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SOLVABILITY FOR A SYSTEM OF NONLINEAR FRACTIONAL

HIGHER–ORDER THREE–POINT BOUNDARY VALUE PROBLEM
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Abstract. Existence of eigenvalues yielding single and multiple positive solutions for a system
of higher order fractional differential equations along with boundary conditions is established.
The results are obtained by the use of a Guo-Krasnosel’skii fixed point theorem in cones.

1. Introduction

In recent years, boundary value problems of nonlinear fractional differential equa-
tions have been studied by many researchers. Fractional differential equations appear
naturally in various fields of science and engineering, and constitute an important field
of research. As a matter of fact, fractional derivatives provide an excellent tool for the
description of memory and hereditary properties of various materials and processes
[17, 29, 30]. For more details of some recent theoretical results on fractional dif-
ferential equations and their applications, we refer the reader to [4, 5, 7, 8, 21, 31].
Some recent work on boundary value problems of fractional order can be found in
[12, 14, 15, 22, 24, 25, 27, 32] and the references therein.

In this paper, we consider the system of nonlinear fractional differential equations

Dα
a+u(t)+ λ f (t,u(t),v(t)) = 0, t ∈ (a,b), n−1 < α � n,

Dβ
a+v(t)+ μg(t,u(t),v(t)) = 0, t ∈ (a,b), m−1 < β � m,

(1)

with the boundary conditions

u(i)(a) = 0, 0 � i � n−2, u(α1)(b) = ξu(α1)(η), 1 � α1 � α −2, (but fixed)

v( j)(a) = 0, 0 � j � m−2, v(β1)(b) = ξ v(β1)(η), 1 � β1 � β −2, (but fixed)
(2)

where Dα
a+ and Dβ

a+ are denote the Riemann-Liouville fractional derivatives of order
α and β respectively, n− 1 < α � n , m− 1 < β � m , n,m ∈N ,n,m � 3, 1 � α1 �
α −2, 1 � β1 � β −2 are fixed integers and ξ ∈ (0,∞) , η ∈ (a,b) are constants with
0 < ξ (η −a)α−α1−1 < (b−a)α−α1−1 .
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The aim of this paper is to establish some simple criteria for the existence of single
and multiple solutions of the system (1)–(2) in explicit intervals for λ and μ . By a
positive solution of problem (1)–(2) we mean a pair of functions (u,v) ∈ C([a,b])×
C([a,b]) satisfying (1) and (2) with u(t) � 0, v(t) � 0 for all t ∈ [a,b] and (u,v) �=
(0,0).

The following assumptions are made to establish our results.
(H1) The functions f and g are continuous and nonnegative. f (t,u,v) �

p1(t)q1(t,u,v), g(t,u,v) � p2(t)q2(t,u,v) , (t,u,v)∈ [a,b]× [0,∞)× [0,∞), where qi ∈
C

[
[a,b]× [0,∞)× [0,∞), [0,∞)

]
, and pi ∈C

[
[a,b], [0,∞)

]
satisfy

∫ b
a pi(s)ds < ∞ , i =

1,2.
(H2) The limits

f0 = lim
u+v→0

min
t∈[a,b]

f (t,u,v)
u+ v

, f∞ = lim
u+v→∞

min
t∈[a,b]

f (t,u,v)
u+ v

,

g0 = lim
u+v→0

min
t∈[a,b]

g(t,u,v)
u+ v

, g∞ = lim
u+v→∞

min
t∈[a,b]

g(t,u,v)
u+ v

,

qi0 = lim
u+v→0

max
t∈[a,b]

qi(t,u,v)
u+ v

, qi∞ = lim
u+v→∞

max
t∈[a,b]

qi(t,u,v)
u+ v

,

exist with f0, f∞,g0,g∞,qi0,qi∞ ∈ [0,∞), i = 1,2.
The rest of the paper is organized as follows.In Section 2, we present the defini-

tions, some lemmas from the theory of fractional calculus and also state Krasnosel’skii
fixed point theorem. In Section 3, we construct the Green’s function for the fractional
order boundary value problem and estimate the bounds for the Green’s function. Later,
we express the solution of the boundary value problem (1)–(2) into an equivalent inte-
gral equation. In Section 4, we discuss the existence of a single positive solution of the
system (1)–(2). The intervals in which the parameters λ ,μ can guarantee the existence
of a positive solution are obtained. In Section 5, we study the existence conditions of
at least two positive solutions of the system (1)–(2). Finally, we give an example as an
application.

2. Preliminaries

In this section, we present here the definitions, some lemmas from the theory of
fractional calculus and also state Krasnosel’skii fixed point theorem.

DEFINITION 1. The (left-sided) fractional integral of order α > 0 of a function
f : (0,∞) → R is given by

(Iα
0+ f )(t) =

1
Γ(α)

∫ t

0
(t − s)α−1 f (s)ds, t > 0,

provided the right-hand side is pointwise defined on (0,∞), where Γ(α) is the Euler
gamma function defined by Γ(α) =

∫ ∞
0 tα−1e−t dt , α > 0.
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DEFINITION 2. The Riemann-Liouville fractional derivative of order α � 0 for a
function f : (0,∞) → R is given by

(Dα
0+ f )(t) =

( d
dt

)n
(In−α

0+ f )(t) =
1

Γ(n−α)

( d
dt

)n ∫ t

0

f (s)
(t− s)α−n+1 ds, t > 0,

where n = [α]+1, provided that the right-hand side is pointwise defined on (0,∞).
The notation [α] stands for the largest integer not greater than α . We also de-

note the Riemann-Liouville fractional derivative of f by Dα
0+ f (t). If α = m ∈ N then

Dm
0+ f (t) = f (m)(t) for t > 0, and if α = 0 then D0

0+ f (t) = f (t) for t > 0.

LEMMA 1. ([17]) a) If α > 0 , β > 0 and f ∈ Lp(0,1) , (1 � p � ∞), then the

relation (Iα
0+Iβ

0+ f )(t) = (Iα+β
0+ f )(t) is satisfied at almost every point t ∈ (0,1). If α +

β > 1, then the above relation holds at any point of [0,1].
b) If α > 0 and f ∈ Lp(0,1) , (1 � p � ∞), then the relation (Dα

0+Iα
0+ f )(t) = f (t)

holds almost everywhere on (0,1).
c) If α > β > 0 and f ∈ Lp(0,1) , (1 � p � ∞), then the relation (Dβ

0+Iα
0+ f )(t) =

(Iα−β
0+ f )(t) holds almost everywhere on (0,1).

LEMMA 2. ([17]) Let α > 0 and n = [α]+1 for α /∈ N and n = α for α ∈ N;
that is, n is the smallest integer greater than or equal to α . Then, the solutions of the
fractional differential equation Dα

0+u(t) = 0 , 0 < t < 1, are

u(t) = c1t
α−1 + c2t

α−2 + . . .+ cnt
α−n, 0 < t < 1,

where c1,c2, . . . ,cn are arbitrary real constants.

LEMMA 3. ([17]) Let α > 0 , n be the smallest integer greater than or equal to α
(n−1 < α � n) and y ∈ L1(0,1). The solutions of the fractional equation Dα

0+u(t)+
y(t) = 0 , 0 < t < 1, are

u(t) =
−1

Γ(α)

∫ t

0
(t − s)α−1y(s)ds+ c1t

α−1 + . . .+ cnt
α−n, 0 < t < 1,

where c1,c2, . . . ,cn are arbitrary real constants.

Proof. By Lemma 1 b), the equation Dα
0+u(t)+ y(t) = 0 can be written as

Dα
0+u(t)+Dα

0+(Iα
0+y)(t) = 0 or Dα

0+(u+ Iα
0+y)(t) = 0.

By using Lemma 2, the solutions for the above equation are

u(t)+ Iα
0+y(t) = c1t

α−1 + . . .+ cnt
α−n ⇔

u(t) = −Iα
0+y(t)+ c1t

α−1 + . . .+ cnt
α−n

=
−1

Γ(α)

∫ t

0
(t− s)α−1y(s)ds+ c1t

α−1 + . . .+ cnt
α−n, 0 < t < 1,

where c1,c2, . . . ,cn are arbitrary real constants. �
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THEOREM 1. [Krasnosel’skii] Let X be a Banach space, K ⊆ X be a cone, and
suppose that Ω1 , Ω2 are open subsets of X with 0 ∈ Ω1 and Ω1 ⊂ Ω2 . Suppose
further that T : K ∩ (Ω2 \Ω1) → K is completely continuous operator such that either

(i) ‖ Tu ‖�‖ u ‖ , u ∈ K∩∂Ω1 and ‖ Tu ‖�‖ u ‖ , u ∈ K ∩∂Ω2, or

(ii) ‖ Tu ‖�‖ u ‖ , u ∈ K∩∂Ω1 and ‖ Tu ‖�‖ u ‖ , u ∈ K ∩∂Ω2

holds. Then T has a fixed point in K∩ (Ω2 \Ω1) .

3. Green’s function and bounds

In this section, we construct the Green function for the homogeneous BVP corre-
sponding to (1)–(2) and estimate the bounds for the Green function which are needed
to establish the main results.

−Dα
a+u(t) = 0, a < t < b, (3)

u(i)(a) = 0, 0 � i � n−2, u(α1)(b) = ξu(α1)(η) (4)

LEMMA 4. If y ∈C[a,b], then the fractional order BVP

Dα
a+u(t)+ y(t) = 0, a < t < b, (5)

with (4), has a unique solution, u(t) =
∫ b
a Gλ (t,s)y(s)ds where Gλ (t,s) is the Green

function for the BVP (5)–(4) and is given by

Gλ (t,s) = G1(t,s)+
ξ (t−a)α−1

[(b−a)α−α1−1− ξ (η −a)α−α1−1]
G2(η ,s) (6)

G1(t,s) =
1

Γ(α)

⎧⎨
⎩

(t−a)α−1(b−s)α−α1−1

(b−a)α−α1−1 − (t− s)α−1, a � s � t � b,

(t−a)α−1(b−s)α−α1−1

(b−a)α−α1−1 , a � t � s � b,
(7)

G2(η ,s) =
1

Γ(α)

⎧⎨
⎩

(η−a)α−α1−1(b−s)α−α1−1

(b−a)α−α1−1 − (η − s)α−α1−1, a � s � η ,

(η−a)α−α1−1(b−s)α−α1−1

(b−a)α−α1−1 , η � s � b.
(8)

Proof. Assume that u ∈C[α ]+1[a,b] is a solution of fractional order BVP (5)–(4)
and is uniquely expressed as Iα

a+Dα
a+u(t) = −Iα

a+y(t) , so that

u(t) =
−1

Γ(α)

∫ t

a
(t− s)α−1y(s)ds+ c1(t −a)α−1 + c2(t −a)α−2 + · · ·+ cn(t−a)α−n.

From u(i)(a) = 0, 0 � i � n−2, we have cn = cn−1 = cn−2 = · · · = c2 = 0. Then

u(t) =
−1

Γ(α)

∫ t

a
(t− s)α−1y(s)ds+ c1(t−a)α−1,
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u(α1)(t) = c1

α1

∏
i=1

(α − i)(t−a)α−α1−1 −
α1

∏
i=1

(α − i)
1

Γ(α)

∫ t

a
(t− s)α−α1−1y(s)ds.

From u(α1)(b) = ξu(α1)(η), we have

c1

α1

∏
i=1

(α − i)(b−a)α−α1−1−
α1

∏
i=1

(α − i)
1

Γ(α)

∫ b

a
(b− s)α−α1−1y(s)ds

= ξ
[
c1

α1

∏
i=1

(α − i)(η −a)α−α1−1−
α1

∏
i=1

(α − i)
1

Γ(α)

∫ η

a
(η − s)α−α1−1y(s)ds

]
.

Therefore

c1 =
1

Γ(α)
[
(b−a)α−α1−1 − ξ (η −a)α−α1−1

]
×

[∫ b

a
(b− s)α−α1−1y(s)ds− ξ

∫ ξ

a
(η − s)α−α1−1y(s)ds

]

=
1

Γ(α)
[
(b−a)α−α1−1

] ∫ b

a
(b− s)α−α1−1y(s)ds

+
ξ (η−a)α−α1−1

Γ(α)(b−a)α−α1−1
[
(b−a)α−α1−1−ξ (η−a)α−α1−1

] ∫ b

a
(b−s)α−α1−1y(s)ds

− ξ

Γ(α)
[
(b−a)α−α1−1− ξ (η −a)α−α1−1

] ∫ η

a
(η − s)α−α1−1y(s)ds

=
1

Γ(α)(b−a)α−α1−1

∫ b

a
(b− s)α−α1−1y(s)ds

+
ξ[

(b−a)α−α1−1− ξ (η −a)α−α1−1
] ∫ b

a
G2(η ,s)y(s)ds.

Thus, the unique solution of (5)–(4) is

u(t) =
−1

Γ(α)

∫ t

a
(t− s)α−1y(s)ds+

(t−a)α−1

Γ(α)(b−a)α−α1−1

∫ b

a
(b− s)α−α1−1y(s)ds

+
ξ (t−a)α−1[

(b−a)α−α1−1 − ξ (η −a)α−α1−1
] ∫ b

a
G2(η ,s)y(s)ds

=
∫ b

a
G1(t,s)y(s)ds+

ξ (t−a)α−1[
(b−a)α−α1−1− ξ (η −a)α−α1−1

] ∫ b

a
G2(η ,s)y(s)ds

=
∫ b

a
Gλ (t,s)y(s)ds

where Gλ (t,s) is given in (6) �
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LEMMA 5. The Green’s function Gλ (t,s) satisfies the following inequalities

(i) Gλ (t,s) � Gλ (b,s) , for all (t,s) ∈ [a,b]× [a,b] ,

(ii) Gλ (t,s) � γ1Gλ (b,s) , for all (t,s) ∈ [η ,b]× [a,b] ,

where γ1 =
(

η−a
b−a

)α−1
.

Proof. The Green’s function G1(t,s) is given (7).
For a � t � s � b,

∂G1(t,s)
∂ t

=
1

Γ(α −1)

[ (t−a)α−2(b− s)α−α1−1

(b−a)α−α1−1

]
� 0. (9)

For a � s � t � b

∂G1(t,s)
∂ t

=
1

Γ(α −1)

[ (t−a)α−2(b− s)α−α1−1

(b−a)α−α1−1 − (t− s)α−2
]

� 1
Γ(α −1)

[ (t−a)α−2(b− s)α−α1−1− (t− ts)α−2(b−a)α−α1−1

(b−a)α−α1−1

]
� 0.

Now we prove
G2(η ,s) � 0 s ∈ [a,b]. (10)

In fact, if s � η , obviously, (10) holds. If s � η one has

G2(η ,s) =
1

Γ(α)

[ (η −a)α−α1−1(b− s)α−α1−1

(b−a)α−α1−1 − (η − s)α−α1−1
]

� 1
Γ(α)

[ (η −a)α−α1−1(b− s)α−α1−1− (η −ηs)α−α1−1(b−a)α−α1−1

(b−a)α−α1−1

]
� 0.

That implies that (10) is also true. Therefore, by (6), (9) and (10) we find

∂Gλ (t,s)
∂ t

=
∂G1(t,s)

∂ t
+

(α −1)ξ (t−a)α−2

(b−a)α−α1−1− ξ (η −a)α−α1−1 G2(η ,s) � 0.

Therefore Gλ (t,s) is increasing with respect to t ∈ [a,b]. Hence the inequality (i) is
proved. Now, we establish the inequality (ii).

On the other hand, if s � t then

G1(t,s) =
1

Γ(α)

[ (t−a)α−1(b− s)α−α1−1

(b−a)α−α1−1 − (t− s)α−1
]

=
(t−a)α−1

Γ(α)(b−a)α−1

[ (b−a)α−1(b− s)α−α1−1

(b−a)α−α1−1 − (b− s)α−1
]

+
1

Γ(α)

[ (t−a)α−1(b− s)α−1

(b−a)α−α1−1 − (t− s)α−1
]

� 1
Γ(α)

( t −a
b−a

)α−1[ (b−a)α−1(b− s)α−α1−1

(b−a)α−α1−1 − (b− s)α−1
]

�
( t−a

b−a

)α−1
G1(b,s).
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If t � s, we have

G1(t,s) =
1

Γ(α)

[ (t−a)α−1(b− s)α−α1−1

(b−a)α−α1−1

]

=
(t−a)α−1

Γ(α)(b−a)α−1

[ (b−a)α−1(b− s)α−α1−1

(b−a)α−α1−1 − (b− s)α−1
]

+
1

Γ(α)

[ (t−a)α−1(b− s)α−1

(b−a)α−1

]

� 1
Γ(α)

( t −a
b−a

)α−1[ (b−a)α−1(b− s)α−α1−1

(b−a)α−p−1 − (b− s)α−1
]

�
( t−a

b−a

)α−1
G1(b,s).

Therefore

G1(t,s) �
( t−a

b−a

)α−1
G1(b,s). (11)

From (6) and (11) we have

Gλ (t,s) = G1(t,s)+
ξ (t−a)α−1

[(b−a)α−α1−1− ξ (η −a)α−α1−1]
G2(η ,s)

�
( t −a

b−a

)α−1
G1(b,s)+

ξ (t−a)α−1

[(b−a)α−α1−1− ξ (η −a)α−α1−1]
G2(η ,s)

�
(η −a

b−a

)α−1
Gλ (b,s).

Therefore
Gλ (t,s) � γ1Gλ (b,s) for all (t,s) ∈ [η ,b]× [a,b]

where γ1 =
(

η−a
b−a

)α−1
. Hence the inequality (ii) is proved. �

We can also formulate similar results as Lemma 4–Lemma 5 above, for the frac-
tional boundary value problem,

Dβ
a+v(t)+h(t) = 0, a < t < b, m−1 < β � m, (12)

v( j)(a) = 0, 0 � j � m−2, v(β1)(b) = ξ v(β1)(η), 1 � β1 � β −2, (but fixed) (13)

where m � 3, 1 � β1 � β − 2 is a fixed integer. We denote by Gμ and γ2 the corre-
sponding Green’s function and constant for the problem (12)–(13) defined in a similar
manner as Gλ and γ1 respectively.

By using the Green’s function Gλ and Gμ , our problem (1)–(2) can be written
equivalently as the following nonlinear system of integral equations{

u(t) = λ
∫ b
a Gλ (t,s) f (s,u(s),v(s))ds, a � t � b,

v(t) = μ
∫ b
a Gμ(t,s)g(s,u(s),v(s))ds, a � t � b.
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We consider the Banach space X = C[a,b] with supremum norm ‖ · ‖, and the
Banach space Y = X ×X with the norm ‖ (u,v) ‖=‖ u ‖ + ‖ v ‖ . It is easy to show
that (Y,‖ · ‖) is a real Banach space. We define the cone κ ⊂ Y by

κ =
{

(u,v)∈Y : u(t) � 0, v(t) � 0,∀ t ∈ [a,b] and min
t∈ [η,b]

(u(t)+v(t))� γ ‖ (u,v) ‖
}
,

where γ = min
{

γ1,γ2
}
.

For λ , μ > 0, we define the operators Qλ ,Qμ : Y → X as

Qλ (u,v)(t) = λ
∫ b

a
Gλ (t,s) f (s,u(s),v(s))ds, a � t � b,

Qμ(u,v)(t) = μ
∫ b

a
Gμ(t,s)g(s,u(s),v(s))ds, a � t � b,

and an operator Q : Y → Y as

Q(u,v) =
(
Qλ (u,v),Qμ(u,v)

)
, (u,v) ∈ Y.

It is clear that the existence of a positive solution to the system (1)–(2) is equivalent to
the existence of a fixed points of the operator Q.

LEMMA 6. If (H1) and (H2) hold, then Q : κ → κ is completely continuous.

Proof. By using standard arguments, we can easily show that, the operator Q
is completely continuous, we need only to prove Q(κ) ⊂ κ . Let (u,v) ∈ κ clearly,
Q1(u,v)(t) � 0 and Q2(u,v)(t) � 0 for t ∈ [a,b] . Also, for (u,v) ∈ κ ,

‖ Qλ (u,v)(t) ‖ � λ
∫ b

a
Gλ (b,s) f (s,u(s),v(s))ds,

‖ Qμ(u,v)(t) ‖ � μ
∫ b

a
Gμ(b,s)g(s,u(s),v(s))ds.

In fact, for any (t,s) ∈ [η ,b]× [a,b], we have from Lemma 5

min
t∈[η,b]

[
Qλ (u,v)(t)+Qμ(u,v)(t)

]

= min
t∈[η,b]

[
λ

∫ b

a
Gλ (t,s) f (s,u(s),v(s))ds+ μ

∫ b

a
Gμ(t,s)g(s,u(s),v(s))ds

]

� λ γ
∫ b

a
Gλ (b,s) f (s,u(s),v(s))ds+ μγ

∫ b

a
Gμ(b,s)g(s,u(s),v(s))ds

= γ ‖ Qλ (u,v) ‖ +γ ‖ Qμ(u,v) ‖= γ ‖ Q(u,v) ‖,
hence,

min
t∈[η,b]

[
Qλ (u,v)(t)+Qμ(u,v)(t)

]
� γ ‖ Q(u,v) ‖ .
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Therefore, Q(κ) ⊂ κ . Let (u,v) ∈ κ and ε > 0 be given. By the continuity of f and
g , there exists δ > 0 such that

| f (t,u,v)− f (t,u′,v′) |< ε, | g(t,u,v)−g(t,u′,v′) |< ε,

whenever | u−u′ |< δ , | v− v′ |< δ for all t ∈ [a,b].

| Qλ (u,v)(t)−Qλ (u,v)(t) | = λ
∫ b

a
Gλ (t,s) | f (s,u,v)− f (s,u′,v′) | ds

� ελ
∫ b

a
Gλ (t,s)ds.

Thus, ‖Qλ (u,v)(t)−Qλ (u′,v′)(t) ‖� ελ
∫ b
a Gλ (t,s)ds . In a similar manner ‖Qμ(u,v)(t)

−Qμ(u′,v′)(t) ‖� εμ
∫ b
a Gμ(t,s)ds and Q is continuous. Now, let {(un,vn)} be a

bounded sequence in κ . Since f and g are continuous, there exists N > 0 such that
| f (t,un,vn) |� N , | g(t,un,vn) |� N for all un,vn ∈ [0,∞) . Then, for each t ∈ [a,b] and
for each n ,

| Qλ (un,vn)(t) | =| λ
∫ b

a
Gλ (t,s) f (s,un,vn)ds |

� λ
∫ b

a
| Gλ (b,s) || f (s,un,vn) | ds

� Nλ
∫ b

a
Gλ (b,s)ds.

In a similar manner | Qμ(un,vn)(t) |� Nμ
∫ b
a Gμ(b,s)ds . By choosing successive sub-

sequences, there exists a subsequence {Q(unj ,vn j )} which converges uniformly on
[a,b] . Hence Q is completely continuous. �

If y∈ κ is a fixed point of Q , then y satisfies (6) and hence y is a positive solution
of the BVP (1)–(2). We seek the fixed points of the operator Q in the cone κ .

4. Existence results

In this section, we discuss the existence of at least one positive solution to the
system (1)–(2). We use the following notation for simplicity.

A1 =
∫ b

a
Gλ (b,s)p1(s)ds, B1 =

∫ b

η
Gλ (b,s)ds,

A2 =
∫ b

a
Gμ(b,s)p2(s)ds, B2 =

∫ b

η
Gμ(b,s)ds.

Our approach is based on the following Guo-Krasnosel’skii fixed point theorem [11,
16].

THEOREM 2. Suppose (H1),(H2) hold, and 0 < δ < 1 then we have the follow-
ing results:
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(1) If 0 < q10, f∞,q20,g∞ < ∞, A1q10 < δγ2B1 f∞, then for each λ ∈
(

1
γ2B1 f∞

, δ
A1q10

)
and μ ∈

(
0, 1−δ

A2q20

)
, the system (1)–(2)has at least one positive solution.

(2) If 0 < q10, f∞,q20,g∞ < ∞, A2q20 < (1−δ )γ2B2g∞, then for each λ ∈
(
0, δ

A1q10

)
and μ ∈

(
1

γ2B2g∞
, 1−δ

A2q20

)
, the system (1)–(2) has at least one positive solution.

Proof. We only prove case (1) . The other case can be proved similarly. We
construct the sets Ω1 and Ω2 in order to apply Theorem 2. Let

λ ∈
( 1

γ2B1 f∞
,

δ
A1q10

)
, μ ∈

(
0,

1− δ
A2q20

)
,

and we choose ε > 0 such that

1
γ2B1( f∞ − ε)

� λ � δ
A1(q10 + ε)

, 0 < μ � 1− δ
A2(q20 + ε)

.

By the definition of q10 and q20, there exists R1 > 0 such that q1(t,u,v) � (q10 +
ε)(u+ v) , q2(t,u,v) � (q20 + ε)(u+ v), for u+ v ∈ [0,R1]. Choosing (u,v) ∈ κ with
‖ (u,v) ‖= R1 we have

Qλ (u,v)(t) = λ
∫ b

a
Gλ (t,s) f (s,u(s),v(s))ds

� λ
∫ b

a
Gλ (b,s)p1(s)q1(s,u(s),v(s))ds

� λ
∫ b

a
Gλ (b,s)p1(s)(q10 + ε)(u+ v)ds

� λ (q10 + ε) ‖ (u,v) ‖
∫ b

a
Gλ (b,s)p1(s)ds

� λ (q10 + ε) ‖ (u,v) ‖ A1 � δ ‖ (u,v) ‖ .

In a similar manner, we obtain

Qμ(u,v)(t) = μ
∫ b

a
Gμ(t,s)g(s,u(s),v(s))ds

� μ
∫ b

a
Gμ(b,s)p2(s)q2(s,u(s),v(s))ds

� μ
∫ b

a
Gμ(b,s)p2(s)(q20 + ε)(u+ v)ds

� μ(q20 + ε) ‖ (u,v) ‖
∫ b

a
Gμ(b,s)p2(s)ds

� μ(q20 + ε) ‖ (u,v) ‖ A2 � (1− δ ) ‖ (u,v) ‖,
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then ‖ Q(u,v) ‖� δ ‖ (u,v) ‖ +(1− δ ) ‖ (u,v) ‖=‖ (u,v) ‖ . Consequently, if we set
Ω1 = {(u,v) ∈ κ :‖ (u,v) ‖< R1} , then

‖ Q(u,v) ‖�‖ (u,v) ‖, for all (u,v) ∈ κ ∩∂Ω1. (14)

On the other hand, by the definition of f∞ , there exists R2 > 0, such that f (t,u,v) �
( f∞−ε)(u+v) , for all u+v∈ [R2,∞). Let R2 = max{2R1,

R2
γ } and Ω2 = {(u,v)∈ κ :‖

(u,v) ‖< R2}. If (u,v) ∈ κ with ‖ (u,v) ‖= R2, then mint∈[η,b](u+ v) � γ ‖ (u,v) ‖�
R2, thus we have

Qλ (u,v)(t) = λ
∫ b

a
Gλ (t,s) f (s,u(s),v(s))ds

� λ γ
∫ b

η
Gλ (b,s)( f∞ − ε)(u+ v)ds

� λ γ2( f∞ − ε) ‖ (u,v) ‖
∫ b

η
Gλ (b,s)ds

� λ γ2B1( f∞ − ε) ‖ (u,v) ‖
�‖ (u,v) ‖, for all t ∈ [η ,b],

then
‖ Q(u,v) ‖�‖ Qλ (u,v) ‖�‖ (u,v) ‖, for all (u,v) ∈ κ ∩∂Ω2. (15)

Therefore, it follows from (14),(15) and Theorem 1, Q has a fixed points in κ ∩(
Ω2\Ω1

)
, which is a positive solution of (1)–(2). �

Similarly, we can also obtain the following theorem that is in some way of duality
of Theorem 2.

THEOREM 3. Suppose (H1),(H2) hold, and 0 < δ < 1 then we have the follow-
ing results:

(1) If 0 < f0,q1∞,g0,q2∞ < ∞, A1q1∞ < δγ2B1 f0, then for each λ ∈
(

1
γ2B1 f0

, δ
A1q1∞

)
and μ ∈

(
0, 1−δ

A2q2∞

)
, the system (1)–(2)has at least one positive solution.

(2) If 0< f0,q1∞,g0,q2∞ < ∞, A2q2∞ < (1−δ )γ2B2g0, then for each λ ∈
(
0, δ

A1q1∞

)
and μ ∈

(
1

γ2B2g0
, 1−δ

A2q2∞

)
, the system (1)–(2) has at least one positive solution.

5. Multiplicity results

In this section, we prove the existence of at least two positive solutions for the
system (1)–(2).

THEOREM 4. Suppose (H1) , (H2) hold. In addition, assume that there exist
four constants r1,M,K,δ where K is sufficient small, 0 < δ < 1, with δγB1M > A1K ,
(1− δ )γB2M > A2K, such that:
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(1) q10 = q1∞ = 0, q20 = q2∞ = 0;

(2) f (t,u,v) � Mr1, or g(t,u,v) � Mr1, for γr1 �‖ (u,v) ‖< r1. Then for any λ ∈( 1
γB1M

, δ
A1K

]
, μ ∈ (

0, 1−δ
A2K

]
or λ ∈ (

0, δ
A1K

]
,μ ∈ ( 1

γB2M
, 1−δ

A2K

]
, the system (1)–(2)

has at least two positive solutions.

Proof. We only prove the case of λ ∈ ( 1
γB1M

, δ
A1K

]
, μ ∈ (

0, 1−δ
A2K

]
. The other case

is similar.

Step 1. By the definition of q10 = q20 = 0, there exists H1 ∈ (0,r1) such that
q1(t,u,v) � K(u+ v) , q2(t,u,v) � K(u+ v), for u+ v∈ (0,H1). Then we have

Qλ (u,v)(t) = λ
∫ b

a
Gλ (t,s) f (s,u(s),v(s))ds

� λ
∫ b

a
Gλ (b,s)p1(s)q1(s,u(s),v(s))ds

� λ
∫ b

a
Gλ (b,s)p1(s)K(u+ v)ds

� λK ‖ (u,v) ‖ A1 � δ ‖ (u,v) ‖ .

In a similar manner, we obtain

Qμ(u,v)(t) = μ
∫ b

a
Gμ(t,s)g(s,u(s),v(s))ds

� μ
∫ b

a
Gμ(b,s)p2(s)q2(s,u(s),v(s))ds

� μ
∫ b

a
Gμ(b,s)p2(s)K(u+ v)ds

� μK ‖ (u,v) ‖ A2 � (1− δ ) ‖ (u,v) ‖,

Hence, ‖ Q(u,v) ‖=‖ Qλ (u,v) ‖ + ‖ Qμ(u,v) ‖�‖ (u,v) ‖ .

Set Ω1 =
{
(u,v) ∈ κ :‖ (u,v) ‖< H1

}
, then

‖ Q(u,v) ‖�‖ (u,v) ‖, for all (u,v) ∈ κ ∩∂Ω1. (16)

Step 2. By the definition of q1∞ = q2∞ = 0, there exist H2 > r1 such that q1(t,u,v)
� K(u+v) , q2(t,u,v) � (u+v) , for u+v∈ [H2,∞). Similarly, set Ω2 =

{
(u,v)∈ κ :‖

(u,v) ‖< H2
}
, then

‖ Q(u,v) ‖�‖ (u,v) ‖, for all (u,v) ∈ κ ∩∂Ω2. (17)
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Step 3. Set Ω3 =
{
(u,v)∈ κ :‖ (u,v) ‖< r1

}
, then ∀(u,v)∈ κ with ‖ (u,v) ‖= r1 ,

we have

Qλ (u,v)(t) = λ
∫ b

a
Gλ (t,s) f (s,u(s),v(s))ds

� λ γ
∫ b

η
Gλ (b,s) f (s,u(s),v(s))ds

� λ γ
∫ b

η
Gλ (b,s)Mr1ds

� λ γMr1B1 > r1 ∀ t ∈ [η ,b],

then
‖ Q(u,v) ‖>‖ (u,v) ‖, for all (u,v) ∈ κ ∩∂Ω3. (18)

Consequently, from (16)–(18) and Theorem 1, the system has at least two positive so-
lutions (u1,v1) ∈ κ ,(u2,v2) ∈ κ with 0 �‖ (u1,v1) ‖< r1 <‖ (u2,v2) ‖ . �

The following result is an antithesis of Theorem 4.

THEOREM 5. Suppose (H1) ,(H2) hold. In addition, assume that there exist four
constants r1,M,K,δ where K is sufficient large, 0 < δ < 1, with γB1K > A1M, (1−
δ )γB2K > A2M, such that

(3) q1(t,u,v) � Mr1, or q2(t,u,v) � Mr1, for 0 �‖ (u,v) ‖� r1 ;

(4) f0 = f∞ = ∞ or g0 = g∞ = ∞ . Then for any λ ∈ (
1

γB1K
, δ

A1M

]
and μ ∈ (

0, 1−δ
A2M

]
or λ ∈ (

0, δ
A1M

]
and μ ∈ (

1
γB2K

, 1−δ
A2M

]
, the system (1)–(2) has at least two posi-

tive solutions.

For the convenience of the discussion of at least two positive solutions for the
system (1)–(2), we study the problem under a more general case than the assumption
of Theorem 4 and Theorem 5.

ϕi(r) = sup
{
qi(t,u,v) : t ∈ [a,b], γr � u+ v � r,

}
, i = 1,2.

ψ1(r) = inf
{

f (t,u,v) : t ∈ [η ,b], γr � u+ v � r,
}
.

ψ2(r) = inf
{
g(t,u,v) : t ∈ [η ,b], γr � u+ v � r,

}
.

ϕ(r) = max{ϕ1(r),ϕ2(r)}, ψ(r) = min{ψ1(r),ψ2(r)}.

Then, we can obtain the following result.

THEOREM 6. Suppose (H1) hold. In addition, assume that there exist three con-
stants M,K,δ ,0 < δ < 1 with δγB1M > A1K,(1−δ )γB2M > A2K and three constants
d1,d2,d3 with 0 < d1 < d2 < d3, such that one of the following two conditions is satis-
fied:

(1) ϕ(d1) � d1K,ψ(d2) > d2M, and ϕ(d3) � Kd3,
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(2) ψ(d1) � d1M,ϕ(d2) < d2K, and ψ(d3) � Md3, then for any λ ∈ (
1

B1Mγ , δ
A1K

]
and μ ∈ (

0, 1−δ
A2K

]
or λ ∈ (

0, δ
A1K

]
and μ ∈ (

1
γB2M

, 1−δ
A2K

]
, the system (1)–(2) has

at least two positive solutions (u�
1,v

�
1), (u�

2,v
�
2) and d1 �‖ (u�

1,v
�
1) ‖< d2 <‖

(u�
2,v

�
2) ‖� d3 .

Proof. We only prove the case of (1) and λ ∈ ( 1
B1Mγ , δ

A1K

]
, μ ∈ (

0, 1−δ
A2K

]
. The

other cases are similar. Let Ωd1 =
{
(u,v) ∈ κ :‖ (u,v) ‖< d1

}
. If (u,v) ∈ ∂Ωd1 , then

‖ (u,v) ‖= d1. Since γd1 � u+ v � d1,a � t � b, then we have

Qλ (u,v)(t) = λ
∫ b

a
Gλ (t,s) f (s,u(s),v(s))ds

� λ
∫ b

a
Gλ (b,s)p1(s)q1(s,u(s),v(s))ds

� λ
∫ b

a
Gλ (b,s)p1(s)ϕ(d1)ds

� λd1K
∫ b

a
Gλ (b,s)p1(s)ds

� λd1KA1 � d1δ = δ ‖ (u,v) ‖ .

In a similar manner, we obtain

Qμ(u,v)(t) = μ
∫ b

a
Gμ(t,s)g(s,u(s),v(s))ds

� μ
∫ b

a
Gμ(b,s)p2(s)q2(s,u(s),v(s))ds

� μ
∫ b

a
Gμ(b,s)p2(s)ϕ(d1)ds

� μKd1A2 � (1− δ )d1 = (1− δ ) ‖ (u,v) ‖ .

Then
‖ Q(u,v) ‖�‖ (u,v) ‖, for all (u,v) ∈ κ ∩∂Ωd1 . (19)

Let Ωd2 =
{
(u,v) ∈ κ :‖ (u,v) ‖< d2

}
. If (u,v) ∈ ∂Ωd2 , then ‖ (u,v) ‖= d2. Since

γd2 � u+ v � d2, t ∈ [η ,b], then we have

Qλ (u,v)(t) = λ
∫ b

a
Gλ (t,s) f (s,u(s),v(s))ds

� λ γ
∫ b

η
Gλ (b,s)ψ(d2)ds

> λ γd2MB1 � d2 =‖ (u,v) ‖ .

Then
‖ Q(u,v) ‖>‖ (u,v) ‖, for all (u,v) ∈ κ ∩∂Ωd2 . (20)
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Let Ωd3 =
{
(u,v) ∈ κ :‖ (u,v) ‖< d3

}
. If (u,v) ∈ ∂Ωd3 , then ‖ (u,v) ‖= d3. Since

γd3 � u+ v � d3,a � t � b, then we have

Qλ (u,v)(t) = λ
∫ b

a
Gλ (t,s) f (s,u(s),v(s))ds

� λ
∫ b

a
Gλ (b,s)p1(s)q1(s,u(s),v(s))ds

� λ
∫ b

a
Gλ (b,s)p1(s)ϕ(d3)ds

� λd3KA1 � d3δ = δ ‖ (u,v) ‖ .

In a similar manner, we obtain

Qμ(u,v)(t) = μ
∫ b

a
Gμ(t,s)g(s,u(s),v(s))ds

� μ
∫ b

a
Gμ(b,s)p2(s)q2(s,u(s),v(s))ds

� μ
∫ b

a
Gμ(b,s)p2(s)ϕ(d3)ds

� μKd3A2 � (1− δ )d1 = (1− δ ) ‖ (u,v) ‖ .

Then
‖ Q(u,v) ‖�‖ (u,v) ‖, for all (u,v) ∈ κ ∩∂Ωd3 . (21)

From (19), (20), (21) and Theorem 1, the system has at least two positive solutions
(u�

1,v
�
1) ∈ κ ,(u�

2,v
�
2) ∈ κ and d1 �‖ (u�

1,v
�
1) ‖< d2 <‖ (u�

2,v
�
2) ‖� d3 . �

6. Example

In this section, we demonstrate our main results with an example.
Let a = 0, b = 1, α = 5

2 , n = 3, β = 7
2 , m = 4, η = 1

2 , ξ = 1
3 , α1 = 1, β1 = 1.

We consider the system of fractional differential equations

D2.5
0+ u(t)+ λ

[
(u+ v)3 +(u+ v)

1
3
]
= 0, 0 < t < 1,

D3.5
0+ v(t)+ μ

[
(u+ v)2 +(u+ v)

1
2
]
= 0, 0 < t < 1,

(22)

with the three-point boundary conditions

u(0) = 0, u′(0) = 0, and u′(1) =
1
3
u′

(1
2

)
,

v(0) = 0, v′(0) = 0, v′′(0) = 0, and v′(1) =
1
3
v′

(1
2

)
.

(23)

We choose r1 = 1, M = 3, K = 164×214×2
115 , δ = 1

2 , then all the conditions in

Theorem 5 are satisfied. Therefore, for any λ ∈ ( 95
126 ,8] and μ ∈ (0,32] or λ ∈ (0,8]
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and μ ∈ (28,32] , the system (22)–(23) has at least two positive solutions (u1(t),v1(t)) ,
(u2(t),v2(t)) with 0 <‖ (u1(t),v1(t)) ‖< 1 <‖ (u2(t),v2(t)) ‖ .
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