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Abstract. In this paper, we study existence of positive solutions to the system of three-point
fractional boundary value problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Dαi

0+u(t)+λiai(t) fi(u1(t), . . . ,un(t)) = 0, 0 < t < 1, 2 < αi � 3

ui(0) = u′i(0) = 0

u′i(1)−μiu′i(ηi) =
∫ 1

0
φi(s)u′i(s)ds

where for i = 1, . . . ,n, λi is a positive parameter, Dαi
0+ is the standard Riemann-Liouville differ-

ential operator of order αi ∈ (2,3] , ηi ∈ (0,1) , μi � 0 , fi : [0,+∞)n → [0,+∞) is a continuous
function and φi : (0,1) → (0,+∞) is a continuous increasing function and

∫ 1
0 sαi−2φi(s)ds <

+∞ . Existence results are obtained by means of Krasnosel’skii ’s fixed point theorem and the
vector version of Krasnosel’skii’s fixed point theorem.

1. Introduction

In this paper, we concentrate on the study of existence of positive solutions for
a system of nonlinear Riemann-Liouville fractional differential equations (FBVP for
short) with integral boundary conditions boundary conditions of the form⎧⎨

⎩
Dαi

0+ui(t)+ λiai(t) fi(u1(t),u2(t), . . . ,un(t)) = 0, 0 < t < 1,

ui(0) = u′i(0) = 0, u′i(1)− μiu′i(ηi) =
∫ 1

0
φi(t)u′i(t)dt,

(1.1)

where, for each i = 1, . . . ,n , Dαi
0+ , denote the standard Riemann–Liouville fractional

derivatives of order αi ∈ (2,3] , μi,ηi satisfy μi > 0, ηi ∈ (0,1) , fi ∈ C
(
Rn

+,R+
)
,

ai ∈C ([0,1],R+) , R+ = [0,+∞) and λi are positive parameters.
Throughout this paper, we assume that the following conditions hold.
φi : (0,1) → (0,+∞) are continuous functions and

ρi =
∫ 1

0
sαi−2φi(s)ds < +∞, i = 1, . . . ,n. (1.2)
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Assume that

di = 1− μiηαi−2
i −

∫ 1

0
sαi−2φi(s)ds > 0, i = 1, . . . ,n. (1.3)

Fractional differential equations can describe many phenomena in various fields
of engineering and scientific disciplines such as control theory, physics, chemistry, bi-
ology, economics, mechanics and electromagnetic. In consequence, the subject of frac-
tional differential equations is gaining much importance and attention. In recent years,
there are a large number of papers dealing with the existence and uniqueness oluof
stions of boundary value problems for nonlinear differential equations of fractional or-
der. For examples and recent development of the topic, see ([2, 6, 14, 15, 18]) and
references therein. In addition, the study of coupled systems involving fractional dif-
ferential equations is also of great importance. Such systems occur in various problems
of applied science, for instance, we refer the reader to ([1, 4, 7, 9, 13, 16, 17, 19]) and
the references therein.

The rest of this paper is organized as follows: In section 2, we present some pre-
liminaries and lemmas that will be used to prove our main results. Section 3 is devoted
to prove the existence of positive solutions for FBVP (1.1). In section 4 some examples
illustrating our results are also presented.

2. Background and preliminary lemmas

In this section, we introduce some basic definitions of fractional derivative for the
readers’ convenience. We also state in this section the classical and the vector version
of Krasnosel’skii’s fixed point theorem.

DEFINITION 2.1. [11] The Riemann-Liouville fractional integral of order α > 0
of a function f : (0,+∞) → R is defined by

Iα
0+ f (t) =

1
Γ(α)

∫ t

0
(t − s)α−1 f (s)ds, (2.1)

where Γ(α) is the gamma function, provided that the right side is pointwise defined on
(0,+∞) .

DEFINITION 2.2. [11] The Riemann-Liouville fractional derivative of order α >
0, of a continuous function f : (0,+∞) → R is given by

Dα
0+ f (t) =

1
Γ(n−α)

(
d
dt

)(n)∫ t

0

f (s)
(t− s)α−n+1 ds, (2.2)

where n = [α]+ 1, [α] denotes the integer part of number α , provided that the right
side is pointwise defined on (0,∞) .

The following results on fractional integral and fractional derivative will be needed
in establishing our main results.
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LEMMA 2.3. [11] Let α > 0 . If u ∈C(0,1)∩L(0,1) , then the fractional differ-
ential equation

Dα
0+u(t) = 0 (2.3)

has u(t) = c1tα−1 + c2tα−2 + . . .+ cntα−n , ci ∈ R , i = 1,2, . . . ,n, as unique solutions,
where n = [α]+1.

LEMMA 2.4. [11] Assume that u ∈C(0,1)∩L(0,1) with a fractional derivative
of order α > 0 that belongs to C(0,1)∩L(0,1) . Then

Iα
0+Dα

0+u(t) = u(t)+ c1t
α−1 + c2t

α−2 + . . .+ cnt
α−n, (2.4)

for some ci ∈ R , i = 1,2, . . . ,n, where n = [α]+1 .

Now we present the Green’s functions for system associated with boundary value
problem (1.1).

LEMMA 2.5. (see [3]) Let h ∈ C[0,1] be a given function and 2 < α � 3 then
the unique solution of FBVP

Dα
0+u(t)+h(t) = 0, 0 < t < 1, (2.5)

u(0) = u′(0) = 0, u′(1)− μu′(η) =
∫ 1

0
φ(s)u′(s)ds, (2.6)

is given by

u(t) =
∫ 1

0
Hα(t,s)h(s)ds+ tα−1

d

∫ 1

0
φ(s)

(∫ 1

0
G1α (s,τ)h(τ)dτ

)
ds, (2.7)

where

d =
(

1− μηα−2−
∫ 1

0
sα−2φ(s)ds

)

Hα(t,s) = Gα(t,s)+
μtα−1

d
G1α(η ,s) (2.8)

Gα(t,s) = 1
Γ(α)

{
tα−1(1− s)α−2− (t− s)α−1, 0 � s � t � 1

tα−1(1− s)α−2, 0 � t � s � 1
(2.9)

G1α(η ,s) = 1
Γ(α)

{
ηα−2(1− s)α−2− (η − s)α−2, 0 � s � η � 1

ηα−2(1− s)α−2, 0 � η � s � 1
(2.10)

The following results give some properties of the Green functions Gα(t,s) ,
G1α(η ,s) , and Hα(t,s) in order to discuss the existence of positive solutions.

LEMMA 2.6. (see [3]) Gα(t,s) defined by (2.9) satisfies the following conditions:

(P1) Gα(t,s) is continuous for all t,s ∈ [0,1] , Gα(t,s) > 0 , for t,s ∈ (0,1) ,
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(P2)
∂Gα(t,s)

∂ t
= (α −1)G1α(t,s) for t,s ∈ (0,1) ,

(P3) tα−1Gα(t,s) � Gα(t,s) � Gα(1,s) , (t,s) ∈ [0,1]× [0,1] ,

(P5) For l ∈ (0,1) , minl�t�1 Gα(t,s)� (l)α−1Gα(1,s) , where Gα(1,s)=
s(1−s)α−2

Γ(α)
.

LEMMA 2.7. (see [3]) G1α(t,s) defined by (2.10) satisfies the following condi-
tions:

(P1) G1α(η ,s) > 0 for t,s ∈ (0,1) ,

(P2) 0 � G1α(η ,s) � 1
Γ(α)ηα−2 (1− s)α−2 .

LEMMA 2.8. (see [3]) Hα(t,s) defined by (2.8) satisfies the following conditions:

(P1) tα−1Hα(1,s) � Hα(t,s) � Hα(1,s), (t,s) ∈ [0,1]× [0,1] ,

(P2) For l ∈ (0,1), minl�t�1 Hα(t,s) � (l)α−1Hα(1,s) .

LEMMA 2.9. The unique solution u(t) of the FBVP (2.5)–(2.6) is nonnegative
and satisfies

min
l�t�1

u(t) � (l)α−1 max
0�t�1

|u(t)| , ∀t ∈ [0,1], l ∈ (0,1). (2.11)

Proof. It is obvious that u(t) is nonnegative. For any t ∈ [0,1] , by (2.7) and
Lemma 2.8, it follows that

u(t) =
∫ 1

0
Hα(t,s)h(s)ds+

tα−1

d

∫ 1

0
φ(s)

(∫ 1

0
G1α (s,τ)h(τ)dτ

)
ds

�
∫ 1

0
Hα(1,s)h(s)ds+ 1

d

∫ 1

0
φ(s)

(∫ 1

0
G1α (s,τ)h(τ)dτ

)
ds

and thus,

max
0�t�1

|u(t)| �
∫ 1

0
Hα(1,s)h(s)ds+ 1

d

∫ 1

0
φ(s)

(∫ 1

0
G1α (s,τ)h(τ)dτ

)
ds,

On the other hand, (2.7) and Lemma 2.8 imply that, for any t ∈ [l,1] ,

u(t) =
∫ 1

0
Hα(t,s)h(s)ds+

tα−1

d

∫ 1

0
φ(s)

(∫ 1

0
G1α (s,τ)h(τ)dτ

)
ds

� tα−1
[∫ 1

0
Hα(1,s)h(s)ds+ 1

d

∫ 1

0
φ(s)

(∫ 1

0
G1α (s,τ)h(τ)dτ

)
ds

]
� (l)α−1 max

0�t�1
|u(t)|
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Therefore,
min
l�t�1

u(t) � (l)α−1 max
0�t�1

|u(t)| .

This complete the proof of Lemma 2.9. �
In the rest of this paper we shall use the following notions and notations. If (X ,‖·‖)

is a normed linear space, by a cone of X we mean a closed convex subset K ⊂ X with
K \ {0} 	= /0 , λK ⊂ K for every λ ∈ R+ and K∩ (−K) = {0} . Any cone K induces a
partial order relation in X denoted by � , that is u � v if and only if v−u∈ K .

We shall say that u < v if v− u ∈ K \ {0} and u ⊀ u /∈ K \ {0} . Finally u � v
means v � u .

Now, we cite the classical Krasnosel’skii’s cone fixed point theorem (see [8, 10])
to be used in Section 3.

THEOREM 2.10. Let (X ,‖·‖) be a normed linear space, K ⊂X a cone, 0 < r < R
two real numbers and Kr,R = {u ∈ K : r � u � R} . Let T : Kr,R → K be a compact
map such that one of the following conditions is satisfied:

(a) T u � u if ‖u‖ = r and T u � u if ‖u‖ = R;
(b) T u � u if ‖u‖ = r and T u � u if ‖u‖ = R.
Then T has a fixed point u in Kr,R .

Next we recall the recent vector version of Krasnosel’skii’s cone fixed point theo-
rem (see [5, 12]).

Before to state it, we introduce a few notations. We shall consider n cones Ki ,
(i = 1, . . . ,n) of X and the corresponding K = K1 ×K2× . . .×Kn of Xn .

For r,R ∈ Rn
+,r = (r1,r2, . . . ,rn) , R = (R1,R2, . . . ,Rn) , we write 0 < r < R if

0 < ri < Ri (i = 1, . . . ,n) , and we use the notations:

(Ki)ri,Ri := {ui ∈ Ki : ri � ‖u‖ � Ri}(i = 1,2, . . . ,n),
Kr,R := {u = (u1,u2, . . . ,un) ∈ K : ri � ‖ui‖ � Ri for i = 1,2, . . . ,n}.

Clearly, Kr,R := (K1)r1,R1 × (K2)r2,R2 × . . .× (Kn)rn,Rn

THEOREM 2.11. Let (E,‖·‖) be a normed linear space, K1,K2, . . . ,Kn ⊂ E n
cones, K = K1 ×K2 × . . .×Kn and r = (r1,r2, . . . ,rn) , R = (R1,R2, . . . ,Rn) ∈ (R+)n

with 0 < r < R. Let T = (T1,T2, . . . ,Tn) : Kr,R → K be a compact map. Assume that
for each i ∈ {1,2, . . . ,n} , one of the following conditions is satisfied:

(a) Tiui ⊀ ui if ‖ui‖ = ri and Tiui � ui if ‖ui‖ = Ri ;
(b) Tiui � ui if ‖ui‖ = ri and Tiui ⊀ ui if ‖ui‖ = Ri .
Then T has a fixed point u = (u1,u2, . . . ,un) ∈ Kr,R .

Now we write the system of boundary value problem (1.1) as an equivalent system
of integral equations.

DEFINITION 2.12. The vector-valued function u = (u1,u2, . . . ,un) is called a pos-
itive solution of system (1.1) if and only if u satisfies (1.1) and for all i ∈ {1,2, . . . ,n} ,
ui(t) > 0 for t ∈ (0,1).
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LEMMA 2.13. Assume that fi : Rn
+ → R+ , i = 1, . . . ,n, are continuous. Then

u = (u1,u2, . . . ,un)∈ E is a solution of FBVP (1.1) if and only if for all i∈ {1,2, . . . ,n}

ui(t) = λi

[∫ 1

0
Hαi(t,s)ai(s) fi(u(s))ds

+ tαi−1

di

∫ 1

0
φi(s)

(∫ 1

0
G1αi (s,τ)ai(τ) fi(u(τ))dτ

)
ds

]
,

Proof. The proof is immediate from the discussion above, so we omit it. �

Let the Banach space E = C
(
[0,1],Rn

+
)

endowed with the sum-norm

‖u‖E =
n

∑
i=1

max
0�t�1

|ui(t)| for u = (u1,u2, . . . ,un) ,

where ‖u‖C([0,1],R+) = max0�t�1 |ui(t)| .
Based on the estimation (2.11) we define the cones:

Ki =
{

ui ∈C ([0,1],R+) : min
t∈[l,1]

ui (t) � δi‖ui‖
}

(i = 1,2, . . . ,n) ,

where δi = (l)αi−1, l ∈ (0,1) and the product cone K = K1 ×K2× . . .×Kn in E.

Let T : E → E be the operator defined as

T (u) = (T1u,T2u, . . . ,Tnu) ,

where for all t ∈ [0,1] ,

(Tiu)(t) = λi

[∫ 1

0
Hαi(t,s) fi(u(s))ds+ tαi−1

di

∫ 1

0
φi(s)

(∫ 1

0
G1αi (s,τ) fi(u(τ))dτ

)
ds

]
,

We can write Lemma 2.9 in the following form: u = (u1,u2, . . . ,un) is a solution
of (1.1) if and only if u is a fixed point of the operator T .

LEMMA 2.14. The operator operator T : E → E is completely continuous.

Proof. Due to (2.11) we have the invariance property T (K) ⊂ K . Moreover, the
operator T is completely continuous since, by standard arguments, the components
Ti are completely continuous. �
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3. Existence of solutions

In this section, we will discuss the existence of positive solutions for boundary
value problem (1.1). For convenience we introduce the following notations:

(H1) For ν = 0 or +∞ there exist nonnegative constants f ν
i (i = 1,2, . . . ,n) defined

as

f ν
i = lim

‖x‖→ν

fi (x1,x2, . . . ,xn)
‖x‖ , x = (x1,x2, . . . ,xn)

(H2) For i = 1,2, . . . ,n and l ∈ (0,1). Let

Γ0
i =

⎧⎪⎪⎨
⎪⎪⎩
(
δ 2Bαi f

0
i

)−1
if 0 < f 0

i < +∞

0 if f 0
i = +∞

+∞ if f 0
i = 0

and

Γ∞
i =

⎧⎪⎪⎨
⎪⎪⎩

(Aαi f
∞
i )−1 if 0 < f ∞

i < +∞

+∞ if f ∞
i = 0

0 if f ∞
i = +∞

where

Aαi =
∫ 1

0
Hαi(1,s)ai(s)ds+

1
di

∫ 1

0
φi(s)

(∫ 1

0
G1αi (s,τ)ai(τ)dτ

)
ds

Bαi =
∫ 1

l
Hαi(1,s)ai(s)ds+

1
di

∫ 1

l
φi(s)

(∫ 1

l
G1αi (s,τ)ai(τ)dτ

)
ds.

(H3) For ν = 0 or ν = ∞ there exist nonnegative constants Fν
i (i = 1,2, . . . ,n) de-

fined as

Fν
i = lim

xi→υ

fi (x1,x2, . . . ,xn)
xi

uniformly with respect to (x1,x2, . . . ,xi−1,xi+1, . . . ,xn) on compact subsets of
(R+)n−1 .

(H4) For i = 1,2, . . . ,n and l ∈ (0,1) . Let

Λ0
i =

⎧⎪⎪⎨
⎪⎪⎩
(
AαiF

0
i

)−1
if 0 < F0

i < +∞

+∞ if F0
i = 0

0 if F0
i = +∞

and

Λ∞
i =

⎧⎪⎪⎨
⎪⎪⎩

(δBαiF
∞
i )−1 if 0 < F∞

i < +∞

0 if F∞
i = +∞

+∞ if F∞
i = 0
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The classical Krasnoselk’skii fixed point theorem of cone compression and expan-
sion (Theorem 2.10) is now used in order to prove a first existence result of positive
solutions

THEOREM 3.1. With the notations in (H1)–(H2) . Assume that hypothesis (1.3)
holds and Γ∞

i < Γ0
i . Then the FBVP (1.1) has at least one positive for (λ1,λ2, . . . ,λn)∈

R1,

R1 =
{

(λ1,λ2, . . . ,λn) : Γ∞
i
n < λi <

Γ0
i
n

}
.

Proof. Let
Γ∞

i
n < λi <

Γ0
i
n , i = 1, . . . ,n

and choose ε > 0 such that 1
n( f ∞

i −ε)δBαi
� λi � 1

nAαi( f 0
i +ε) , i = 1, . . . ,n .

By definition of f 0
i (i = 1,2, . . . ,n) , there exists H1 �0 such that

fi(u) = fi(u1, . . . ,un) �
(
f 0
i + ε

)‖u‖ for ui � 0, ‖u‖ ∈ [0,H1] .

Let u = (u1, . . . ,un) ∈ K with ‖u‖ = ‖(u1, . . . ,un)‖ = H1 . For i = 1,2, . . . ,n and any
t ∈ [0,1] we have:

Ti(u)(t)

= λi

[∫ 1

0
Hαi(t,s)ai(s) fi(u(s))ds+ tαi−1

di

∫ 1

0
φi(s)

(∫ 1

0
G1αi (s,τ)ai(τ) fi(u(τ))dτ

)
ds

]

� λi

[∫ 1

0
Hαi(t,s)ai(s) fi(u(s))ds+ 1

di

∫ 1

0
φi(s)

(∫ 1

0
G1αi (s,τ)ai(τ) fi(u(τ))dτ

)
ds

]

� λi
(
f 0
i + ε

)‖u‖[∫ 1

0
Hαi(1,s)ai(s)ds+ 1

di

∫ 1

0
φi(s)

(∫ 1

0
G1αi (s,τ)ai(τ)dτ

)
ds

]

� λi
(
f 0
i + ε

)
Aαi ‖u‖ � 1

nAαi

(
f 0
i + ε

)Aαi

(
f 0
i + ε

)‖u‖ =
1
n
‖u‖ .

Then ‖Ti (u)‖ � 1
n ‖u‖ for each i = 1, . . . ,n . As a consequence, we deduce that

‖T (u)‖ =
i=n

∑
i=1

‖Ti(u)‖ � ‖u‖ .

Let r = H1 . Then ‖T (u)‖ � ‖u‖ for any u ∈ K with ‖u‖ = r .
Furthermore, from the definition of f ∞

i (i = 1,2, . . . ,n) , there exists H2 �0 such
that

fi(u) = fi(u1, . . . ,un) � ( f ∞
i − ε)‖u‖ for ui � 0, ‖u‖ ∈ [H2,+∞) .

Let R = H3 = max
{
2H1,

1
δ H2

}
. If u ∈ K with ‖u‖ = R . Then

min
t∈[l,1]

(
i=n

∑
i=1

ui

)
� δ

i=n

∑
i=1

‖ui‖ = δ ‖u‖ � H2, where δ = min
1�i�n

δi
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Thus, for t ∈ [l,1] , l ∈ (0,1) we have

Ti(u)(t)

= λi

[∫ 1

0
Hαi(t,s)ai(s) fi(u(s))ds+ tαi−1

di

∫ 1

0
φi(s)

(∫ 1

0
G1αi (s,τ)ai(τ) fi(u(τ))dτ

)
ds

]

� λi

[∫ 1

l
Hαi(t,s)ai(s) fi(u(s))ds+ tαi−1

di

∫ 1

l
φi(s)

(∫ 1

l
G1αi (s,τ)ai(τ) fi(u(τ))dτ

)
ds

]

� λi(l)αi−1
[∫ 1

l
Hαi(1,s)ai(s) fi(u(s))ds+ 1

di

∫ 1

l
φi(s)

(∫ 1

l
G1αi(s,τ)ai(τ) fi(u(τ))dτ

)
ds

]

� λi(l)αi−1 ( f ∞
i − ε)‖u‖

[∫ 1

l
Hαi(1,s)ai(s)ds+ 1

di

∫ 1

l
φi(s)

(∫ 1

l
G1αi (s,τ)ai(τ)dτ

)
ds

]

� λi ( f ∞
i − ε)δ ‖u‖Bαi � 1

n( f ∞
i −ε)δBαi

( f ∞
i − ε)δBαi ‖u‖ =

1
n
‖u‖ .

Then

‖T (u)‖ =
i=n

∑
i=1

‖Ti(u)‖ � ‖u‖ .

Therefore, the first condition in Theorem 2.10 is fulfilled. Consequently, the operator
T has a fixed point u = (u1, . . . ,un) ∈ K with r � ‖u‖ � R , then from Lemma 2.9 and
Lemma 2.13, u is a positive solution to FBVP (1.1). The proof is complete. �

In a similar way, we can prove the following results.

THEOREM 3.2. With the notations in (H1)–(H2) . Assume that hypothesis (1.3)
holds and Γ0

i < Γ∞
i . Then the FBVP (1.1) has at least one positive for (λ1,λ2, . . . ,λn)∈

R2,

R2 =
{

(λ1,λ2, . . . ,λn) : Γ0
i
n < λi <

Γ∞
i
n

}
.

In this part of this paper, the vector version of the Krasnosel’skii’s fixed point theo-
rem (Theorem 2.11) is applied to Problem (1.1) providing new results for the existence
of positive solutions to (1.1) and their component-wise localization. In this section our
main result is the following theorem.

THEOREM 3.3. With the notations in (H3)–(H4) . Assume that hypothesis (1.3)
holds and Λ∞

i < Λ0
i . Then the FBVP (1.1) has at least one positive for (λ1,λ2, . . . ,λn)∈

Q1,
Q1 =

{
(λ1,λ2, . . . ,λn) : Λ∞

i < λi < Λ0
i

}
.

Proof. Let
Λ∞

i < λi < Λ0
i , i = 1, . . . ,n.

and choose ε > 0 such that

1
δ 2Bαi (F

∞
i − ε)

� λi �
1

Aαi

(
F0

i + ε
) , i = 1, . . . ,n.
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By the definition of F0
i , there exists H1 �0 such that

fi(u) = fi(u1, . . . ,un) �
(
F0

i + ε
)
ui for ui ∈ [0,H1] ,(i = 1,2, . . . ,n)

Thus, Tiu ⊀ ui if ‖ui‖ = H1 for each i ∈ {1,2, . . . ,n} . To prove this end, assume the
contrary, i.e.

ui ≺ Tiu(t), for ‖ui‖ = H1

then

ui(t) < Ti(u)(t)

= λi

[∫ 1

0
Hαi(t,s)ai(s) fi(u(s))ds+ tαi−1

di

∫ 1

0
φi(s)

(∫ 1

0
G1αi (s,τ)ai(τ) fi(u(τ))dτ

)
ds

]

� λi

[∫ 1

0
Hαi(1,s)ai(s) fi(u(s))ds+ 1

di

∫ 1

0
φi(s)

(∫ 1

0
G1αi (s,τ)ai(τ) fi(u(τ))dτ

)
ds

]

� λi
(
F0

i + ε
)‖ui‖

[∫ 1

0
Hαi(1,s)ai(s)ds+ 1

di

∫ 1

0
φi(s)

(∫ 1

0
G1αi (s,τ)ai(τ)dτ

)
ds

]

= λi
(
F0

i + ε
)
Aαi ‖ui‖ �

(
F0

i + ε
)
Aαi

Aαi

(
F0

i + ε
)H1 = H1, ∀t ∈ (0,1).

So the contradiction ‖ui‖ = H1 < H1 .
Next from the definition of F∞

i , there exists H2 > 0 such that

fi(u) = fi(u1, . . . ,un) � (F∞
i − ε)ui for ui ∈ [H2,+∞) ,(i = 1, . . . ,n) .

Let H3 = max
{
2H1,

1
δ H2

}
. If u = (u1, . . . ,un) ∈ K with ‖ui‖ = H3 , then

min
t∈[l,1]

ui (t) � δ ‖ui‖ � H2, i = 1, . . . ,n.

Thus, T ui � ‖ui‖ if ‖ui‖ = H3 for each i ∈ {1,2, . . . ,n} . To prove this end,
assume the contrary, i.e.

ui(t) � Tiu(t), for some u = (u1, . . . ,un) ∈ K with ‖ui‖ = H3.

Then we would obtain

ui(t) > Ti(u)(t)

= λi

[∫ 1

0
Hαi(t,s)ai(s) fi(u(s))ds+ tαi−1

di

∫ 1

0
φi(s)

(∫ 1

0
G1αi (s,τ)ai(τ) fi(u(τ))dτ

)
ds

]

� λi

[∫ 1

l
Hαi(t,s)ai(s) fi(u(s))ds+ tαi−1

di

∫ 1

l
φi(s)

(∫ 1

l
G1αi (s,τ)ai(τ) fi(u(τ))dτ

)
ds

]

� λit
αi−1

[∫ 1

l
Hαi(1,s)ai(s) fi(u(s))ds+ 1

di

∫ 1

l
φi(s)

(∫ 1

l
G1αi (s,τ)ai(τ) fi(u(τ))dτ

)
ds

]

� λi(l)αi−1(F∞
i −ε)

[∫ 1

l
Hαi(1,s)ai(s)ui(s)ds+ 1

di

∫ 1

l
φi(s)

(∫ 1

l
G1αi (s,τ)ai(τ)ui(τ)dτ

)
ds

]
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� λi(l)2αi−2 (F∞
i −ε)‖ui‖

[∫ 1

l
Hαi(1,s)ai(s)ds+ 1

di

∫ 1

l
φi(s)

(∫ 1

l
G1αi (s,τ)ai(τ)dτ

)
ds

]

� λiδ 2 (F∞
i − ε)‖ui‖Bαi =

1
δ 2Bαi (F

∞
i − ε)

δ 2 (F∞
i − ε)BαiH3 = H3.

So the contradiction
‖ui‖ = H3 > H3.

Therefore, the first condition in Theorem 2.10 is fulfilled. Consequently, the oper-
ator T has a fixed point u = (u1, . . . ,un) with ui ∈ KH1,H3 , (i = 1, . . . ,n) . �

The following existence result can be proved in an analogous way. The proof is
omitted.

THEOREM 3.4. With the notations in (H3)–(H4) . Assume that hypothesis (1.3)
holds and Λ0

i < Λ∞
i . Then the FBVP (1.1) has at least one positive for (λ1,λ2, . . . ,λn)∈

Q2,
Q2 =

{
(λ1,λ2, . . . ,λn) : Λ0

i < λi < Λ∞
i

}
.

REMARK 3.5. Let f1(x,y) = x2 sin(y) and f2(x,y) = y2 sin(x). Then f1 and f2
verify Assumption of Theorem 3.4. We claim that, F0

1 = 0, F0
2 = 0, F∞

1 = +∞ , F∞
2 =

+∞ , consequently Λ0
i < Λ∞

i , (i = 1,2) . Then by Theorem 3.4, Problem (1.1) has at
least one solution for every positive λ1 , λ2 .

However f1 and f2 do not satisfy Assumptions of Theorems 3.1 and 3.2. We
claim that

f 0
1 = 0, f 0

2 = 0, f ∞
1 	= +∞, f ∞

2 	= +∞,

for the reason that for x = 1
y , limx+y→+∞ f1(x,y) = limy→+∞ f1( 1

y ,y) = limy→+∞
sin(y)

y2 =

0, and for y = 1
x , limx+y→+∞ f2(x,y) := limx→+∞ f2(x, 1

x ) = limx→+∞
sin(x)

x2 = 0.

Then Γ∞
i = Γ0

i = 0, (i = 1,2) . Therefore the Theorems 3.1 and 3.2 do not give
results.

4. Application

In the following examples 4.1–4.4 we select n = 2, α1 = α2 = 5
2 , μ1 = 4, μ2 = 2,

η1 = 1
2 , η2 =

1
4

, φ1(t) = exp(−2t) , φ2(t) = exp(−3t) in the system (1.1). It is easy to

see that, d1 = 0.59182, d2 = 0.73737. Choose a1(t) = a2(t)= 1, then Aα1 = 0.29440,
Bα1 = 0.19521, Aα2 = 0.33059, Bα2 = 0.15843.

EXAMPLE 4.1. Let

f1(u,v) = (u+ v)
(

1+19exp

( −1
u+ v

))
,

and

f2(u,v) = (u+ v)
(

1+
99

1+98exp(−u− v)

)
.
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By simple computation, we have f 0
1 = 1, f ∞

1 = 20, f 0
2 = 2, f ∞

2 = 100.
Therefore, 4α1−1Aα1 f 0

1 = 2.3552 < Bα1 f ∞
1 = 3.9042 and 4α2−1Aα2 f 0

2 = 5.2894
< Bα2 f ∞

2 = 15.843. Thus, by Theorem 3.1, the FBVP (1.1) has at least one positive
solution for each (λ1,λ2) ∈ (2.0491,3.3967)× (0.50495,1.5124).

EXAMPLE 4.2. Let

f1(u,v) = (u+ v)(2+38exp(−u− v))

and

f2(u,v) = (u+ v)
(

1+
50

1+ exp(u+ v)

)
.

By simple computation, we have f 0
1 = 40, f ∞

1 = 2, f 0
2 = 26, f ∞

2 = 1.
Therefore, 4α1−1Aα1 f ∞

1 = 4.7104 < Bα1 f 0
1 = 7.8084 and 4α2−1Aα2 f ∞

2 = 2.6447
< Bα2 f 0

2 = 4.1192. Thus, by Theorem 3.2,the FBVP (1.1) has at least one positive
solution for each (λ1,λ2) ∈ (1.0245,1.6984)× (1.9421,3.0249).

EXAMPLE 4.3. Let

f1(u,v) = u

(
exp(−uv)+20exp

(−1
uv

))

and

f2(u,v) = v

(
exp(−uv)+20exp

(−1
uv

))
.

By simple computation, we have F0
1 = 1, F∞

1 = 20, F0
2 = 1, F∞

2 = 20.
Therefore, 4α1−1Aα1F

0
1 = 2.3552 < Bα1F

∞
1 = 3.9042 and 4α2−1Aα2F

0
2 = 2.6447

< Bα2F
∞
2 = 3.1686 Thus, by Theorem 3.3, the FBVP (1.1) has at least one positive

solution for each (λ1,λ2) ∈ (2.0491,3.3967)× (2.5248,3.0249).

EXAMPLE 4.4. Let

f1(u,v) = u

(
2+

38
1+uv

)

and

f2(u,v) = v

(
2+

38
1+uv

)
.

By simple computation, we have F0
1 = 40, F∞

1 = 2, F0
2 = 40, F∞

2 = 2.
Therefore, 4α1−1Aα1F

∞
1 = 4.7104 < Bα1F

0
1 = 7.8084 and 4α2−1Aα2F

∞
2 = 5.2894

< Bα2F
0
2 = 6.3372. Thus, by Theorem 3.4, the FBVP (1.1) has at least one positive

solution for each (λ1,λ2) ∈ (1.0245,1.6984)× (1.2624,1.5124).
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