
Fractional
Differential

Calculus

Volume 7, Number 1 (2017), 169–184 doi:10.7153/fdc-07-05

ANALYTIC SOLUTION OF GENERALIZED SPACE TIME

FRACTIONAL REACTION DIFFUSION EQUATION

RITU AGARWAL, SONAL JAIN AND R. P. AGARWAL

(Communicated by R. Garrappa)

Abstract. The aim of this paper is to investigate the solution of a generalized space-time frac-
tional reaction-diffusion equation associated with the Hilfer-Prabhakar time fractional derivative
and the space fractional Laplacian operator. The solution of the equation in terms of the three
parameter Mittag-Leffler function, is obtained by applying the Laplace and Fourier transforms.
The work by K. B. Kachhia and Prajapati (2015), R. Garra et al. (2014) and S. D. Purohit (2011)
and references therein follow as particular cases of our results.

1. Introduction

Fractional calculus has gained remarkable popularity and significance during last
few years, mainly due to its attractive applications in frequent, ostensibly diverse and
wide spread fields of science and engineering. Fractional differential equations have
been used for mathematical modeling in potential fields, viscoelastic materials, sig-
nal processing, diffusion problems, control theory, heat propagation and many others.
The various type of partial differential equations occurring in the fluid mechanics are
discussed by Debnath [14]. Kachhia and Prajapati [11] investigated the solutions of
fractional partial differential equations, occurring in the study of heat transfer through
diathermanous materials. Purohit [29] found the solutions of some fractional partial
differential equations occurring in quantum mechanics. Agarwal et al. [20] investi-
gated the solutions of time-space fractional advection-dispersion equation with Hilfer
composite fractional derivative. Many authors like Mainardi [7], Boyadjiev and Schere
[12], Saxena and Kalla [28] and Agarwal et al. [19] have discussed various applications
of fractional differential equations in their work.

Garra et al. [22] analyzed and discussed Hilfer-Prabhakar derivative and its prop-
erties. Further, they showed some applications of the generalized Hilfer-Prabhakar
derivative in the classical equations of mathematical physics, like the heat and the

Mathematics subject classification (2010): 35R11, 35C15, 33E12, 26A33.
Keywords and phrases: Linear space time reaction diffusion equation, Fourier transform, Laplace

transform, Mittag-Leffler function, composite fractional derivative, fractional Laplace operator.

c© � � , Zagreb
Paper FDC-07-05

169

http://dx.doi.org/10.7153/fdc-07-05


170 R. AGARWAL, S. JAIN AND R. P. AGARWAL

free electron laser equations, and in difference-differential equations governing the dy-
namics of generalized renewal stochastic processes. Garrappa [21] have shown the
applications of Prabhakar function in anomalous relaxation problems. He discussed
fractional operators describing the time relaxation in systems governed by Havriliak-
Negami laws. He proposed a formulation of Grünwald-Letnikov type which turns out
to be effective not only to provide a theoretical characterization of the operators asso-
ciated to Havriliak-Negami model which is obtained by inserting two independent real
powers in the classical Debye model. Polito and Scalas [6] introduced a generalization
of the so-called space-fractional Poisson process by extending the difference operator
acting on state space present in the associated difference-differential equations by us-
ing Prabhakar derivative. Recently, Polito and Tomovski [5] studied some properties
of the Prabhakar integrals and derivatives and of some of their extensions such as the
regularized Prabhakar derivative or the Hilfer-Prabhakar derivative.

Reaction-diffusion equations have found many applications in applied science and
engineering. In recent work, many authors have explained some significant physical
issues of reaction-diffusion equations such as oscillations, stationary, spatio-temporal
dissipative pattern formation, waves etc. (see, e.g., Frank [31], Gafiychuk et al. [33]).
A reaction-diffusion equation comprises a reaction term and a diffusion term, i.e. the
typical form of this equation is as follows:

u(x,t) = kΔu+ f (u)

u(x,t) is a state variable and describe density or concentration of a substance or a
population at position x ∈ Ω ⊂ R at time t (Ω being an open set). Δ denotes the
Laplace operator. The first term on the right hand side describes the diffusion, k being
diffusion coefficient. The second term, f (u) is a smooth function f : R → R and
describes processes which really change the present u , i.e. something happens to it
(birth, death, chemical reaction, etc.), not just diffuse in the space. Analytical solution
of generalized reaction-diffusion equation studied by Saxena et al. [25], [26] and [27].
Linear fractional reaction-diffusion equation on a finite domain is solved by Yildirim
and Sezer [3] using homotopy perturbation method and Yu et al. [18] using Adomian
decomposition method. Recently, Garg and Manohar [17] obtained analytical solution
of linear space-time fractional reaction-diffusion equation using generalized differential
transform method.

Linear space-time fractional reaction diffusion equation on finite domain 0 < x <
L , t > 0 with 0 < μ � 1 and 0 < ν � 2 as discussed by Yildirim and Sezer [34] and
Yu et al. [35]

∂ μu(x,t)
∂ tμ = b(x)

∂ νu(x,t)
∂xν − c(x)u(x, t)+ f (x,t) (1)

where ∂ μ u(x,t)
∂ tμ is the Caputo time fractional derivative of order 0 < μ � 1, ∂ νu(x,t)

∂xν is
the Caputo Space fractional derivative of order 1 < ν � 2 and 0 < b(x) � bmax and
0 < c(x) � cmax are continuous for 0 < x < L and the function u(x,t) represent source
or sink and f (x, t) is a sufficiently well behaved function.
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2. Mathematics prerequisites

The right-sided Riemann-Liouville fractional integral of order α , (ℜ(α) > 0)
(Samko et al. [30]) is defined as:

I
α
a (u(x, t)) = RL

a Dt
−α(u(x,t)) =

1
Γ(α)

t∫
a

(t− τ)α−1u(x,τ) dτ, t > a (2)

The right-sided Riemann-Liouville fractional derivative of order α , (ℜ(α) > 0) can
be defined as:

RL
a D

α
t (u(x,t)) =

(
d
dt

)n

(In−α
a u(x,t)), n = [ℜ(α)]+1, (3)

where [x] represents the integral part of the number x .
The following fractional derivative of order α , ℜ(α) > 0 is introduced by Caputo

[15] as

C
a D

α
t (u(x, t)) =

⎧⎪⎪⎨
⎪⎪⎩

1
Γ(m−α)

t∫
a

u(m)(x,τ)
(t − τ)α+1−m dτ, m−1 < α � m

∂m

∂ tm
u(x,t), if α = m

(4)

where u(m)(x, t) = ∂m

∂ tm u(x,t) , m ∈ N is the m-th derivative of the function u(x,t) with
respect to t .

DEFINITION 1. [22] (Prabhakar integral). Let f ∈ L1[0,b] , 0 < t < b � ∞. The
Prabhakar integral can be written as

P
γ
ρ ,μ,ω,0+ f (t) =

∫ t

0
(t− y)μ−1Eγ

ρ ,μ [ω(t − y)ρ ] f (y)dy =
(
f ∗ eγ

ρ ,μ,ω
)
(t), (5)

where ρ , μ , ω , γ ∈ C , t ∈ R with ℜ(ρ) , ℜ(μ) > 0 and the kernel is given by

eγ
ρ ,μ,ω(t) = tμ−1Eγ

ρ ,μ(ωtρ),

In 1971, Prabhakar [32] introduced the generalization of two parameter Mittag-
Leffler function as

Eγ
ρ ,μ(z) =

∞

∑
n=0

(γ)n

Γ(ρn+ μ)
zn

n!
, γ,ρ ,μ ∈ C, ℜ(ρ) > 0, ℜ(μ) > 0. (6)

Taking γ = 1, (6) reduces to the two parameter Mittag-Leffler function studied by
Wiman [2] and defined as

Eρ ,μ(z) =
∞

∑
n=0

zn

Γ(ρn+ μ)
, ρ ,μ ∈ C, ℜ(μ) > 0. (7)
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As γ → 0, then by virtue of the limit formula [24, Eq. 24]

Eγ
α ,β (z) =

1
Γ(β )

(8)

The fractional Prabhakar derivative was introduced and studied by Ovidio and
Polito [16] as follows.

DEFINITION 2. (Prabhakar derivative). Let f ∈ L1[0,b] , 0 < t < b � ∞ and f ∗
e−γ

ρ ,m−μ,ω(·)∈Wm,1[0,b] , m = �μ�. The Prabhakar derivative of the function f is given
by

D
γ
ρ ,μ,ω,0+ f (t) =

dm

dtm
P
−γ
ρ ,m−μ,ω,0+ f (t) (9)

where t ∈ R , ρ , μ , ω , γ ∈ C , ℜ(ρ) , ℜ(μ) > 0.

A generalization of the Riemann-Liouville fractional derivative operator (3) and
Caputo fractional derivative operator (4) is given by Hilfer [23], by introducing a frac-
tional derivative operator of two parameters.

DEFINITION 3. (Hilfer derivative). Let 0 < μ < 1 and type 0 � ν � 1, f ∈
L1[a,b] , −∞ � a < t < b � ∞ , f ∗K(1−ν)(1−μ) ∈ AC1[0,b] . Then Hilfer derivative of
u(x,t) with respect to variable t is defined as

0D
μ,ν
a+ (u(x,t)) = I

ν(1−μ)
t

∂
∂ t

(
I
(1−ν)(1−μ)
a+ u(x,t)

)
(10)

It is interesting to observe that for ν = 0, Eq. (10) reduces to the classical Riemann-
Liouville fractional derivative operator (3). On the other hand, for ν = 1, it gives the
Caputo fractional derivative operator defined by (4).

The Laplace transform (see, e.g. Sneddon [10, Chapter 1]) for this operator is
given by Hilfer [23]. Hereafter and without loss of generality, we set a = 0 in (10).

L{D
μ,ν
0+ u(x, t);s} = sμL{u(x,t)}− sν(μ−1)

I
(1−ν)(1−μ)
0+ u(x,0+), 0 < μ < 1 (11)

where the initial value term I(1−ν)(1−μ)
0+ u(x,0+) involves the Riemann-Liouville frac-

tional integral operator of order (1−ν)(1− μ) evaluated in the limit as t → 0+ .
A generalization of the Hilfer derivative operator (10), was given by Garra et al.

[22] as

DEFINITION 4. (Hilfer-Prabhakar derivative). Let μ ∈ (0,1) , ν ∈ [0,1] , f ∈
L1[0,b] , 0 < t < b � ∞ , f ∗ e−γ(1−ν)

ρ ,(1−ν)(1−μ),ω(·p) ∈ AC1[0,b] .
Then Hilfer-Prabhakar derivative is defined by

D
γ,μ,ν
ρ ,ω,0+u(t) =

(
P
−γν
ρ ,ν(1−μ),ω,0+

d
dt

{
P
−γ(1−ν)
ρ ,(1−ν)(1−μ),ω,0+u

})
(t) (12)

where γ , ω ∈ C , ρ > 0 and where P0
ρ ,0,ω,0+u = u .
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It is interesting to observe that for γ = 0, Eq. (12) reduces to the Hilfer derivative
(10) and for γ = 0, ν = 0, Eq. (12) reduces to the classical Riemann-Liouville frac-
tional derivative operator (3). On the other hand, for γ = 0, v = 1, it gives the Caputo
fractional derivative operator (4), respectively (see, e.g. [5]), [22]].

The Laplace Transform of Hilfer-Prabhakar derivative (12) is given by [22, Eq.
20]

L
{

D
γ,μ,ν
ρ ,ω,0+u(t);s

}
= L

{
P
−γν
ρ ,ν(1−μ),ω,0+

d
dt

(
P
−γ(1−ν)
ρ ,(1−ν)(1−μ),ω,0+u(t)

)}
(s)

= sμ [1−ωs−ρ ]γL[u](s)− s−ν(1−μ)[1−ωs−ρ ]γν
[
P
−γ(1−ν)
ρ ,(1−ν)(1−μ),ω,0+u(t)

]
t=0+

(13)

A symmetric fractional Laplace operator of order λ is defined by Brockmann and
Sokolov [4, Eq. A.7–A.9] as

Δ
λ
2 ≡ 1

2cos
(

πλ
2

){−∞Dλ
x + xD

λ
∞}, 0 < λ � 2 (14)

where

−∞Dλ
x (u(x)) =

1
k−λ

x∫
−∞

u(k)(t)
(x− t)λ+1−k

dt, k = [λ ]+1

and

xD
λ
∞(u(x)) =

1
k−λ

∞∫
x

u(k)(t)
(x− t)λ+1−k

dt, k = [λ ]+1.

Further, the Fourier transform of fractional Laplace operator [4, Eq. A.19] is given by

F{Δ
λ
2 (u(x,t));η} = −|η |λ F{u(x,t);η}, 0 < λ � 2 (15)

where, Fourier transform (see, e.g. Debnath [13, chapter 2]) of function u(x, t) with
respect to variable x is defined as

F{u(x, t);η} = u∗(η ,t) =
∞∫

−∞

eiηxu(x,t) dx, −∞ < η < ∞. (16)

The inverse Fourier Transform of function u∗(η ,t) is defined as

F−1{u∗(η ,t)} = u(x,t) =
1
2π

∞∫
−∞

e−iηxu∗(η ,t) dη . (17)
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3. Unified generalized space time fractional reaction diffusion equation

In this section, we investigate the analytic solution of the generalized space-time
fractional reaction-diffusion equation involving fractional Laplace operator contained
in the following theorem:

THEOREM 1. Consider the generalized Cauchy type problem for unified general-
ized linear space-time reaction-diffusion equation

D
γ,μ,ν
ρ ,ω,0+u(x,t) = kΔ

λ
2 (u(x,t))+ cu(x,t)+bϕ(x, t), t > 0, x ∈ R, (18)

with initial condition [
P
−γ(1−ν)
ρ ,(1−ν)(1−μ),ω,0+u(x,0+)

]
= g(x) (19)

and boundary condition
lim
|x|→∞

u(x,t) = 0, t > 0 (20)

with μ ∈ (0,1) , ν ∈ [0,1] , ω ∈ R , ρ > 0 , γ � 0 and k > 0 is diffusion coefficient.
Here, P

γ,μ,ν
ρ ,ω,0+ is the Hilfer-Prabhakar fractional derivative operator as defined in

(12). Δ λ
2 is the fractional generalized Laplace operator of order λ , where 0 < λ � 2 ,

u(x,t) represent source or sink. ϕ(x,t) and g(x) are both sufficiently well behaved
functions and b, c are arbitrary constants.

Then the solution of Eq. (18), subject to the above constraints, is given by

u(x,t) =
1
2π

∞

∑
n=0

tμ(n+1)−ν(μ−1)−1Eγ(n+1−ν)
ρ ,μ(n+1)−ν(μ−1)(ωtρ)

∫ ∞

−∞
(c−k|η |λ )ne−iηxg∗(η)dη

+
b
2π

∫ ∞

−∞

∫ t

0
(c− k|η |λ )nτμ(n+1)−1Eγ(n+1)

ρ ,μ(n+1)(ωτρ) ϕ∗(η ,t− τ)e−iηxdη dτ,

(21)

where g∗(η) and ϕ∗(η ,t) are Fourier transforms of the functions g(x) and ϕ(x,t)
respectively.

Proof. In order to prove the theorem, we take the Fourier transform of Eq. (18)
with respect to the space variable x and using boundary condition (20) and Eq. (15)
therein, to obtain

D
γ,μ,ν
ρ ,ω,0+(u∗(η ,t)) = −k|η |λ (u∗(η ,t))+ cu∗(η , t)+bϕ∗(η ,t), t > 0 (22)

where u∗(η , t) is the Fourier transform of the function u(x, t) .
Now, taking Laplace transform of (22) with respect to variable t and making use

of the Eq. (13), we get

sμ [1−ωs−ρ ]γu∗(η ,s)− sν(μ−1)[1−ωs−ρ ]γν
[
P
−γ(1−ν)
ρ ,(1−ν)(1−μ),ω,0+u∗(η ,0+)

]
= −k|η |λ u∗(η ,s)+ cu∗(η ,s)+bϕ∗(η ,s)

(23)
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where L[u(η , t);s] = u(η ,s) .
Next, taking the Fourier transform of the initial condition (19) and putting in (33),

we get

sμ [1−ωs−ρ ]γu∗(η ,s)−sν(μ−1)[1−ωs−ρ ]γνg∗(η)=−k|η |λ u∗(η ,s)+cu∗(η ,s)+bϕ∗(η ,s).

Simplifying,[
sμ(1−ωs−ρ)γ + k|η |λ − c

]
u∗(η ,s) = sν(μ−1)[1−ωs−ρ ]γνg∗(η)+bϕ∗(η ,s),

which gives

u∗(η ,s) =
sν(μ−1)[1−ωs−ρ ]γνg∗(η)
sμ(1−ωs−ρ)γ + k|η |λ − c

+
bϕ∗(η ,s)

sμ(1−ωs−ρ)γ + k|η |λ − c
. (24)

Hence,

u∗(η ,s) =s−μ+ν(μ−1)(1−ωs−ρ)−γ(1−ν)g∗(η)

[
1+

k|η |λ − c
sμ(1−ωs−ρ)γ

]−1

+bs−μ(1−ωs−ρ)−γ ϕ∗(η ,s)

[
1+

k|η |λ − c
sμ(1−ωs−ρ)γ

]−1

.

(25)

Finally,

u∗(η ,s) =
∞

∑
n=0

(c− k|η |λ )ns−μ(n+1)+ν(μ−1)(1−ωs−ρ)−γ[(n+1)−ν]g∗(η)

+b
∞

∑
n=0

(c− k|η |λ )ns−μn(1−ωs−ρ)−γnϕ∗(η ,s),

(∣∣∣∣∣ k|η |λ − c
sμ(1−ωs−ρ)γ

∣∣∣∣∣ < 1

)
.

(26)

On taking inverse Laplace transform of Eq. (26) and using convolution theorem, we get

u∗(η , t) =
∞

∑
n=0

(c− k|η |λ )ntμ(n+1)−ν(μ−1)−1Eγ(n+1−ν)
ρ ,μ(n+1)−ν(μ−1)(ωtρ)g∗(η)

+b
∫ t

0
(c− k|η |λ )nτμ(n+1)−1Eγ(n+1)

ρ ,μ(n+1)(ωτρ)ϕ∗(η ,t − τ)dτ.

(27)

Further, taking the inverse Fourier transform of (27), we get

u(x,t) =
1
2π

∞

∑
n=0

tμ(n+1)−ν(μ−1)−1Eγ(n+1−ν)
ρ ,μ(n+1)−ν(μ−1)(ωtρ)

∫ ∞

−∞
(c− k|η |λ )ne−iηxg∗(η)dη

+
b
2π

∫ ∞

−∞

∫ t

0
(c− k|η |λ )nτμ(n+1)−1Eγ(n+1)

ρ ,μ(n+1)(ωτρ)ϕ∗(η ,t− τ)e−iηxdη dτ



176 R. AGARWAL, S. JAIN AND R. P. AGARWAL

where g∗(η) and ϕ∗(η ,t) are Fourier transforms of the functions g(x) and ϕ(x, t) ,
respectively. �

It is interesting to observe that as an particular case of Theorem 1, we can obtain
solution of homogeneous Schrödinger equation occurring in the quantum mechanics,
solution of non homogeneous fractional generalized diffussion wave equation and the
solution of fractional partial differential equation that arises in the study of heat transfer
through diathermanous materials.

(1) If we set γ = 0 then the Hilfer-Prabhakar fractional derivative (12) reduces to
a Hilfer fractional derivative (10) and we get the following result:

THEOREM 2. Consider the generalized Cauchy type problem for fractional linear
space-time reaction-diffusion equation

D
μ,ν
t u(x, t) = kΔ

λ
2 (u(x,t))+ cu(x,t)+bϕ(x,t), t > 0, x ∈ R, (28)

with initial condition

I
(1−ν)(1−μ)
0+ u(x,0+) =

[
P

0
ρ ,(1−ν)(1−μ),ω,0+u(x,0+)

]
= g(x), x ∈ R (29)

and boundary condition
lim
|x|→∞

u(x,t) = 0, t > 0 (30)

with μ ∈ (0,1) , ν ∈ [0,1] , ω ∈ R , ρ > 0 , 0 < λ � 2 .
Then, the solution of (28) is given by

u(x, t) =
t(μ−1)(1−ν)

2π

∫ ∞

−∞
g∗(η)Eμ,μ+ν(1−ν)(c− k|η |λ )tμe−iηxdη

+
b
2π

∫ ∞

−∞

∫ t

0
ξ μ−1Eμ,μ(c− k|η |λ )tμϕ∗(η , t− ξ )dξdη

(31)

where g∗(η) and ϕ∗(η ,t) are Fourier transforms of the functions g(x) and ϕ(x,t) ,
respectively and Eρ ,μ(·) is the two parameter Mittag-Leffler function.

Proof. In order to prove the theorem, we take the Fourier transform of Eq. (18)
with respect to the space variable x and using boundary condition (30) and Eq. (15)
therein, to obtain

D
μ,ν
t (u∗(η ,t)) = −k|η |λ (u∗(η ,t))+ cu∗(η , t)+bϕ∗(η ,t), t > 0 (32)

where u∗(η , t) is the Fourier transform of the function u(x, t) .
Now, taking Laplace transform of (22) with respect to variable t and making use

of the Eq. (11), we get

sμu∗(η ,s)− sν(μ−1)I(1−ν)(1−μ)
0+ u(η ,0+) = −k|η |λ u∗(η ,s)+ cu∗(η ,s)+bϕ∗(η ,s)

(33)
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where L[u(η , t);s] = u(η ,s) .
Next, taking the Fourier transform of the initial condition (29) and putting in (33),

we get

sμu∗(η ,s)− sν(μ−1)u(η ,0+)g∗(η) = −k|η |λ u∗(η ,s)+ cu∗(η ,s)+bϕ∗(η ,s)

Simplifying, [
sμ + k|η |λ − c

]
u∗(η ,s) = sν(μ−1)g∗(η)+bϕ∗(η ,s),

which gives

u∗(η ,s) =
sν(μ−1)g∗(η)
sμ + k|η |λ − c

+
bϕ∗(η ,s)

sμ + k|η |λ − c
. (34)

On taking inverse Laplace transform of equation (51), by means of the following result
by haubold et al ([8], Eq. 18) and using convolution theorem,

L−1

{
sβ−1

sα +a

}
= tα−β Eα ,α−β+1(−atα) (35)

where ℜ(s) > 0, ℜ(α) > 0, ℜ(α −β ) > −1, we obtain

u∗(η ,s) = t(μ−1)(1−ν)Eμ,μ+ν(1−ν)(c− k|η |λ )tμg∗(η)

+
∫ t

0
ξ μ−1Eμ,μ(c− k|η |λ )tμϕ∗(η ,t− ξ )dξ

(36)

Further, taking the inverse Fourier transform of (27), we get

u(x, t) =
t(μ−1)(1−ν)

2π

∫ ∞

−∞
g∗(η)Eμ,μ+ν(1−ν)(c− k|η |λ )tμe−iηxdη

+
b
2π

∫ ∞

−∞

∫ t

0
ξ μ−1Eμ,μ(c− k|η |λ )tμϕ∗(η , t− ξ )dξdη .

(2) Further, on taking, c = 0 and k = ih
2m , the above result yields the solution of the

non-homogenous fractional generalized Schrödinger equation considered in Corollary
3.1 by Purohit [29]. �

COROLLARY 1. Consider the following one dimensional non-homogenous gen-
eralized fractional Schrödinger equation of a particle of mass m, defined by

D
μ,ν
t u(x, t) =

(
ih
2m

)
Δ

λ
2 u(x,t)+bϕ(x,t), t > 0, 0 < λ � 2 x ∈ R, (37)

with initial condition

I
(1−ν)(1−μ)
0+ u(x,0+) = g(x), −∞ < x < ∞, 0 < μ < 1, 0 � ν � 1 (38)
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and boundary condition
lim
|x|→∞

u(x,t) = 0, t > 0, (39)

where b is arbitrary, h = 2π h̄ is the Plank constant and g(x) and ϕ(x, t) are given
functions.

Then, the solution of (37), under the given conditions, is given by

u(x, t) =
∞∫

−∞

G1(x− ξ ,t)g(ξ ) dξ +b

t∫
0

(t− τ)

⎡
⎣ ∞∫
−∞

G2(x− ξ ,t− τ)ϕ(ξ ,τ)dξ

⎤
⎦dτ,

(40)
where the Green’s function G1(x,t) is given by

G1(x, t) =
tμ+ν(1−μ)−1

λ |x| H2,1
3,3

[ |x|
a

1
λ t

μ
λ

(1, 1
λ ),(μ + ν(1− μ), μ

λ ),(1, 1
2)

(1, 1
λ ),(1,1),(1, 1

2 )

]
(41)

and the function G2(x,t) is given by

G2(x,t) =
1

λ |x|H
2,1
3,3

[ |x|
a

1
λ t

μ
λ

(1, 1
λ ),(μ , μ

λ ),(1, 1
2 )

(1, 1
λ ),(1,1),(1, 1

2 )

]
(42)

where a = ih
2m and Hm,n

p,q is well known H-function defined by (see, e.g. Mathai et al.
[1, Eq. Chapter 1]).

(3) On taking c = 0 and k = ψ2 , in Eq. (28) we get the solution of non-homogenous
fractional generalized diffusion wave equation considered in Corollary 3.2 by Purohit
[29].

COROLLARY 2. Consider the following one dimensional non-homogenous gen-
eralized fractional diffusion wave equation, defined by

D
μ,ν
t u(x, t) = ψ2Δ

λ
2 u(x,t)+bϕ(x,t), t > 0, 0 < λ � 2, x ∈ R, (43)

with initial condition

I
(1−ν)(1−μ)
0+ u(x,0+) = g(x), −∞ < x < ∞, 0 < μ < 1, 0 � ν � 1 (44)

and boundary condition
lim
|x|→∞

u(x,t) = 0, t > 0 (45)

where b is arbitrary constant and g(x) and ϕ(x,t) are given functions.

Then, the solution of (43) under the given conditions, is given by

u(x, t) =
∞∫

−∞

G1(x− ξ ,t)g(ξ ) dξ +b

t∫
0

(t− τ)

⎡
⎣ ∞∫
−∞

G2(x− ξ ,t− τ)ϕ(ξ ,τ)dξ

⎤
⎦dτ,

(46)
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where the Green’s function G1(x,t) and G2(x,t) are, respectively, given by (41) and
(42) with a = ψ2.

(4) On taking b = 0, c = 0 and λ = 2 in Theorem 1, we arrive at the following
result by Garra et al. [22, Theorem 5.1]:

COROLLARY 3. Consider the Cauchy problem

D
γ,μ,ν
ρ ,ω,0+u(x,t) = k

∂ 2

∂x2 u(x,t), t > 0, x ∈ R (47)

with initial condition [
P
−γ(1−ν)
ρ ,(1−ν),(1−μ),ω,0+u(x,0+)

]
= g(x) (48)

and boundary condition
lim
|x|→∞

u(x,t) = 0, t > 0 (49)

with μ ∈ (0,1) , ν ∈ [0,1] , ω ∈ R , ρ > 0 , γ � 0 .

Then, the solution of equation (47) is given by

u(x,t) =
1
2π

∞

∑
n=0

(−k)ntμ(n+1)−ν(μ−1)−1Eγ(n+1−ν)
ρ ,μ(n+1)−ν(μ−1)(ωtρ)

∫ ∞

−∞
η2n cosηxg∗(η)dη ,

(50)

where g∗(η) is the Fourier transform of the function g(x) .
(5) Further, if we take γ = 0, c = 0, k = α , b = β and ϕ(x,t) = e−τx , Theorem 2

yields the solution of fractional partial differential equation arising in the study of heat
transfer through diathermanous materials considered by Kachhia and Prajapati [11].

COROLLARY 4. Consider the fractional partial differential equation that arise in
the study of heat transfer through diathermanous materials as

D
μ,ν
t u(x,t) = αΔ

λ
2 u(x,t)+ βe−τx, 0 < λ � 2 (51)

with initial condition
I
(1−ν)(1−μ)
0+ u(x,0+) = 0, (52)

and boundary condition
lim
|x|→∞

u(x,t) = 0, t > 0. (53)

with μ ∈ (0,1) , ν ∈ [0,1] , α > 0 .

Then, the solution of (51) under the given conditions, is given by

u(x, t) =
β tμe−τx

λ

∫ ∞

−∞

eτμ

|ξ | H
2,1
3,3

[ |ξ |
α

1
τ t

μ
λ

(1, 1
λ ),(μ +1, μ

λ ),(1, 1
2 )

(1, 1
λ ),(1,1),(1, 1

2)

]
dξ (54)
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4. Illustrative examples

EXAMPLE 1. Consider the generalized Cauchy type problem for unified general-
ized linear space-time reaction-diffusion equation

D
γ,μ,ν
ρ ,ω,0+u(x,t) = kΔ

λ
2 (u(x,t))+ cu(x,t)+bϕ(x, t), t > 0, x ∈ R, (55)

with initial condition [
P
−γ(1−ν)
ρ ,(1−ν)(1−μ),ω,0+u(x,0+)

]
= e−x (56)

and boundary condition
lim
|x|→∞

u(x,t) = 0, t > 0 (57)

with μ ∈ (0,1) , ν ∈ [0,1] , ω , k ∈ R , k , ρ > 0, γ � 0, 0 < λ � 2.
In view of Theorem 1, the solution of equation (55) is given by

u(x,t) =
1
2π

∞

∑
n=0

tμ(n+1)−ν(μ−1)−1Eγ(n+1−ν)
ρ ,μ(n+1)−ν(μ−1)(ωtρ)

∫ ∞

−∞
(c− k|η |λ )ne−iηxG(η)dη

+
b
2π

∫ ∞

−∞

∫ t

0
(c− k|η |λ )nτμ(n+1)−1Eγ(n+1)

ρ ,μ(n+1)(ωτρ )ϕ∗(η ,t− τ)e−iηxdη dτ

(58)

where ϕ∗(η , t) is Fourier transform of the functions ϕ(x,t) and G(η) = F {e−x;η} =
1√
2π

[
e−(1+iη)−1

1+iη

]
.

Next, we take an example where, in the initial condition, we put g(x) = δ (x) , the
Dirac delta function.

EXAMPLE 2. Consider the generalized Cauchy type problem for unified general-
ized linear space-time reaction-diffusion equation

D
γ,μ,ν
ρ ,ω,0+u(x,t) = kΔ

λ
2 (u(x,t))+ cu(x,t)+bϕ(x,t), t > 0, x ∈ R, (59)

with initial condition [
P
−γ(1−ν)
ρ ,(1−ν)(1−μ),ω,0+u(x,0+)

]
= δ (x), (60)

where δ (x) is the Dirac delta function and boundary condition

lim
|x|→∞

u(x,t) = 0, t > 0 (61)

with μ ∈ (0,1) , ν ∈ [0,1] , ω ∈ R , k , ρ > 0, γ � 0, 0 < λ � 2.
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In view of Theorem 1, the solution of equation (59), is given by

u(x,t) =
1
2π

∞

∑
n=0

tμ(n+1)−ν(μ−1)−1Eγ(n+1−ν)
ρ ,μ(n+1)−ν(μ−1)(ωtρ)

∫ ∞

−∞
(c− k|η |λ )ne−iηxdη

+
b
2π

∫ ∞

−∞

∫ t

0
(c− k|η |λ )nτμ(n+1)−1Eγ(n+1)

ρ ,μ(n+1)(ωτρ )ϕ∗(η ,t− τ)e−iηxdη dτ

(62)

where ϕ∗(η , t) is Fourier transform of the function ϕ(x,t) and F {δ (x);η} = 1.

5. Concrete applications

When γ = 0, ν = 1, the Hilfer-Prabhakar fractional space derivative (12) get
reduced to Caputo fractional derivative (4) and it yields the following result:

COROLLARY 5. Consider the generalized Cauchy type problem for fractional lin-
ear space-time reaction-diffusion equation

C
0 D

μ
t u(x, t) = kΔ

λ
2 (u(x,t))+ cu(x,t)+bϕ(x, t), t > 0, x ∈ R, (63)

with initial condition
I
(1−μ)
t u(x,0+) = g(x), (64)

and boundary condition
lim
|x|→∞

u(x,t) = 0, t > 0 (65)

with μ ∈ (0,1) , 0 < λ � 2.
Then the solution of equation (63), is given by

u(x, t) =
1
2π

∫ ∞

−∞
g∗(η)Eμ,0(c− k|η |λ )tμe−iηxdη

+
b
2π

∫ ∞

−∞

∫ t

0
ξ μ−1Eμ,μ(c− k|η |λ )tμϕ∗(η , t − ξ )dξdη .

where g∗(η) and ϕ∗(η ,t) are Fourier transform of the functions g(x) and ϕ(x,t)
respectively and Eρ ,μ(·) is the two parameter Mittag- Leffler function.

On taking γ = 0, ν = 0, the Hilfer-Prabhakar fractional derivative (12) reduces to
a Riemann-Liouville fractional derivative (3) and the Theorem 2 yields the following
corollary:

COROLLARY 6. Consider the generalized Cauchy type problem for fractional lin-
ear space-time reaction-diffusion equation

RL
0 D

μ
t u(x,t) = kΔ

λ
2 (u(x,t))+ cu(x,t)+bϕ(x,t), t > 0, x ∈ R, (66)
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with initial condition
I
(1−μ)
t u(x,0+) = g(x), (67)

and boundary condition
lim
|x|→∞

u(x,t) = 0, t > 0 (68)

with μ ∈ (0,1) , 0 < λ � 2 .

Then, the solution of equation (66) is given by

u(x, t) =
t(μ−1)

2π

∫ ∞

−∞
g∗(η)Eμ,μ(c− k|η |λ )tμe−iηxdη

+
b
2π

∫ ∞

−∞

∫ t

0
ξ μ−1Eμ,μ(c− k|η |λ )tμϕ∗(η , t − ξ )dξdη .

(69)

where g∗(η) and ϕ∗(η ,t) are Fourier transforms of the functions g(x) and ϕ(x, t) ,
respectively and Eρ ,μ(·) is the two parameter Mittag-Leffler function.

6. Conclusion

The solution of a unified generalized linear space-time fractional reaction-diffusion
equation involving Hilfer-Prabhakar time fractional derivative and the space fractional
generalized Laplace operators is obtained in terms of Mittag-Leffler function by using
Laplace transform and Fourier transform. This Method is very useful for studying the
various problems arising in fluid dynamics, control theory, aerodynamics and applied
sciences. The analytic solutions are the exact solutions. Efficient numerical technique
can be developed to find the solution of the fractional PDE by considering their analytic
solutions as base.

Acknowledgement. Authors are thankful to the referees for their useful suggestions
for the improvement of the paper.
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