V. A.
Mikhailets, A. A. Murach and others (see [11] and references therein).
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2. Main definitions

Assume that N is a set of natural numbers, Z; = NU{0}, 2(R) is the space
of indefinitely differentiable functions with compact supports, .#(R) is the space of
rapidly decreasing indefinitely differentiable functions [17, p. 90], while 2'(R) and
' (R) are the spaces of linear continuous functionals (distributions) respectively over
2(R) and “(R), and the symbol (f,) stands for the value of the distribution f
on the test function ¢. Note that .%”/(R) is the space of slowly increasing distribu-
tions. Recall that the regularized time fractional derivative (the Caputo derivative, or
the Caputo-Djrbashian derivative) is defined in [14] by

DPy(x,1) = ﬁ[i/ (V(X’T) dt — V(X’O)} for o e (0,1),

ar ) (1—1) 1%
0
L[ el
B ver(x, T
Difvl,r) = re- a)/(tr—rr)“ rdt
13
B 1 8 ur(x ~ u(x,0)
_ E/ = } for a€(1,2),
0
c Iv(x,
Divi.i) = g)

We use the Mittag-Leffler function Eq y(z) = X5_o2” /T(poc+ ).
The function E ;(—x) (x> 0) is indefinitely differentiable for o € (0,2), u € R.

It has the bounds [13]
To,u

1+z2

where rq  is a positive constant, and the asymptotic behavior [3]

Equ(—x) < x>0,
1
Eg pu(—x) :O<;>, X — oo,

Let X;(x) = sinkx, k € N. Similarly to [17, p. 120], we denote by Z;_(R) the
space of periodic distributions, i.e., the space of v € 2'(R) such that

v(x+27) =v(x) = —v(—x) vx e R.

The formal series
Y uiXe(x), x€R (1)

is the Fourier series of the distribution v € 25 _(R), and numbers

2 2
Vg = E(V7Xk)2n' = E(V,th)
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are its Fourier coefficients. Here /(x) is an even function from Z(R) possessing the
properties:

1 _ _
T A TR
0, xeR\(-m,7)
Note that
:—/ dx for VE.@&E(R)OLZIOC(R%

and then the series (1) is the classical Fourier series of v by the system X;, k € N.

As is known (see [17, p. 123]) 2;,(R) C ./(R), the series (1) of v € 25 (R)
converges in .#’(R) to v, and the Fourier coefficients (clearly defined) have the esti-
mates

el < Co(m)C(v,m)(1+k)" VkeN
with some m € Z where Cy(m), C(v,m) are positive constants, the same forall k € N,

in particular, C(v,m) = ( Jo (14 x2)~"/ 2\v()c)|d)c> 1/2. The number m is called the
order of the distribution v. Note that the order of a regular periodic distribution is a
nonpositive number.

We assume next that for y € R

HI(R) = {v € Z52(B): [Vlrz) = S0p [l(1 +4)7 < oo}
(S

(functions from HY(RR) have the order —7 in the sense of the above definition), C([0,77;
H(R)) is the space of continuous in 7 € [0,T] functions v(x,r) with values v(-,7) €
H"(R) endowed with the norm
HV||C([07T];H7(R)) = max [Iv VG, ()
Co.a([0,T:HY(R)) = {v € C([0,T); H**(R)) :* D% e C([0,T]; H'(R)) }

is its subspace endowed with the norm

HVHCZ#D,([O,T];HV(R)) :maX{HV”c([o,T];HM R))’ 1D c([o.1] HV(R))}

Note that H""¢(R) C HY(R) forall € >0, yeR.

3. The inverse problem and its correctness
We study the problem
CD?u_uXX:FO(x>7 (X,I)EQT ::RX(O7T]7 (2)

M()C,O):Fl(x), u,(x,O):Fz()C), XER, (3)
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fo
/ u(x,1)di = D(x), x€R, 10 € (0,T] )
0

where a € (0,2), Fy, F>, @ are the given functions, T is a given positive number, u, F
are unknown functions. The second condition in (3) is absent in the case « € (0,1].
Let the following assumption holds: (A) y€ R, 6 € (0,1), F; € H"220(R),
i=1,2 (KR =0if ac(0,1]); ® c H**R) if a € (0,1], ® € HY+4+29( ) and, in
addition, 7y € (0,7} is such that Eq»(—k*$) # 1 forall k € N if « € (1,2).

REMARK 1. We have 0 < Eg (—k*t%) < 1 forall t >0, u > a if o € (0,1]
(see [13]). In the case o € (1,2), the function 1 — Ey >(—2z) has a finite number of real
positive zeroes [13], therefore, there exists a certain 7y € (0,7] such that

Eqo(—K$)#1  VkeN.

Decompose the functions Fj(x), j € {0,1,2}, ®(x) in the formal Fourier series
by the system X (x), k € N:

x) = Y FpXi(x), x€R, j=0,1,2, (3)
k=1

i (I)ka xeR.

DEFINITION 1. A pair of functions

(u,Fy) € My :=Cra([0,T];H(R)) x HY20(R)
((M,FO) S %a# = ,ﬂa7%0 if o€ (0’ 1))

given by the series

xX,1) = i up ()X (x),  (x,2) € Or (6)
k=1

and (5) with j = 0, satisfying the equation (2) in .#’(R) and the conditions (3), (4), is
called a solution of the problem (2)—(4) under the assumption (A).

Substituting the function (6) in the equation (2) and the conditions (3), (4), we
obtain the problems
D%y, +k2uk =Fo, t € (07T]7
ue(0) = Fig, up(0) = Fy,
fo
/uk(t)dt =®;, keN (8)
0
for the unknown u(7), r € [0,T] and Fy, k € N.

So, the pairs (ux(t), For) (k € N) of the Fourier coefficients of the problem’s solu-
tion satisfy (7), (8).

(7
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THEOREM 1. Assume that y € R, 6 € (0,1), Fy € H"*?%(R), F; € H'"2(R),
j=1.2,ifa€(1,2), Fy € H'(R), F € H'*(R), F, =0, if o € (0,1].
Then there exists a unique solution u € Cy,»([0,T];HY(R)) to the direct problem

(2), (3). It is given by (6) where
u(t) = Fork 2 [1 — Eq 1 (—K*t%)] ©
+ FiiEq 1 (—K2t%) + FytEq o (—K*%), t€[0,T], k€N.

The solution continuously depends on the data ( Fy, F1, F ), and the following inequal-
ity of coercivity holds:

2
1#lle, , (jo ryavcmy) < @0l Follrreo ) + ZlajHFmeu(R), (10)
, P

where aj, j€{0,1,2} are positive constants independent of data, F, =0 and 6 =0
in(10)if a € (0,1].

Proof. Tt follows from the theorem 1 in [7] that there exists a unique solution
u € C4([0,T];HY(R)) to the problem (2), (3) under the theorem’s conditions, that it
is given by (6) where
t
e (£) = Fox / 1By o (—K21%)dt
0
+ FiyEq 1 (—k21%) + FytEq2(—K*%), 1€[0,T], keN.

By the link

t
A/r“”Ea,a(—M“)drz 1 — Eq1(—At%), (11)
0

we obtain the formulas (9) and, using [7, th.1], we obtain the bounds (10). These
bounds imply that a solution of the problem is unique and continuously depends on the
data. O

THEOREM 2. Assume that (A) holds. Then there exists a unique solution (u,Fy) €
Mey0 Of the inverse problem (2)—(4). It is given by the Fourier series (6) and (5) with
Jj =0 where u(t) are defined by (9),

For = {cpk — FutoEq 2 (—KA&) — szthaﬁ(—kZzg‘)} KRG, keN  (12)

with Gy, = 1y [1 — Ea72(—k2t8‘)] . The solution continuously depends on the data Fy, F>,
@ and the following inequality of coercivity holds:

2
(R))‘FHFOHHVHG(R) < b0|‘q)||H7+29+4(R)+2bj|‘F/’HH%HZG(R)a ae(1,2),

HuHCzﬁa([OvT];Hy P

llle, o (0.7 my) + 10l ) < bol| @l s ) + brllFillriam), @ € (0,1]

13)
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where bj, j€{0,1,2} are positive constants independent of data.

Proof. Using (9), we write the conditions (8) as follows
0 Iy
Fouk ™2 / [1 —Eq, (—kzto‘)] dr+ / {FlkEa’ . (—kzt“)+F2ktEa’2(—k2t“)} di = @y, ke N.
0 0

Note that [7]

]
[ Bar(—#4®)dt =0Eaa(~n®), keEN,
0

and similarly
7 LR 1 & (—1)P(Re)r 2
2_ — 0 o
tE —kzt“dt:—/E —ze ldg=— Y L T 1
/ aa( K = T w228 e =y pE—o T(po+3)
0 0 -
= t{Eq3(—K*1%), keEN.

From here, according to the assumption (A), we find the expressions (12) for the
unknown Fourier coefficients Fy, k € N.

Let us show that the founded solution belongs to .#, ;6. Given that the func-
tions Eq u(—k*t%) (u € {e,1,2,3}) have the same behavior for large k and given the
formulas (12) into account, one obtains

(1+K)720| Foe
< co |1+ K772 Bl (L K)772072 4 Byl (14 K)72072] (14 k)

= CO“‘Dk\(l R0 R (1K) TT2002 4 [Py (1 +k)Y+29+2]» a€(1,2),

(1+k)V\FOk|gco[\q>k|(1+k)7+4+ sup |F1k|(1+k)7+2}, ac(0,1), keN
t€(0.7)

where ¢ is a positive constant, and therefore,

2
13 Lse20 gy < o [[|@l|gressaoggy + 3 1Fillriaszoy |, @ € (1,2),
j=1

13 vy < co | 1@lgrsa gy + 11 Fillroagey |+ @€ (0,1]
So, under the theorem’s assumptions, Fy € H'"2%(R) (Fy € H"(R) if o € (0, 1]).

Then using (10) we obtain the inequality (13). This inequality implies that a solution
of the problem is unique and continuously depends on the problem’s data. []
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REMARK 2. Uniqueness of a solution of the inverse problem (2)—(4) is obtained

forall 79 € (0,T] in the case o € (0, 1] and only under an assumption on #y in the case
o< (1,2).

The obtained result can be transferred to the case of the boundary value prob-

lem for a time fractional diffusion or diffusion-wave equation when the corresponding
Sturm-Liouville problem has positive eigenvalues.
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