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AN INVERSE FRACTIONAL SOURCE PROBLEM IN

A SPACE OF PERIODIC SPATIAL DISTRIBUTIONS

ANDRZEJ LOPUSHANSKY, HALYNA LOPUSHANSKA AND OLGA MYAUS

(Communicated by M. Kirane)

Abstract. For a time fractional diffusion equation and diffusion-wave equation with Caputo par-
tial derivatives we prove the correctness of an inverse problem. This problem is to find a solution
of direct problem, which is classical in time with values in the space of periodic spatial dis-
tributions, and a source term of the equation. A time integral over-determination condition is
used.

1. Introduction

Sufficient conditions of classical solvability of fractional Cauchy problems and
boundary-value problems to a time fractional diffusion equation were obtained, for
example, in [1, 5, 9, 10, 18]. Inverse problems to equations of fractional order with
respect to time with different unknown quantities, under different over-determination
conditions, are actively studied in connection with their applications (see, for instance,
[2, 4, 6, 7, 12, 16, 19]).

In this paper, for a time fractional diffusion (or diffusion-wave) equation we study
the inverse problem consisting in the restoration of a solution for the direct problem,
which is classical in time with values in the space of periodic spatial distributions and
a source term of the equation. We use a time integral over-determination condition.

Note that the solvability of some nonclassical direct problems for partial differ-
ential equations with integral initial conditions, in particular, in the space of periodic
spatial variable functions have been established, for example, in [15]. The inverse prob-
lem for restoration of an initial data of the solution, classical in time with values in a
space of periodic spatial distributions was studied in [7]. The inverse fractional source
problem with a space integral over-determination condition was studied in [4]. The
existence of a solution to the fractional Cauchy problem, which is classical in time
with values in Bessel potential spaces, was proved in [8], the existence and uniqueness
theorems to the boundary-value problems for partial differential equations in Sobolev
spaces were obtained by Yu. Berezansky, Ya. Roitberg, J.-L. Lions, E. Magenes, V. A.
Mikhailets, A. A. Murach and others (see [11] and references therein).
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2. Main definitions

Assume that N is a set of natural numbers, Z+ = N∪ {0} , D(R) is the space
of indefinitely differentiable functions with compact supports, S (R) is the space of
rapidly decreasing indefinitely differentiable functions [17, p. 90], while D ′(R) and
S ′(R) are the spaces of linear continuous functionals (distributions) respectively over
D(R) and S (R) , and the symbol ( f ,ϕ) stands for the value of the distribution f
on the test function ϕ . Note that S ′(R) is the space of slowly increasing distribu-
tions. Recall that the regularized time fractional derivative (the Caputo derivative, or
the Caputo-Djrbashian derivative) is defined in [14] by

cDα
t v(x, t) =

1
Γ(1−α)

[ ∂
∂ t

t∫
0

v(x,τ)
(t− τ)α dτ − v(x,0)

tα

]
for α ∈ (0,1),

cDα
t v(x, t) =

1
Γ(2−α)

t∫
0

vττ(x,τ)
(t− τ)α−1 dτ

=
1

Γ(2−α)

[ ∂
∂ t

t∫
0

uτ(x,τ)
(t− τ)α−1 dτ − ut(x,0)

tα−1

]
for α ∈ (1,2),

cD1
t v(x, t) =

∂v(x,t)
∂ t

.

We use the Mittag–Leffler function Eα ,μ(z) = ∑∞
p=0 zp

/
Γ(pα + μ) .

The function Eα ,μ(−x) (x > 0) is indefinitely differentiable for α ∈ (0,2) , μ ∈R .
It has the bounds [13]

Eα ,μ(−x) � rα ,μ

1+ z
, x > 0,

where rα ,μ is a positive constant, and the asymptotic behavior [3]

Eα ,μ(−x) = O
(1

x

)
, x → +∞.

Let Xk(x) = sinkx , k ∈ N . Similarly to [17, p. 120], we denote by D ′
2π(R) the

space of periodic distributions, i.e., the space of v ∈ D ′(R) such that

v(x+2π) = v(x) = −v(−x) ∀x ∈ R.

The formal series
∞

∑
k=1

vkXk(x), x ∈ R (1)

is the Fourier series of the distribution v ∈ D ′
2π(R) , and numbers

vk =
2
π

(v,Xk)2π =
2
π

(v,hXk)
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are its Fourier coefficients. Here h(x) is an even function from D(R) possessing the
properties:

h(x) =

{
1, x ∈ (−π + ε,π − ε)
0, x ∈ R\ (−π ,π)

, 0 � h(x) � 1.

Note that

vk =
2
π

∫ π

0
v(x)Xk(x)dx for v ∈ D ′

2π(R)∩L1
loc(R),

and then the series (1) is the classical Fourier series of v by the system Xk , k ∈ N .
As is known (see [17, p. 123]) D ′

2π(R) ⊂ S ′(R) , the series (1) of v ∈ D ′
2π(R)

converges in S ′(R) to v , and the Fourier coefficients (clearly defined) have the esti-
mates

|vk| � C0(m)C(v,m)(1+ k)m ∀k ∈ N

with some m∈Z+ where C0(m) , C(v,m) are positive constants, the same for all k∈N ,

in particular, C(v,m) =
(∫

R
(1 + x2)−m/2|v(x)|dx

)1/2
. The number m is called the

order of the distribution v . Note that the order of a regular periodic distribution is a
nonpositive number.

We assume next that for γ ∈ R

Hγ(R) =
{

v ∈ D ′
2π(R) : ‖v‖Hγ (R) = sup

k∈N

|vk|(1+ k)γ < +∞
}

(functions from Hγ(R) have the order −γ in the sense of the above definition), C
(
[0,T ];

Hγ(R)
)

is the space of continuous in t ∈ [0,T ] functions v(x,t) with values v(·,t) ∈
Hγ(R) endowed with the norm

‖v‖
C
(
[0,T ];Hγ (R)

) = max
t∈[0,T ]

‖v(·,t)‖Hγ (R),

C2,α
(
[0,T ];Hγ (R)

)
=

{
v ∈C

(
[0,T ];H2+γ(R)

)
:c Dαv ∈C

(
[0,T ];Hγ(R)

)}
is its subspace endowed with the norm

‖v‖
C2,α

(
[0,T ];Hγ (R)

) = max
{
‖v‖

C
(
[0,T ];H2+γ (R)

),‖cDαv‖
C
(
[0,T ];Hγ (R)

)}
.

Note that Hγ+ε(R) ⊂ Hγ (R) for all ε > 0, γ ∈ R .

3. The inverse problem and its correctness

We study the problem

cDα
t u−uxx = F0(x), (x,t) ∈ QT := R× (0,T ], (2)

u(x,0) = F1(x), ut(x,0) = F2(x), x ∈ R, (3)
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t0∫
0

u(x,t)dt = Φ(x), x ∈ R, t0 ∈ (0,T ] (4)

where α ∈ (0,2) , F1 , F2 , Φ are the given functions, T is a given positive number, u, F0

are unknown functions. The second condition in (3) is absent in the case α ∈ (0,1] .
Let the following assumption holds: (A) γ ∈ R , θ ∈ (0,1) , Fj ∈ Hγ+2+2θ (R) ,

j = 1,2 (F2 = 0 if α ∈ (0,1]); Φ ∈ Hγ+4(R) if α ∈ (0,1] , Φ ∈ Hγ+4+2θ (R) and, in
addition, t0 ∈ (0,T ] is such that Eα ,2(−k2tα

0 ) 
= 1 for all k ∈ N if α ∈ (1,2) .

REMARK 1. We have 0 < Eα ,μ(−k2tα) < 1 for all t > 0, μ � α if α ∈ (0,1]
(see [13]). In the case α ∈ (1,2) , the function 1−Eα ,2(−z) has a finite number of real
positive zeroes [13], therefore, there exists a certain t0 ∈ (0,T ] such that

Eα ,2(−k2tα
0 ) 
= 1 ∀k ∈ N.

Decompose the functions Fj(x) , j ∈ {0,1,2} , Φ(x) in the formal Fourier series
by the system Xk(x) , k ∈ N :

Fj(x) =
∞

∑
k=1

FjkXk(x), x ∈ R, j = 0,1,2, (5)

Φ(x) =
∞

∑
k=1

ΦkXk(x), x ∈ R.

DEFINITION 1. A pair of functions

(u,F0) ∈ Mα ,γ,θ := C2,α
(
[0,T ];Hγ(R)

)×Hγ+2θ (R)(
(u,F0) ∈ Mα ,γ = Mα ,γ,0 if α ∈ (0,1)

)
given by the series

u(x,t) =
∞

∑
k=1

uk(t)Xk(x), (x,t) ∈ QT (6)

and (5) with j = 0, satisfying the equation (2) in S ′(R) and the conditions (3), (4), is
called a solution of the problem (2)–(4) under the assumption (A).

Substituting the function (6) in the equation (2) and the conditions (3), (4), we
obtain the problems

cDαuk + k2uk = F0k, t ∈ (0,T ],
uk(0) = F1k, u′k(0) = F2k,

(7)

t0∫
0

uk(t)dt = Φk, k ∈ N (8)

for the unknown uk(t) , t ∈ [0,T ] and F0k , k ∈ N .
So, the pairs (uk(t),F0k) (k ∈ N) of the Fourier coefficients of the problem’s solu-

tion satisfy (7), (8).
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THEOREM 1. Assume that γ ∈ R , θ ∈ (0,1) , F0 ∈ Hγ+2θ (R) , Fj ∈ Hγ+2(R) ,
j = 1,2 , if α ∈ (1,2) , F0 ∈ Hγ(R) , F1 ∈ Hγ+2(R) , F2 = 0 , if α ∈ (0,1] .

Then there exists a unique solution u ∈C2,α
(
[0,T ];Hγ (R)

)
to the direct problem

(2), (3). It is given by (6) where

uk(t) = F0kk
−2[1−Eα ,1(−k2tα)

]
+F1kEα ,1(−k2tα)+F2ktEα ,2(−k2tα), t ∈ [0,T ], k ∈ N.

(9)

The solution continuously depends on the data (F0, F1, F2 ), and the following inequal-
ity of coercivity holds:

||u||
C2,α

(
[0,T ];Hγ (R)

) � a0||F0||Hγ+2θ (R) +
2

∑
j=1

a j||Fj||Hγ+2(R), (10)

where a j , j ∈ {0,1,2} are positive constants independent of data, F2 = 0 and θ = 0
in (10) if α ∈ (0,1] .

Proof. It follows from the theorem 1 in [7] that there exists a unique solution
u ∈C2,α

(
[0,T ];Hγ (R)

)
to the problem (2), (3) under the theorem’s conditions, that it

is given by (6) where

uk(t) = F0k

t∫
0

τα−1Eα ,α(−k2τα)dτ

+F1kEα ,1(−k2tα)+F2ktEα ,2(−k2tα), t ∈ [0,T ], k ∈ N.

By the link

λ
t∫

0

τα−1Eα ,α(−λ τα)dτ = 1−Eα ,1(−λ tα), (11)

we obtain the formulas (9) and, using [7, th.1], we obtain the bounds (10). These
bounds imply that a solution of the problem is unique and continuously depends on the
data. �

THEOREM 2. Assume that (A) holds. Then there exists a unique solution (u,F0)∈
Mα ,γ,θ of the inverse problem (2)–(4). It is given by the Fourier series (6) and (5) with
j = 0 where uk(t) are defined by (9),

F0k =
[
Φk −F1kt0Eα ,2(−k2tα

0 )−F2kt
2
0Eα ,3(−k2tα

0 )
]
k2 G−1

k , k ∈ N (12)

with Gk = t0
[
1−Eα ,2(−k2tα

0 )
]
. The solution continuously depends on the data F0 , F2 ,

Φ and the following inequality of coercivity holds:

||u||
C2,α

(
[0,T ];Hγ (R)

)+||F0||Hγ+2θ (R) � b0||Φ||Hγ+2θ+4(R)+
2

∑
j=1

b j||Fj||Hγ+2+2θ (R), α∈(1,2),

||u||
C2,α

(
[0,T ];Hγ (R)

) + ||F0||Hγ (R) � b0||Φ||Hγ+4(R) +b1||F1||Hγ+2(R), α ∈ (0,1]

(13)
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where b j , j ∈ {0,1,2} are positive constants independent of data.

Proof. Using (9), we write the conditions (8) as follows

F0kk
−2

t0∫
0

[
1−Eα ,1(−k2tα)

]
dt+

t0∫
0

[
F1kEα ,1(−k2tα)+F2ktEα ,2(−k2tα)

]
dt = Φk, k ∈ N.

Note that [7]
t0∫

0

Eα ,1(−k2tα)dt = t0Eα ,2(−k2t0
α), k ∈ N,

and similarly

t0∫
0

tEα ,2(−k2tα)dt =
1

αk4/α

k2t0
α∫

0

Eα ,2(−z)z
2
α −1dz =

1

k4/α

∞

∑
p=0

(−1)p(k2t0α)p+ 2
α

Γ(pα +3)

= t20Eα ,3(−k2t0
α), k ∈ N.

From here, according to the assumption (A), we find the expressions (12) for the
unknown Fourier coefficients F0k , k ∈ N .

Let us show that the founded solution belongs to Mα ,γ,θ . Given that the func-
tions Eα ,μ(−k2tα) (μ ∈ {α,1,2,3} ) have the same behavior for large k and given the
formulas (12) into account, one obtains

(1+ k)γ+2θ |F0k|
� c0

[
|Φk|(1+ k)γ+2θ + |F1k|(1+ k)γ+2θ−2 + |F2k|(1+ k)γ+2θ−2

]
(1+ k)4

= c0

[
|Φk|(1+ k)γ+4+2θ + |F1k|(1+ k)γ+2θ+2 + |F2k|(1+ k)γ+2θ+2

]
, α ∈ (1,2),

(1+ k)γ |F0k| � c0

[
|Φk|(1+ k)γ+4 + sup

t∈(0,T ]
|F1k|(1+ k)γ+2

]
, α ∈ (0,1), k ∈ N

where c0 is a positive constant, and therefore,

||F0||Hγ+2θ (R) � c0

[
||Φ||Hγ+4+2θ (R) +

2

∑
j=1

||Fj||Hγ+2+2θ (R)

]
, α ∈ (1,2),

||F0||Hγ (R) � c0

[
||Φ||Hγ+4(R) + ||F1||Hγ+2(R)

]
, α ∈ (0,1].

So, under the theorem’s assumptions, F0 ∈Hγ+2θ (R) (F0 ∈ Hγ(R) if α ∈ (0,1]).
Then using (10) we obtain the inequality (13). This inequality implies that a solution
of the problem is unique and continuously depends on the problem’s data. �



AN INVERSE FRACTIONAL SOURCE PROBLEM 273

REMARK 2. Uniqueness of a solution of the inverse problem (2)–(4) is obtained
for all t0 ∈ (0,T ] in the case α ∈ (0,1] and only under an assumption on t0 in the case
α ∈ (1,2) .

The obtained result can be transferred to the case of the boundary value prob-
lem for a time fractional diffusion or diffusion-wave equation when the corresponding
Sturm–Liouville problem has positive eigenvalues.

Acknowledgement. The authors are grateful to Prof. Mokhtar Kirane and the ref-
erees for their valuable comments.
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