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FRACTIONAL BOUNDARY VALUE PROBLEM
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(Communicated by S. Umarov)

Abstract. We investigate the higher-order fractional boundary value problem:{−Dv
0+u(t) = a(t) f (t,u(t)), 0 < t < 1,

u(0) = u′(0) = u′′(0) = · · · = u(n−2)(0) = 0,
[
Dα

0+u(t)
]
t=1

= 0,

where v and α are two given constants satisfying n− 1 < v � n with n � 3 , 0 � α � n− 2 .
Some results have been obtained in literature in case of 1 � α � n−2 or α = 0 , but no result is
about 0 < α < 1 . In this paper, new properties of the Green function associated with the higher-
order fractional boundary value problem in case of 0 � α � n− 2 are obtained which are the
main contribution of the paper. As an application of these properties, the existence of positive
solutions of the problem is then established. Our results improve on recent works in literature
and fill in their gaps.

1. Introduction

The application of fractional calculus to dynamical system control has been getting
ever increasing attention, which leads to the progress of research in this area. Among
these researches, fractional differential equations have gained importance due to their
applications in various sciences, we refer the reader to [1, 2, 3, 4, 5]. In recent years,
there has been significant development in the existence of solutions [6, 7, 8, 9, 10]
and positive solutions [11, 12, 13, 14, 15, 16, 17] to boundary value problems for the
fractional differential equations.

Comparing with lower-order fractional differential equations, there are few results
about higher-order fractional differential equations. In a recent paper [18], Zhang con-
sidered the following higher-order fractional boundary value problem (Hfbvp for short),{−Dv

0+u(t) = a(t) f (t,u(t)), 0 < t < 1,

u(0) = u′(0) = u′′(0) = · · · = u(n−2)(0) = 0, u(n−2)(1) = 0,
(1)

where n− 1 < v � n with n � 2. By letting u(t) = In−2
0 v(t), Zhang modified Hfbvp

(1) to a lower-order fractional differential equations, and by the properties of the Green
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function corresponding to the modified problem, positive solutions for Hfbvp (1) were
obtained.

In [19], Goodrich studied the following Hfbvp, which is more extensive than Hf-
bvp (1),

{−Dv
0+u(t) = a(t) f (t,u(t)), 0 < t < 1,

u(0) = u′(0) = u′′(0) = · · · = u(n−2)(0) = 0,
[
Dα

0+u(t)
]
t=1

= 0,
(2)

where n− 1 < v � n , n � 3, 1 � α � n− 2. A positive solution was obtained via
Krasnosel’skii fixed point theorem in [19]. As presented in [19], the Green function
G(t,s) corresponding to Hfbvp (2) is

G(t,s) =
1

Γ(v)

{
tv−1(1− s)v−α−1− (t− s)v−1, 0 � s � t � 1,

tv−1(1− s)v−α−1, 0 � t � s � 1.
(3)

In [19], 1 � α � n− 2 was a vital condition in the proof of the properties of G(t,s)
which leads directly to the result that the value of tv−1(1− s)v−α−1 − (t − s)v−1 in-
creases about t for 0 � s � t � 1.

Very recently, Hfbvp (2) has been studied in [20]. With a new upper estimate
for the Green function (3), new criteria for the existence of positive solutions were
established. We can see that the new upper estimate is excellent and distinctive. But,
just as in [19], 1 � α � n−2 was still required (see the proof of Lemma 2.2 and Lemma
2.3) in [20].

If 0 � α < 1 in Hfbvp (2), both the monotonicity of tv−1(1− s)v−α−1− (t− s)v−1

and α −1 � 0 will disappear, and then the properties of the Green function G(t,s) may
be quite different. As far as we known, there was no result about this case up to now.

In fact, when α = 0, Hfbvp (2) turns to{−Dv
0+u(t) = a(t) f (t,u(t)), 0 < t < 1,

u(0) = u′(0) = u′′(0) = · · ·= u(n−2)(0) = 0, u(1) = 0.
(4)

Hfbvp (4) has been studied in [21] (ξi = 0 in [21]). Salem conclude in the proof of
Lemma 2.1 in [21] that

tv−1(1− s)v−1− (t− s)v−1

is decreasing with respect to t for s � t . But, we should point out that the conclusion
is wrong. For example, choose v = 4, and let s = 1

2 . Then, for 1
2 � t � 1, it is obvious

that

G(t,s) =
1

Γ(v)
[
tv−1(1− s)v−1− (t− s)v−1]=

1
Γ(v)

[
−7

8
t3 +

3
2
t2− 3

4
t +

1
8

]

is increasing in [ 1
2 , 4+

√
2

7 ] , and decreasing in [ 4+
√

2
7 ,1] . Therefore, the results in [21]

should be reconsidered.
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Above all, in this paper, we will still study the following Hfbvp:{−Dv
0+u(t) = a(t) f (t,u(t)), 0 < t < 1,

u(0) = u′(0) = u′′(0) = · · · = u(n−2)(0) = 0,
[
Dα

0+u(t)
]
t=1

= 0,
(5)

where v and α are two given constants satisfying n− 1 < v � n with n � 3, 0 �
α � n− 2, Dα

0+ is the Riemann-Liouville fractional derivative, a(t) ∈ L[0,1] is non-
negative, and f : [0,1]× [0,+∞)→ [0,+∞) is continuous. We will get the existence of
positive solutions for the Hfbvp (5) in case of 0 � α � n− 2. Our results fill in gaps
of recent works in literature in case of 0 � α < 1, and improve on works in [18, 19,
20, 21] in case of 1 � α � n− 2. The main results are based upon the properties of
the corresponding Green function. In fact, we not only give but also unify the different
properties of the Green function, which are the primary contribution of the paper.

2. Some preliminaries and the new estimate for the Green function

In this section, some notations and preliminary conclusions are given. Then, we
show the new estimate for the Green function.

DEFINITION 2.1. ([11]) Let v > 0 with v ∈ R . Suppose that y : (0,+∞) → R .
Then the v-th Riemann-Liouville fractional derivative is defined by

Dv
0+y(t) :=

1
Γ(n− v)

dn

dtn

∫ t

0

y(s)
(t− s)v−n+1 ds,

where n = [v]+1, provided that the right hand side term is pointwise defined on t > 0.

LEMMA 2.1. ([19]) Suppose that u(t) is the solution of Hfbvp (5), then

u(t) =
∫ 1

0
G(t,s)a(s) f (t,u(s))ds,

where G(t,s) is defined in (3).

LEMMA 2.2. For 0 � α � n−2 , we have the following properties.
(i) G(t,s) is continuous on (t,s) ∈ I× I , where I = [0,1];
(ii) G(t,s) � 0 for any (t,s) ∈ I× I .

Proof. The conclusions are obvious by (3). �

THEOREM 2.1. For 0 � α < 1 , the following properties hold.
(i) For any s ∈ (0,1) ,

max
t∈I

G(t,s) = G(t0,s) =
sv−1(1− s)v−α−1

Γ(v)
[
1− (1− s)

v−α−1
v−2

]v−2 > 0,
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where t0 = s

1−(1−s)
v−α−1

v−2
;

(ii) For any (t,s)∈ I×I , G(t,s) � ρ(t,s)G(t0,s)� ρ̃(t)G(t0,s) = ρ̃(t)max
t∈I

G(t,s) ,

where

ρ(t,s) =

⎧⎪⎪⎨
⎪⎪⎩

tv−1, 0 � t < t0 =
s

1− (1− s)
v−α−1

v−2

� 1,

(1− t), 1 � t � t0 =
s

1− (1− s)
v−α−1

v−2

� 0,

and

ρ̃(t) =

{
tv−1, 0 � t � t1 � 1,

(1− t), 1 � t � t1 � 0,

where t1 is the unique solution to tv−1 = 1− t .

Proof. (i) For any s ∈ (0,1) , when t � s , by (3),

Γ(v)G′
t(t,s) = (v−1)tv−2

[
(1− s)v−α−1−

(
1− s

t

)v−2
]{� 0, t � t0,

� 0, t � t0,
(6)

where t0 =
s

1− (1− s)
v−α−1

v−2

. Since 0 � α < 1 and v > 3, we get v−α−1
v−2 > 1 and thus

s < 1− (1− s)
v−α−1

v−2 < 1, (7)

which means s < t0 < 1. So

max
t∈[s,1]

G(t,s) = G(t0,s) =
sv−1(1− s)v−α−1

Γ(v)
[
1− (1− s)

v−α−1
v−2

]v−2 > 0. (8)

When t � s , since
[
1− (1− s)

v−α−1
v−2

]v−2
< 1, we get by (3) that

max
t∈[0,s]

G(t,s) =
sv−1(1− s)v−α−1

Γ(v)
<

sv−1(1− s)v−α−1

Γ(v)
[
1− (1− s)

v−α−1
v−2

]v−2 = G(t0,s). (9)

(8) and (9) show that (i) of Theorem 2.1 is true.
(ii) For any s∈ (0,1) , when t ∈ [t0,1](t0 > s) , we know (1−s)v−α−1 �

(
1− s

t

)v−2

by (6). Then we have by (3) that

Γ(v)G′′
tt (t,s) = (v−1)(v−2)

[
tv−3(1− s)v−α−1− (t− s)v−3]

= (v−1)(v−2)tv−3
[
(1− s)v−α−1− (1− s

t
)v−3

]
= (v−1)(v−2)tv−3

[
(1− s)v−α−1− (1− s

t
)(v−2) v−3

v−2

]
� (v−1)(v−2)tv−3

[
(1− s)v−α−1− (1− s)(v−α−1) v−3

v−2

]

= (v−1)(v−2)tv−3(1− s)v−α−1

[
1− 1

(1− s)
v−α−1

v−2

]
� 0,
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which means G(t,s) is concave about t on [t0,1] .
For any t ∈ [t0,1] , by the concavity of G(t,s) and the fact that G(1,s) = (1−

s)v−α−1− (1− s)v−1 > 0, we have

G(t,s) � G(t0,s)−G(1,s)
t0−1

(t−1)+G(1,s)

=
G(t0,s)
1− t0

(1− t)+
t− t0
1− t0

G(1,s)

� G(t0,s)(1− t).

(10)

For any t ∈ [s, t0] , we know (1− s)v−α−1 � (1− s
t )

v−2 by (6). Then we have by
(3) that,

Γ(v)G(t,s) = tv−1(1− s)v−α−1− (t− s)v−1

= tv−1
[
(1− s)v−α−1−

(
1− s

t

)v−1
]

= tv−1
[
(1− s)v−α−1−

(
1− s

t

)(v−2) v−1
v−2
]

� tv−1
[
(1− s)v−α−1− (1− s)(v−α−1) v−1

v−2

]

= tv−1Γ(v)G(t0,s)

(
1− (1− s)

v−α−1
v−2

s

)v−1

.

(11)

From (7), we know 1−(1−s)
v−α−1

v−2

s � 1. Therefore,

(
1− (1− s)

v−α−1
v−2

s

)v−1

� 1. (12)

Substituting (12) into (11), we get

G(t,s) � tv−1G(t0,s), t ∈ [s,t0]. (13)

For any t ∈ [0,s] , we have

Γ(v)G(t,s) = tv−1(1− s)v−α−1

= tv−1Γ(v)G(t0,s)

(
1− (1− s)

v−α−1
v−2

)v−2

sv−1

= tv−1Γ(v)G(t0,s)

(
1− (1− s)

v−α−1
v−2

s

)v−1

· 1

1− (1− s)
v−α−1

v−2

.

(14)

Substituting (7) and (12) into (14), we get

G(t,s) � tv−1G(t0,s), t ∈ [0,s]. (15)
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Let

ρ(t,s) =

⎧⎨
⎩

tv−1, 0 � t < t0 = s

1−(1−s)
v−α−1

v−2
< 1,

(1− t), 1 � t � t0 = s

1−(1−s)
v−α−1

v−2
> 0.

Considering the continuity of G(t,s) , we conclude from (10), (13) and (15) that

G(t,s) � ρ(t,s)G(t0,s),(t,s) ∈ I× I.

Obviously, ρ(t,s) is a function of two variables. Since tv−1 is increasing and 1− t is
decreasing on I respectively, we know that tv−1 = 1− t has an unique solution t1 on
I . Let

ρ̃(t) =

{
tv−1, 0 � t � t1 � 1,

(1− t), 1 � t � t1 � 0,

then ρ(t,s) � ρ̃(t),∀(t,s) ∈ I× I , which ends the proof. �

THEOREM 2.2. For 1 � α � n−2 , the following properties hold:
(i) For any s ∈ (0,1) , max

t∈I
G(t,s) = G(1,s);

(ii) For any (t,s) ∈ I× I , G(t,s) � ρ̃(t)G(1,s) = ρ̃(t)max
t∈I

G(t,s) .

Proof. (i) For any s ∈ (0,1) , when t � s , by (3),

Γ(v)G(t,s) = tv−1(1− s)v−α−1− (t− s)v−1,

and thus

Γ(v)G′
t(t,s) = (v−1)tv−2

[
(1− s)v−α−1−

(
1− s

t

)v−2
]
.

Considering 1 � α � n−2, i.e., 0 � v−α −1 � v−2 and (1−s) �
(
1− s

t

)
, we know

(1− s)v−α−1−
(
1− s

t

)v−2
� 0,

which means that G′
t(t,s) � 0, and thus

max
t∈[s,1]

G(t,s) = G(1,s) =

[
(1− s)v−α−1− (1− s)v−1

]
Γ(v)

> 0. (16)

When t � s , since α � 1 and v � 3, we get (1− s)α + sv−1 � 1− s+ s = 1, i.e.,

sv−1 � 1− (1− s)α,

multiplying (1− s)v−α−1 on both sides in above inequality, we get

sv−1(1− s)v−α−1 � (1− s)v−α−1− (1− s)v−1.
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Combining G(t,s) = tv−1(1−s)v−α−1

Γ(v) � sv−1(1−s)v−α−1

Γ(v) , we have

max
t∈[0,s]

G(t,s) � sv−1(1− s)v−α−1

Γ(v)
�
[
(1− s)v−α−1− (1− s)v−1

]
Γ(v)

= G(1,s). (17)

From (16) and (17), we obtain that max
t∈[0,1]

G(t,s) = G(1,s).

(ii) For any s ∈ (0,1) , when t ∈ [s,1] ,

G(t,s) =
tv−1(1− s)v−α−1− (t− s)v−1

Γ(v)

= tv−1 (1− s)v−α−1− (1− s
t

)v−1

Γ(v)G(1,s)
G(1,s)

= tv−1 (1− s)v−α−1− (1− s
t

)v−1

(1− s)v−α−1− (1− s)v−1 G(1,s)

� tv−1G(1,s).

(18)

When t ∈ [0,s] ,

G(t,s) =
tv−1(1− s)v−α−1

Γ(v)

= tv−1G(1,s)
(1− s)v−α−1

(1− s)v−α−1− (1− s)v−1

� tv−1G(1,s).

(19)

From (18) and (19), we have

G(t,s) � tv−1G(1,s), ∀(t,s) ∈ I× I. (20)

Furthermore, we easily see that tv−1 � ρ̃(t) , ∀t ∈ I, which is combined with (20) to
obtain

G(t,s) � ρ̃(t)G(1,s) = ρ̃(t)max
t∈I

G(t,s), (t,s) ∈ I× I. �

THEOREM 2.3. For 0 � α � n−2 , we have

min
[θ1,θ2]

G(t,s) � k0 max
t∈I

G(t,s), ∀s ∈ I,

where θ1 and θ2 are two any constants with 0 < θ1 < θ2 < 1 , k0 = min{θ v−1
1 ,1−θ2} .

Proof. For any two constants θ1 and θ2 with 0 < θ1 < θ2 < 1, we have by (ii) of
Theorem 2.1 and Theorem 2.2 that

min
t∈[θ1,θ2]

G(t,s) � min
t∈[θ1,θ2]

{ρ̃(t)max
t∈I

G(t,s)}

= min{θ v−1
1 ,1−θ2}max

t∈I
G(t,s) = k0 max

t∈I
G(t,s). �
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Let E = C[0,1] be endowed with the maximum norm ‖u‖ = max
t∈I

|u(t)| , then E

is a Banach space. Let C+[0,1] = {u|u ∈ E,u(t) � 0, t ∈ I} . u is called a positive
solution of the Hfbvp (5) if u ∈C+[0,1] satisfies the Hfbvp (5) and ‖u‖ �= 0. For any
two constants θ1 and θ2 with 0 < θ1 < θ2 < 1, we define a cone P ⊆ E by

P =
{

u ∈ E

∣∣∣∣u(t) � 0, min
t∈[θ1,θ2]

u(t) � k0‖u‖
}

,

where k0 = min{θ v−1
1 ,1−θ2}. We define an operator T : C+[0,1]→ E by

(Tu)(t) =
∫ 1

0
G(t,s)a(s) f (s,u(s))ds. (21)

By Lemma 2.1, we know a fixed point u ∈ P of T with ‖u‖ �= 0 must be a positive
solution of the Hfbvp (5).

LEMMA 2.3. T :C+[0,1]→C+[0,1] is completely continuous and T(C+[0,1])⊆
P.

Proof. Let u∈C+[0,1] , then (Tu)(t) � 0 is obvious. The operator T :C+[0,1]→
C+[0,1] is completely continuous by an application of the Ascoli-Arzela theorem.

For u ∈C+[0,1] , we know by Theorem 2.3 that, for 0 < θ1 < θ2 < 1,

min
t∈[θ1,θ2]

(Tu)(t) = min
t∈[θ1,θ2]

∫ 1
0 G(t,s)a(s) f (s,u(s))ds

�
∫ 1
0 min

t∈[θ1,θ2]
G(t,s)a(s) f (s,u(s))ds

� k0
∫ 1
0 max

t∈I
G(t,s)a(s) f (s,u(s))ds

� k0 max
t∈I

∫ 1
0 G(t,s)a(s) f (s,u(s))ds

= k0 max
t∈I

(Tu)(t) = k0‖Tu‖,

(22)

which means (Tu) ∈ P , and the proof ends. �

DEFINITION 2.2. A map θ is said to be a nonnegative continuous concave func-
tion on a cone P of a Banach space E , provided that θ : P → [0,∞) is continuous
and

θ (tx+(1− t)y) � tθ (x)+ (1− t)θ (y), ∀x,y ∈ P, 0 � t � 1.

THEOREM 2.4. ([11]) Let P be a cone of a Banach space E . Assume Ω1 and
Ω2 are two bounded open balls of E at the origin with Ω1 ⊂ Ω2 . Suppose T : P∩
(Ω2 \Ω1) → P is a completely continuous operator such that either

(i) ‖Tu‖ � ‖u‖ , ∀u ∈ P∩∂Ω1 and ‖Tu‖ � ‖u‖ , ∀u ∈ P∩∂Ω2 or
(ii) ‖Tu‖ � ‖u‖ , ∀u ∈ P∩∂Ω1 and ‖Tu‖ � ‖u‖,∀u∈ P∩∂Ω2 holds.
Then T has a fixed point in P∩ (Ω2 \Ω1) .
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THEOREM 2.5. ([11]) Let P be a cone of a Banach space E . Pc = {x∈ P | ‖x‖<
c} . θ is a nonnegative continuous concave function on P such that θ (x) � ‖x‖ for
any x ∈ Pc . Let P(θ ,b,d) = {x ∈ P|b � θ (x),‖x‖ � d} . Suppose A : Pc −→ Pc is a
completely continuous operator and there exist constants 0 < a < b < d � c such that

(c1) {x ∈ P(θ ,b,d) | θ (x) > b} �= /0 ( /0 means an empty set) and θ (Ax) > b for
any x ∈ P(θ ,b,d);

(c2) ‖Ax‖ < a for any x � a;
(c3) For any x ∈ P(θ ,b,c) with ‖Ax‖ > d , θ (Ax) > b.
Then A has at least three fixed points x1 , x2 , x3 with ‖x1‖ < a, b < θ (x2) ,

a < ‖x3‖ with θ (x3) < b.

3. Existence of positive solutions for the Hfbvp (5)

In this section, we impose conditions on f which allow us to establish some exis-
tence results of positive solutions for the Hfbvp (5).

Throughout this section, we denote

M =
(∫ 1

0
max
t∈I

G(t,s)a(s)ds

)−1

and N =
(∫ θ2

θ1

max
t∈I

G(t,s)a(s)ds

)−1

.

THEOREM 3.1. Assume that there exist constants ρ2 and ρ1 with ρ2 > ρ1 > 0
such that

(B1) inf
u∈S

∫ 1
0 max

t∈I
G(t,s)a(s) f (s,u(s))ds � ρ1;

(B2) sup
u∈S

∫ 1
0 max

t∈I
G(t,s)a(s) f (s,u(s))ds � ρ2 ,

where S = {u ∈C+[0,1]|ρ̃(t)ρ1 � u(t) � ρ2,∀t ∈ I} . Then the Hfbvp (5) has at least
one positive solution u ∈ S .

Proof. For any u∈ S , from (ii) of Theorem 2.1 and Theorem 2.2, combining (B1)
and (B2) , we see that

(Tu)(t) � ρ̃(t)
∫ 1

0
max
t∈I

G(t,s)a(s) f (s,u(s))ds � ρ̃(t)ρ1

and

(Tu)(t) �
∫ 1

0
max
t∈I

G(t,s)a(s) f (s,u(s))ds � ρ2,

which means that T (S) ⊆ S . The conclusion follows from Schauder ′ s fixed point the-
orem immediately. �

THEOREM 3.2. Assume that there exist constants r2 , r1 , θ1 and θ2 with r2 >
r1 > 0 and 0 < θ1 < θ2 < 1 such that

(H1) f (t,u) � Mr2 for any (t,u) ∈ [0,1]× [0,r2];
(H2) f (t,u) � 1

k0
Nr1 for any (t,u) ∈ [θ1,θ2]× [k0r1,r1] ,

where k0 = min{θ v−1
1 ,1−θ2} . Then the Hfbvp (5) has at least one positive solution u

with r1 � ‖u‖� r2 .



132 D. MA

Proof. Let Ω1 = {u∈ P|‖u‖< r1} . For u∈ ∂Ω1 , we have k0r1 � u(s) � r1,∀s ∈
[θ1,θ2] . It follows from Theorem 2.3 and (H2) that, for any t ∈ [θ1,θ2] ,

(Tu)(t) =
∫ 1
0 G(t,s)a(s) f (s,u(s))ds

�
∫ 1
0 k0 max

t∈I
G(t,s)a(s) f (s,u(s))ds

�
∫ θ2

θ1
k0 max

t∈I
G(t,s)a(s) f (s,u(s))ds

�
∫ θ2

θ1
k0 max

t∈I
G(t,s)a(s) 1

k0
Nr1ds = r1 = ‖u‖,

which means that
‖Tu‖ � ‖u‖, ∀ u ∈ P∩∂Ω1.

Let Ω2 = {u ∈ P|‖u‖< r2} . For u ∈ ∂Ω2 , we have 0 � u(s) � r2,∀s ∈ [0,1] . We
have by (H1) that

‖Tu‖ = max
0�t�1

∫ 1
0 G(t,s)a(s) f (s,u(s))ds

�
∫ 1
0 max

t∈I
G(t,s)a(s)Mr2ds = r2 = ‖u‖,

which means that
‖Tu‖ � ‖u‖, ∀ u ∈ P∩∂Ω2.

Therefore, by (ii) of Theorem 2.4, we complete the proof. �

THEOREM 3.3. Assume that there exist constants a, b , c , θ1 and θ2 with 0 <
a < b < c and 0 < θ1 < θ2 < 1 such that

(A1) f (t,u) < Ma for any (t,u) ∈ [0,1]× [0,a];
(A2) f (t,u) > 1

k0
Nb for any (t,u) ∈ [θ1,θ2]× [b,c];

(A3) f (t,u) � Mc for any (t,u) ∈ [0,1]× [0,c] ,
where k0 = min{θ v−1

1 ,1−θ2} . Then the Hfbvp (5) has at least three positive solutions
u1,u2 and u3 with

max
t∈I

|u1(t)| < a, b < min
t∈[θ1,θ2]

|u2(t)| < max
t∈I

|u2(t)| � c,

a < max
t∈I

|u3(t)| � c, min
t∈[θ1,θ2]

|u3(t)| < b.

Proof. We will show that all the conditions of Theorem 2.5 are satisfied.
We first define a function γ on the cone P by γ(u) = min

t∈[θ1,θ2]
u(t) . It is easy to

verify that γ is a nonnegative continuous concave function. For any u ∈ Pc , we get
0 � u(t) � ‖u‖ � c , then by (A3) ,

‖Tu‖ = max
t∈I

∫ 1
0 G(t,s)a(s) f (s,u(s))ds

�
∫ 1
0 max

t∈I
G(t,s)a(s)Mcds = c.

Hence T : Pc → Pc is completely continuous.
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Next, we check condition (c1) of Theorem 2.5. We choose u(t) = b+c
2 , t ∈ [0,1] .

It is easy to see that u(t) ∈ P(γ,b,c) and γ(u) = b+c
2 > b , which means that {u ∈

P(γ,b,c)|γ(u) > b} �= /0 . For any u∈ P(γ,b,c) , we have b � u(t) � c , t ∈ [θ1,θ2] , and
then we have by Theorem 2.3 and assumption (A2) that

γ(Au) = min
t∈[θ1,θ2]

∫ 1
0 G(t,s)a(s) f (s,u(s))ds

�
∫ 1
0 min

t∈[θ1,θ2]
G(t,s)a(s) f (s,u(s))ds

�
∫ 1
0 k0 max

t∈I
G(t,s)a(s) f (s,u(s))ds

�
∫ θ2

θ1
k0 max

t∈I
G(t,s)a(s) f (s,u(s))ds

>
∫ θ2

θ1
k0 max

t∈I
G(t,s)a(s) 1

k0
Nbds = b.

(c2) of Theorem 2.5 is obvious by (A1) .
(c3) of Theorem 2.5 is also obvious since d = c , and thus (c1) implies (c3) here.
By Theorem 2.5, the Hfbvp (5) has at least three positive solutions u1 , u2 and u3

satisfying

max
t∈I

|u1(t)| < a, b < min
t∈[θ1,θ2]

|u2(t)| < max
t∈I

|u2(t)| � c,

a < max
t∈I

|u3(t)| � c, min
t∈[θ1,θ2]

|u3(t)| < b. �
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