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SOLVABILITY OF A LINEAR SYSTEM WITH A

NONLOCAL TERM IN A BOUNDARY CONDITION

NATALIYA VASYLYEVA

Abstract. In this paper, we analyze a linear system for the Poisson equations with a boundary
condition comprising the fractional derivative in time and the time dependent right-hand sides. A
system of this type arises under studying the Muskat boundary problem with surface tension in
the case of subdiffusion. First, we prove existence and uniqueness of the solution to this problem
in the Hölder classes, and provide the coercive estimates of the solution. Second, we apply the
obtained results together with the contraction theorem to establish the one-to-one local classi-
cal solvability to the Muskat problem governed by anomalous diffusion in the case of nonzero
surface tension of a free boundary.
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