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Abstract. In this paper, we analyze a linear system for the Poisson equations with a boundary
condition comprising the fractional derivative in time and the time dependent right-hand sides. A
system of this type arises under studying the Muskat boundary problem with surface tension in
the case of subdiffusion. First, we prove existence and uniqueness of the solution to this problem
in the Hölder classes, and provide the coercive estimates of the solution. Second, we apply the
obtained results together with the contraction theorem to establish the one-to-one local classi-
cal solvability to the Muskat problem governed by anomalous diffusion in the case of nonzero
surface tension of a free boundary.

1. Introduction

Boundary value problems with fractional time derivatives are among central ob-
jects of the modern theory of partial differential equations. It deals with various appli-
cations in physics (dynamical processes in fractals and viscoelastic media [10], [20],
[21]), medicine [26], [28], chemistry [16], [34] and with the rich mathematical content
of this subject see, for example, the monographs [11], [24] and references therein.

Note that the presence of the fractional derivative in time in equations or bound-
ary conditions means that boundary value problems describe the anomalous diffusion
(the diffusive motion cannot be modelled as the standard Brownian motion [4], [21]).
The signature of the anomalous diffusion is that the mean square displacement of the
diffusing species 〈(Δx)2〉 scales as a nonlinear power law in time, i.e. 〈(Δx)2〉 ∼ tν ,
where ν is a nonnegative number. If ν ∈ (0,1) , this is referred to as a subdiffusion;
if ν = 1, we have the case of a normal diffusion which is described with derivatives of
integer orders.

In this paper we turn to solvability of the linear system with a fractional temporal
derivative in the boundary condition and its application to study of a “fractional” free
boundary problem.
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Let k , a0 , c0 and ai j, i, j = 1,n−1, be some given constants, k �= 1, k , a0 ,ai j >

0; and a1 = {a1
1, . . . ,a

n−1
1 } , c1 = {c1

1, . . . ,c
n−1
1 } be given vectors; Rn

+ = {(x′,xn) :
x′ ∈ Rn−1,xn > 0}, Rn− = {(x′,xn) : x′ ∈ Rn−1,xn < 0}, Rn±T = Rn± × (0,T ), Rn−1

T =
Rn−1× (0,T ) . Denote by 〈·, ·〉 the inner product, and ∇x′ = ( ∂

∂x1
, . . . , ∂

∂xn−1
) .

We look for a classical solution (u+(x,t),u−(x,t),ρ(x′,t)) of the following linear
system with the fractional temporal derivative in the boundary condition:

Δxu± = f±0 (x,t) in Rn
±T ; (1.1)

u−−u+−
n−1

∑
i j=1

ai j
∂ 2ρ
∂xi∂x j

+ 〈c1,∇x′ρ〉+ c0ρ = f1(x′,t) on R
n−1
T ; (1.2)

Dνt ρ+a0
∂u−
∂ n

= f (x′,t) on R
n−1
T , ν ∈ (0,1); (1.3)

∂u−
∂ n

− k
∂u+

∂ n
− k〈a1,∇x′(u−−u+)〉 = f2(x′,t) on R

n−1
T ; (1.4)

ρ(x′,0) = 0 in Rn−1, u±(x,0) = 0 in Rn
±, (1.5)

where Δx =
n
∑
i=1

∂ 2

∂x2
i
, n is the unit normal to Rn−1 directed in Rn−; f±0 , f , f j , j = 1,2,

are some given functions:

f±0 , f , f j ≡ 0 i f either t = 0 or |x| > R0, (1.6)

for some positive number R0; Dνt denotes the Caputo fractional derivative with respect
to t and is defined by (see, for example, (2.4.6) in [11])

Dνt w(·, t) =
1

Γ(1−ν)
∂
∂ t

t∫
0

w(·,τ)dτ
(t− τ)ν − w(·,0)

Γ(1−ν)tν , ν ∈ (0,1), (1.7)

where Γ(ν) is the Gamma function. If ν = 1, D1
t w(·, t) := ∂w(·,t)

∂ t .
The considered system has two peculiarities. The first is the presence of the frac-

tional derivative in time of the unknown function ρ in boundary condition (1.3). Thus,
this condition looks like a fractional dynamic boundary condition (see e.g. [12]). More-
over, as it follows from definition (1.7), the term Dνt ρ is nonlocal. Next peculiarity
deals with the structure of system (1.1)–(1.5): the unknown functions u+, u−, ρ are
connected with each other only through boundary conditions (1.2)–(1.4), and the func-

tion ρ is defined only on the boundary R
n−1
T .

Solvability of systems like (1.1)–(1.5) in the case of the normal diffusion was
studied by a lot of authors (see e.g. [7], [8], [3] and references therein). As for the sub-
diffusion case, ν ∈ (0,1), Kiran and Tatar [12] analyzed existence and nonexistence
of local and global solutions for systems of elliptic equations with fractional dynamic
boundary conditions. In the case of absence the oldest spatial derivatives of the de-
sired function ρ (i.e., ai j = 0, c j

1 = 0, i, j = 1,n−1) in boundary condition (1.2), the
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classical solvability of (1.1)–(1.5) was proved in [31]. To the best of our knowledge,
there are no results concerned investigation of system (1.1)–(1.5) in the general case,
i.e. ai j �= 0, c j

1 �= 0, i, j = 1,n−1.

Moreover, analysis of problem (1.1)–(1.5) is important for investigation of the two-
phase “fractional” Hele-Shaw problem (or “fractional” Muskat problem) in the case of
nonzero surface tension of a free boundary. We recall that in the classical case (i.e. in
the case of the normal diffusion) this free boundary problem was proposed by Muskat
in 1934 [22]. This problem describes the evolution of two immiscible incompressible
fluids (for instance, water and oil). The interface ϒ(t) between these fluids is called
as a free boundary (or a moving boundary). The motion of fluids is governed by the
Darcy law, stating that the velocity of the moving boundary Vnt := 〈D1

t ϒ(t), nt〉 , nt

is the unit normal to ϒ(t) , is proportional to the pressure gradients of fluids. In the
case of the subdiffusion (ν ∈ (0,1)), the Muskat problem governed by “fractional”
Darcy low which is formulated in [33], [23] and means that the “fractional” velocity
V νnt

:= 〈Dνt ϒ(t), nt〉 is proportional to the pressure gradients. The mathematical model
of the “fractional” Muskat problem is represented by (5.1)–(5.5) (see Subsection 5.1 in
this paper).

Note that the one-phase “fractional” Hele-Shaw problem with zero and nonzero
surface tension of moving boundary was analyzed in [17], [18], [32], [29], [30]. In
particular, the existence and uniqueness of a classical solution to this problem locally
in time were proved in [29], [30]. As for the Muskat problem subjected by the subd-
iffusion, its local classical solvability was obtained in the case of zero surface tension
in [31]. To our knowledge, there are no advances yet about fractional Muskat problem
with nonzero surface tension.

To show the solvability of such problem, we adapt the classical approach which
is used for a moving boundary problem in the case of the normal diffusion (see, e.g.
[1]) to the subdiffusion case. We reduce the “fractional” free boundary problem to a
nonlinear problem in a fixed domain; then linearize this problem and obtain the one-to-
one local classical solvability of the linearized problem. After that we use this result for
the reduction of the nonlinear problem to a fixed point theorem. On this route we have
to solve many technically difficulties which are related to the nonlocal behavior of the
moving boundary velocity. Significant part of this research is connected with system
like (1.1)–(1.5) which is the principal model problem and the nonlinear problem inherits
the main features of (1.1)–(1.5).

The paper is organized as follows. In Section 2 we define the function spaces and
formulate the main results related with solvability of system (1.1)–(1.5), Theorem 2.1.
In Section 3, using Fourier and Laplace transformations, we obtain the integral repre-
sentation for solution of (1.1)–(1.5). Section 4 is devoted to proof of Theorem 2.1. To
this end we obtain the corresponding coercive estimates for the constructed solution in
Section 3. Note that Lemma 4.1 plays the significant role in this process. In Section
5, following the above stated, we study the solvability of the “fractional” Muskat prob-
lem with surface tension. The principal result of this investigation is represented by
Theorem 5.1.
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2. Function spaces and main result

In order to analyze problems (1.1)–(1.4) and (5.1)–(5.5) we need some definitions
and auxiliary results.

Let D be a given domain in Rn, DT = D× (0,T ); x, x be any points in D,
x �= x , t,τ ∈ [0,T ], t �= τ; α,β ∈ (0,1) , l be an integer nonnegative number. In this
paper we will use the following function spaces: C([0,T ],Cl+α (D)) , Cl+α ,β ,α(DT ) ,
Cl+α , l+α

3 ν (DT ) . Note that the spaces C([0,T ],Cl+α (D)) are used by many authors,
and their definitions and properties can be found, for instance, in [19].

Let

[w](α ,β )
DT

= sup
(x,x)∈D,(t,τ)∈[0,T ]

|w(x,t)−w(x ,t)−w(x,τ)+w(x,τ)|
|x− x |α |t− τ|β ,

and define function spaces Cl+α ,β ,α(DT ) .

DEFINITION 2.1. The Banach space Cl+α ,β ,α(DT ) is the set of functions w(x,t)
with the finite norm:

‖w‖Cl+α,β ,α (DT ) =
l

∑
| j|=0

{sup
DT

|Dj
xw|+ 〈Dj

xw〉(α)
x,DT

+ 〈Dj
xw〉(β )

t,DT
+[Dj

xw](α ,β )
DT

},

where 〈w〉(α)
x,DT

and 〈w〉(β )
t,DT

are Hölder constants of a function w(x,t) in x and t , re-
spectively.

Note that classes Cl+α , l+α
2 ν (DT ) , l = 0,3 and ν = 1, coincide with usual parabolic

Hölder spaces (see (1.10)–(1.12) in Chapter 3 in [14]).

DEFINITION 2.2. We will say that the function w(x,t)∈Cl+α , l+α
3 ν(DT ), l = 0,3,

ν ∈ (0,1), iff the following norms are finite:

‖w‖
Cl+α, l+α3 ν (DT )

= ‖w‖C([0,T ],Cl+α (D)) +
l

∑
| j|=0

〈Dj
xw〉(

l+α−| j|
3 ν)

t,DT
, if [l/3] = 0,

where [l/3] denotes the integer part of l/3;

‖w‖
C3+α, 3+α

3 ν (DT )
= ‖w‖C([0,T ],C3+α (D)) +

3

∑
| j|=1

〈Dj
xw〉(

3+α−| j|
3 ν)

t,DT

+‖Dνt w‖C([0,T ],Cα (D)) + 〈Dνt w〉(
α
3 ν)

t,DT
.

In a similar way we introduce the spaces Cl+α , l+α
3 ν (∂DT ) , ∂DT = ∂D× [0,T ] .

Moreover, we will use the usual Hölder spaces Cl+α(D) and Cl+α(∂D) , their defini-
tions can be found, for example, in [15].
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We define classes C
0

k+α ,β ,α(DT ), as the subspaces of Ck+α ,β ,α(DT ) such that

Dj
xw(x,0) = 0, | j| = 0,k .

Let d be a smooth surface and dT = d× (0,T ) .

DEFINITION 2.3. We will say w ∈ P4+α
ν (dT ) iff w ∈ C([0,T ],C4+α(d)) and

Dxw ∈C3+α , 3+α
3 ν (dT ) , Dνt w ∈C1+α , 1+α

3 ν (dT ) :

‖w‖P4+α
ν (dT ) := ‖w‖C([0,T ],Cα (d)) +‖Dxw‖

C3+α, 3+α
3 ν (dT )

+‖Dνt w‖
C1+α, 1+α

3 ν (dT )
.

Throughout the paper we will need in the interpolation inequality (see Corollary
1.2.18 [19]):

‖w‖Cl1+a(l2−l1)(D) � C‖w‖a
Cl2(D)

‖w‖1−a
Cl1 (D)

, (2.1)

where ∂D ∈Cl2 , a ∈ (0,1), 0 � l1 < l2 .
One of the main results of our paper is the following.

THEOREM 2.1. Let α,ν ∈ (0,1) , and condition (1.6) hold.

(i) If f±0 ∈ Cα , αν3 ,α(R
n
±T ), f1 ∈ C2+α , αν3 ,α(R

n−1
T ), f , f2 ∈ C1+α , αν3 ,α(R

n−1
T ). Then

there exists a unique classical solution (u+,u−,ρ) of problem (1.1)–(1.5): u± ∈
C2+α , αν3 ,α(R

n
±T ), ρ ∈C4+α , αν3 ,α(R

n−1
T ); and the following estimate holds

‖u+‖
C2+α,αν3 ,α (R

n
+T )

+‖u−‖
C2+α, αν3 ,α (R

n
−T )

+‖ρ‖
C4+α,αν3 ,α (R

n−1
T )

+‖Dνt ρ‖C1+α, αν3 ,α (R
n−1
T )

� C1[‖ f +
0 ‖

Cα, αν3 ,α (R
n
+T )

+‖ f−0 ‖
Cα, αν3 ,α (R

n
−T )

+‖ f1‖
C2+α, αν3 ,α (R

n−1
T )

+‖ f‖
C1+α,αν3 ,α (R

n−1
T )

+‖ f2‖
C1+α, αν3 ,α (R

n−1
T )

]. (2.2)

(ii) If f ∈C1+α , 1+α
3 ν (R

n−1
T ), and

f±0 , f1, f2 ≡ 0, (2.3)

then there is a unique classical solution (u+,u−,ρ) of problem (1.1)–(1.5): u± ∈
C2+α , 2+α

3 ν(R
n
±T ), ρ ∈ P4+α

ν (Rn−1
T ), and the following estimate holds

‖u+‖
C2+α, 2+α

3 ν (R
n
+T )

+‖u−‖
C2+α, 2+α

3 ν (R
n
−T )

+‖ρ‖P4+α
ν (Rn−1

T )

� C2‖ f‖
C1+α, 1+α

3 ν (R
n−1
T )

, (2.4)

where Ci , i = 1,2, are positive constants independent of the right-hand sides of
(1.1)–(1.5).
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Note that one can easily see that statement (i) from Theorem 2.1 should be proven
in the case of assumption (2.3). Indeed, applying results from [27] to the following
transmission problem:

Δxu± = f±0 (x,t) in Rn
±T ; u−−u+ = f1(x′,t) on R

n−1
T ;

∂u−
∂ n

− k
∂u+

∂ n
− k〈a1,∇x′(u−−u+)〉 = f2(x′,t) on R

n−1
T , u±(x,0) = 0 in Rn

±,

we can reduce problem (1.1)–(1.5) with arbitrary right-hand sides to the problem with
the right-hand sides satisfying (2.3). Thus, we represent below the proof of Theorem
2.1 in the case of (2.3).

First of all we analyze problem (1.1)–(1.5) in the case of

c0 = 0, cl
1 = 0, l = 1,n−1. (2.5)

Henceforward the letter C will be used to denote different constants encountered
in our formulas.

3. Integral representation of the solution to problem (1.1)–(1.5)
in the case of (2.3), (2.5)

Due to the quadratic form connected with the Laplace equation is positive, we can
choose coordinates x′ such that the form ∑n−1

i, j=1 ai jζiζ j , ∀ζ ∈ Rn−1, is reduced to the
diagonal view. Thus, we believe that ai j = 0, if i �= j .

Let ξ = (ξ1, . . . ,ξn−1), |ξ |=
√
∑n−1

i=1 ξ 2
i . Denote by w̃(ξ ,xn,t) the Fourier trans-

form of w(x′,xn, t) , and by ŵ(·, p) the Laplace transform of w(·,t). Throughout in the

paper, we will use the notation “∗” instead of “˜̂”.
In virtue of (1.6), we can extend the function f (x′,t) by 0 for t < 0, and then

apply the Fourier and Laplace transformations to problem (1.1)–(1.5).
Some simple calculations allow us to deduce

ρ∗(ξ , p) =
(k+1) f ∗(ξ , p)

(k+1)pν+8a0kπ3
n−1
∑
j=1

a j jξ 2
j |ξ |− i8a0kπ3〈a1,ξ 〉

, (3.1)

u∗+(ξ ,xn, p) =
4π2

k+1

n−1

∑
j=1

a j jξ 2
j ρ∗(ξ , p)e−2π |ξ |xn [|ξ |+ ik〈a1,ξ 〉]|ξ |−1, (3.2)

u∗−(ξ ,xn, p) = −4π2k
k+1

n−1

∑
j=1

a j jξ 2
j ρ∗(ξ , p)e2π |ξ |xn [|ξ |− i〈a1,ξ 〉]|ξ |−1. (3.3)

Let us introduce the following notations:

A0 =
{

8a0kπ3

k+1
a11, . . . ,

8a0kπ3

k+1
an−1n−1

}
, A1 =

{
8a0kπ3

k+1
a1

1, . . . ,
8a0kπ3

k+1
an−1

1

}
,
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K+(y′,xn) =
1

k+1

∫
Rn−1

[1+ ik〈a1,ξ 〉|ξ |−1]exp{−2π(|ξ |xn− i〈ξ ,y′〉)}dξ , (3.4)

K−(y′,xn) =
−k

k+1

∫
Rn−1

[1− i〈a1,ξ 〉|ξ |−1]exp{2π(|ξ |xn + i〈ξ ,y′〉)}dξ , (3.5)

K (y′,η) =
∫

Rn−1

exp{−η〈A0ξ ,ξ 〉|ξ |+ i〈A1,ξ 〉η+2iπ〈ξ ,y′〉}dξ , (3.6)

G (y′, t) =
∞∫

0

W (−ηt−ν ;−ν,0)
t

K (y′,η)dη , (3.7)

where W (z;b,d) is the Wright function (see its definition, e.g., in [6] or [20]).
After that, we apply the inverse Laplace and Fourier transformations to (3.1)–(3.3)

and get

ρ(x′,t) =
t∫

0

dτ
∫

Rn−1

f (y′,t)G (x′ − y′,t − τ)dy′, (3.8)

u±(x′,xn,t) =
∫

Rn−1

K±(x′ − y′,xn)
n−1

∑
i=1

aii
∂ 2ρ
∂y2

i

(y′,t)dy′. (3.9)

To obtain representations (3.8) and (3.9), we used the following equality

1
pν + 〈A0ξ ,ξ 〉|ξ |− i〈A1,ξ 〉 =

∞∫
0

e−η pν−η〈A0ξ ,ξ 〉|ξ |+i〈A1,ξ 〉ηdη , if Repν > 0,

which is easily verified.
By virtue of the smoothness properties of the function f (x,t) and its behavior at

the infinity, all above performed operations are justified.

4. Proof of Theorem 2.1

4.1. Estimates of the constructed solution (u+(x′,xn,t),u−(x′,xn,t),ρ(x′, t))

First we define the following Riemann-Liouville derivative of a function w(·,t)
with respect to t (see, e.g., (2.1.8) [11]) as:

∂θt w(·,t) :=
1

Γ(1−θ )
∂
∂ t

∫ t

0

w(·,τ)
(t − τ)θ dτ, θ ∈ (0,1). (4.1)

As usual in the potential theory, to evaluate the functions u±(x,t) and ρ(x′,t) it is
necessary to describe well the properties of the kernels G (x′,t) (and hence K (x′,η))
and K±(x′,xn) .



206 N. VASYLYEVA

LEMMA 4.1. Let α, ν ∈ (0,1); k > 0; y′ ∈ Rn−1 , y′′ ∈ Rn−2 , y′′ = (y1, . . . ,yl−1,
yl+1, . . . ,yn−1) , l = 1,n−1, η ∈ (0,+∞), t ∈ [0,T ] , ε and A be some positive num-
bers. Then functions K (y′,η) and G (y′,t) which are given by (3.6), (3.7) satisfy the
following inequalities:
(i)

|Dm
y′K (y′,η)| � C

exp

(
−A∑n−1

j=1
|y j+

Aj
1η
2π |

η1/3

)
η

|m|+n−1
3

, |m| =
n−1

∑
j=1

mj, |m| = 0,1,2, . . . ; (4.2)

(ii) ∫
Rn−1

K (y′,η)dy′ = 1; (4.3)

∫
Rn−1

D2k+1
y′ K (y′,η)dy′ = 0, k = 0,1,2, . . . ; (4.4)

∫
Rn−1

G (y′,t)dy′ =
tν−1

Γ(ν)
; (4.5)

(iii)

K (y′,0) =
n−1

∏
j=1
δ (−y j) in the distributions sense, (4.6)

where δ (y) is the Dirac delta function;
(iv)

I1 :=
t∫

0

dτ
∫

Rn−1
+

dy′
+∞∫
0

∣∣∣∣yi − Ai
1η
2π

∣∣∣∣α |D3
y′K (y′ −A1η/2π ,η)||W(−ητ−ν ;−ν,0)|dη

τ

� C[t
να
3 + tνα ], i = 1,n−1; (4.7)

(v)

I2 :=
t∫

0

dτ
∫

Rn−2
+

dy′′
+∞∫
0

dη |W (−ητ−ν ;−ν,0)|τ−1

ε∫
0

|D3
y′K (y′ −A1η/2π ,η)|

×
∣∣∣∣y j − Aj

1η
2π

∣∣∣∣αdyi � Cεα , i, j = 1,n−1; (4.8)

I3 :=
t∫

0

dτ
∫

Rn−2
+

dy′′
+∞∫
ε

dyi

+∞∫
0

|W (−ητ−ν ;−ν,0)|τ−1|D4
y′K (y′ −A1η/2π ,η)|

×
∣∣∣∣y j − Aj

1η
2π

∣∣∣∣αdη � Cεα−1, i, j = 1,n−1; (4.9)
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I4 :=
t∫

0

dτ
+∞∫
0

dη |W (−ητ−ν ;−ν,0)|τ−1
∫

Rn−2
+

∣∣∣∣
∫

|y j |>ε
D3

y′K (y′ −A1η/2π ,η)dy j

∣∣∣∣dy′′

� C, j = 1,n−1; (4.10)

(vi)

I5 :=
t∫

0

dτ
∫

Rn−1
+

dy′
+∞∫
0

∣∣∣∣yi − Ai
1η
2π

∣∣∣∣α |K (y′ −A1η/2π ,η)||W(−ητ−ν ;−ν,−ν)| dη
τ1+ν

� C[t
να
3 + tνα ], i = 1,n−1; (4.11)

(vii)

I6 :=
t∫

0

dτ
∫

Rn−2
+

dy′′
+∞∫
0

dη |W (−ητ−ν ;−ν,−ν)|τ−1−ν
ε∫

0

|K (y′ −A1η/2π ,η)|

×
∣∣∣∣y j − Aj

1η
2π

∣∣∣∣αdyi � Cεα , i, j = 1,n−1; (4.12)

I7 :=
t∫

0

dτ
∫

Rn−2
+

dy′′
+∞∫
ε

dyi

+∞∫
0

|W (−ητ−ν ;−ν,−ν)|τ−1−ν |Dy′K (y′ −A1η/2π ,η)|

×
∣∣∣∣y j − Aj

1η
2π

∣∣∣∣αdη � Cεα−1, i, j = 1,n−1; (4.13)

I8 :=
t∫

0

dτ
+∞∫
0

dη |W (−ητ−ν ;−ν,−ν)|τ−1−ν
∫

Rn−2
+

∣∣∣∣
∫

|y j |>ε
K (y′ −A1η/2π ,η)dy j

∣∣∣∣dy′′

� C, j = 1,n−1. (4.14)

Proof. Repeating the arguments from the proof of Lemma 4.2 [29], one can easily
obtain statements (i)− (iii) from this Lemma. To get inequality (4.7), we use (4.2) and
deduce

I1 �C

t∫
0

dτ
∫

Rn−1
+

dy′
+∞∫
0

[yαi +ηα ]
|W (−ητ−ν ;−ν,0)|

τη
2+n
3

exp

{
−A

n−1

∑
j=1

y j

η1/3

}
dη . (4.15)

After that performing the consecutive change of variables:

rk = yk/η1/3, k = 1,n−1; (4.16)

ητ−ν = ρ , (4.17)
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in the right-hand sides of (4.15), we deduce

I1 � C
∫

Rn−1
+

exp{−A
n−1

∑
j=1

r j}dr′
t∫

0

dτ
+∞∫
0

[rαi τ
αν
3 −1ρα/3 +ραταν−1]

|W (−ρ ;−ν,0)|dρ
ρ

� C

t∫
0

dτ
+∞∫
0

[τ
αν
3 −1ρα/3 +ραταν−1]W (−ρ ;−ν,1−ν)dρ . (4.18)

Note that the last inequality in (4.18) follows from the next equality for the Wright
functions (see, e.g., (2.2.5) in [24] or (F7) in [20]):

W (−z;−b,d−1)+ (d−1)W(−z;−b,d) = bzW (−z;−b,d−b). (4.19)

Then, applying inequality (20) from [29] to the inner integral in the last inequality of
(4.18), we get (4.7).

As for (4.8), simple calculations lead to

I2 � C

[ t∫
0

dτ
∫

Rn−2
+

dy′′
+∞∫
0

dη
|W (−ητ−ν ;−ν,0)|

τ

ε∫
0

yαj |D3
y′K (y′ −A1η/2π ,η)|dyi

+
t∫

0

dτ
∫

Rn−2
+

dy′′
+∞∫
0

dη |W (−ητ−ν ;−ν,0)|τ−1

ε∫
0

|D3
y′K (y′−A1η/2π ,η)|ηαdyi

]

≡ C[I21 +I22]. (4.20)

Inequality (4.2) together with the arguments from the proof of Lemma 4.2 [29] allow
us to conclude

|I21| � Cεα . (4.21)

To estimate I22 we apply inequality (4.2) together with change of variables (4.16) for
k �= i and obtain

I22 � C

t∫
0

dτ
∫

Rn−2
+

dr′′exp

{
−A

n−1

∑
j=1, j �=i

r j

} ε∫
0

dyi

+∞∫
0

ηα−4/3exp{−Ayi/η1/3}

×|W (−ητ−ν ;−ν,0)|
τ

dη . (4.22)

Then equality (4.19) together with simple inequality:

0 < xγe−Ax � C, γ > 0, x ∈ R1
+, (4.23)

lead to

I22 � const.

ε∫
0

yα−1
i dyi

t∫
0

dτ
+∞∫
0

η2α/3τ−1−νW (−ητ−ν ;−ν,1−ν)dη . (4.24)
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At last, using change of variables (4.17) together with equality (22) from [29], one can
deduce (4.8) from (4.20)–(4.24).

Note that the estimate of the term

I31 :=
t∫

0

dτ
∫

Rn−2
+

dy′′
+∞∫
ε

dyi

+∞∫
0

|W (−ητ−ν ;−ν,0)|
τ

|D4
y′K (y′ −A1η/2π ,η)|yαj dη

has been obtained in Lemma 4.2 [29]:

|I31| � Cεα−1. (4.25)

Thus, to prove inequality (4.9), it is enough to evaluate the term

I32 :=
t∫

0

dτ
∫

Rn−2
+

dy′′
+∞∫
ε

dyi

+∞∫
0

|W (−ητ−ν ;−ν,0)|
τ

|D4
y′K (y′ −A1η/2π ,η)|ηαdη .

To this end, we apply again inequality (4.2) together with the change of variables (4.16)
with k �= i and get

I32 � C
∫

Rn−2
+

exp

{
−A

n−1

∑
j=1, j �=i

r j

}
dr′′

t∫
0

dτ
+∞∫
0

dη
+∞∫
ε

ηα−5/3τ−1e−Ayi/η1/3

×|W (−ητ−ν ;−ν,0)|dyi

� C

t∫
0

dτ
+∞∫
0

ηα−4/3τ−1e−Aε/η1/3 |W (−ητ−ν ;−ν,0)|dη

� C

t∫
0

dτ
+∞∫
0

[ε/η1/3]α−1ηα−4/3τ−1|W (−ητ−ν ;−ν,0)|dη . (4.26)

Here we again applied inequality (4.23).
Next equality (4.19) together with change of variable (4.17) allow us to deduce

I32 � Cεα−1

t∫
0

τ−1+2αν/3dτ
+∞∫
0

ρ2α/3W (−ρ ;−ν,1−ν)dρ � Cεα−1. (4.27)

Note that to get the last inequality in (4.27), we used estimate (22) from [29]. Thus,
(4.25) and (4.27) provide (4.9).

As for inequality (4.10), its proof is analogous the arguments of estimate (84) from
[29].

At last, we remark that statements (vi) and (vii) of this lemma are proved as well
as statements (iv) and (v) . Thus, the proof of Lemma 4.1 is finished. �

Next we repeat the arguments from Section 7 [30], Lemma 4.3 [29] and apply
results of Lemma 4.1 to establish the following statements.
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PROPOSITION 4.1. Let α, ν ∈ (0,1) , conditions (1.6), (2.3), (2.5) hold, and f ∈
C([0,T ], C1+α(Rn−1)) . Then the functions ρ(x′,t) and u−(x,t), u+(x,t) which are
represented with (3.8) and (3.9) satisfy conditions (1.2)–(1.5). Moreover, there are the
following representations:

Dνt ρ(x′, t) = f (x′, t)+
∫ t

0
dτ

∫
Rn−1

[ f (x′ −y′,t−τ)− f (x′,t−τ)]∂ντ G (y′,τ)dy′, (4.28)

where

∂ντ G (y′,τ) =
+∞∫
0

τ−1−νW (−ητ−ν ;−ν,−ν)K (y′,η)dη ;

D4
x′ρ(x′, t)=

∫ t

0
dτ

∫
Rn−1

[Dx′−y′ f (x
′−y′,t−τ)−Dx′ f (x

′, t−τ)]D3
y′G (y′,τ)dy′; (4.29)

∂ 2u±
∂xl∂x j

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−1

∑
i=1

aii

∫
Rn−1

[
∂ 3ρ(x′ − y′,t)
∂y2

i ∂yl
− ∂

3ρ(x′,t)
∂x2

i ∂xl

]
∂K±
∂y j

(y′,xn)dy′, l, j �= n;

n−1

∑
i=1

aii

∫
Rn−1

[
∂ 3ρ(x′ − y′,t)
∂y2

i ∂yl
− ∂

3ρ(x′,t)
∂x2

i ∂xl

]
∂K±
∂xn

(y′,xn)dy′, l �= n, j = n;

n−1

∑
i,m=1

aii

∫
Rn−1

[
∂ 3ρ(x′ − y′,t)
∂y2

i ∂ym
− ∂

3ρ(x′,t)
∂x2

i ∂xm

]
∂K±
∂ym

(y′,xn)dy′, j = l = n,

(4.30)
for every j, l = 1,n.

Then Lemma 4.1, Proposition 4.1 and Lemma 3.1 [30] together with results of
Chapter 3 [15] allow us to deduce the following.

LEMMA 4.2. Let conditions of Proposition 4.1 hold. Then there is the following
inequality

‖Dνt ρ‖C([0,T ];C1+α (Rn−1)) +‖ρ‖C([0,T];C4+α (Rn−1)) � C‖ f‖C([0,T ];C1+α (Rn−1)). (4.31)

Note that to evaluate the term ‖Dνt ρ‖C([0,T ];C1+α (Rn−1)) we used statements (vi)
and (vii) from Lemma 4.1. As for the estimate of the second term in the left-hand side
in (4.31), we applied statement (iv) and (v) from Lemma 4.1.

To infer the same result for the functions u± which are given with (3.9), we use
Lemma 4.2 together with results from [27] and deduce.

LEMMA 4.3. Let conditions of Proposition 4.1 hold. Then

‖u+‖C([0,T ];C2+α (R
n
+)) +‖u−‖C([0,T ];C2+α (R

n
−)) � C‖ f‖C([0,T ];C1+α (Rn−1)). (4.32)

Next step of our investigation is a proof of the corresponding estimates to the
functions ρ(x′, t), Dνt ρ(x′,t), u±(x,t) with respect to time.
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PROPOSITION 4.2. Let conditions of Proposition 4.1 hold. Then there is the fol-
lowing estimate

4

∑
|m|=2

〈Dm
x′ρ〉

( 4+α−|m|
3 ν)

t,Rn−1
T

� C‖ f‖C([0,T ];C1+α (Rn−1)). (4.33)

Proof. Estimate (4.33) is a simple consequence of interpolation inequality (2.1)

and Lemma 4.2. Indeed, let us evaluate the term 〈D4
x′ρ〉

( α3 ν)
t,Rn−1

T
. To this end, we put in

(2.1)

W (x′) := ρ(x′, t1)−ρ(x′,t2), l1 := 1+α, l2 := 4+α, l1 +a(l2− l1) := 4,

and get for every t1, t2 ∈ [0,T ] :

‖D4
x′ρ(·, t1)−D4

x′ρ(·,t2)‖C(Rn−1) � C[‖ρ(·,t1)−ρ(·,t2)‖C4+α (Rn−1)]
3−α

3

×[‖ρ(·,t1)−ρ(·,t2)‖C1+α (Rn−1)]
α/3. (4.34)

Then, inequalities (11), (12) from [29] together with (4.31) lead to

‖D4
x′ρ(·, t1)−D4

x′ρ(·,t2)‖C(Rn−1) � C[2‖ρ‖C([0,T];C4+α (Rn−1))]
3−α

3 |t1 − t2|αν/3

×[‖Dνt ρ‖C([0,T ];C1+α (Rn−1))]
α/3

� C|t1− t2|αν/3‖ f‖C([0,T ];C1+α (Rn−1)). (4.35)

The last inequality in (4.35) guarantees estimate (4.33) for 〈D4
x′ρ〉

( α3 ν)
t,Rn−1

T
.

As for evaluating of the rest term in the left-hand side of (4.33), they are estimated
with the same way. �

We need the following result in order to get the estimate of Dνt ρ , u± with respect
to time.

PROPOSITION 4.3. Let α, ν ∈ (0,1), then the functions K±(y′,xn) given by
(3.4) and (3.5) satisfy estimates∫

Rn−1

|K±(y′,xn)|dy′ � C. (4.36)

Proof. Let us show (4.36) for the function K+(y′,xn) . The change of variables:
ξixn = μi, i = 1,n−1, in (3.4) leads to

K+(y′,xn) =
1

xn−1
n (k+1)

∫
Rn−1

[
1+

ik〈a1,μ〉
|μ |

]
exp{−2π [|μ |− i〈μ ,y′/xn〉]}dμ . (4.37)
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Since the function

[
1+ ik〈a1,μ〉

|μ|

]
exp{−2π [|μ |− i〈μ ,y′/xn〉]} vanishes if |μ j| → +∞ ,

j = 1,n−1; and one does not have any poles, we can calculate the integrals in (4.37)
along the shifted contours: μ j = λ j ± iÃ, j = 1,n−1, Ã is a positive constant. Then
we have

K+(y′,xn) = const.

exp{−A
n−1
∑
j=1

|y j|/xn}

xn−1
n

∫
Rn−1

[
1+

ik〈a1,λ ± iÃ〉
|λ ± iÃ|

]

×exp{−2π [|λ ± iÃ|+ i〈λ ,y′/xn〉]}dλ , A = Ã2π . (4.38)

One can easily verify that the module of the integrals in (4.38) is bounded uniformly in
y′ and xn . Thus, we have got

∫
Rn−1

|K+(y′,xn)|dy′ � const.
∫

Rn−1

exp{−A
n−1
∑
j=1

|y j|/xn}

xn−1
n

dy′. (4.39)

Finally, performing the change of variables: y j/xn = z j, j = 1,n−1, we deduce esti-
mate (4.36) for the function K+(y′,xn) .

As for K−(y′,xn) , its estimate is obtained with the same way. �

LEMMA 4.4. Let conditions of Proposition 4.1 hold.

(i) If f ∈C1+α , 1+α
3 ν (R

n−1
T ) , then there is the following estimate:

2

∑
|m|=0

〈Dm
x u±〉(

2+α−|m|
3 ν)

t,Rn±T
+

1

∑
|m|=0

〈Dm
x′D

ν
t ρ〉(

1+α−|m|
3 ν)

t,Rn−1
T

� C‖ f‖
C1+α, 1+α

3 ν (R
n−1
T )

.

(4.40)

(ii) If f ∈C1+α ,αν/3,α(R
n−1
T ) , then

2

∑
|m|=0

[Dm
x u±](α ,αν/3)

Rn±T
+

1

∑
|m|=0

[Dm
x′D

ν
t ρ ](α ,αν/3)

Rn−1
T

+
4

∑
|m|=0

[Dm
x′ρ ](α ,αν/3)

Rn−1
T

� C‖ f‖
C1+α,αν/3,α (R

n−1
T )

. (4.41)

Proof. Interpolation inequality (2.1) together with estimate (4.32) lead to

〈D2
xu±〉(αν/3)

t,Rn±T
+ 〈Dxu±〉(

1+α
3 ν)

t,Rn±T
� C

{
‖ f‖

2
2+α
C([0,T ];C1+α (Rn−1))

[
〈u±〉(

2+α
3 ν)

t,Rn±T

] α
2+α

+‖ f‖
1

2+α
C([0,T ];C1+α (Rn−1))

[
〈u±〉(

2+α
3 ν)

t,Rn±T

] 1+α
2+α

}
. (4.42)
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Then based on representations (3.9), Propositions 4.2 and 4.3, one can easily deduce
inequality

〈u±〉(
2+α

3 ν)
t,Rn±T

� C〈D2
x′ρ〉

( 2+α
3 ν)

t,Rn−1
T

� C‖ f‖C([0,T ];C1+α (Rn−1)). (4.43)

After that, we joint inequalities (4.42) and (4.43) and get

2

∑
|m|=0

〈Dm
x u±〉(

2+α−|m|
3 ν)

t,Rn±T
� C‖ f‖

C1+α, 1+α
3 ν (R

n−1
T )

. (4.44)

Finally, boundary condition (1.3) together with Proposition 4.1 and inequality (4.44)

allow us to infer estimate (4.40) for the term 〈Dm
x′D

ν
t ρ〉(

1+α−|m|
3 ν)

t,Rn−1
T

, |m| = 0,1.

As for estimate (4.41), it follows from inequalities (4.31) and (4.32). �

4.2. Completion of the proof of Theorem 2.1

Note that estimates (2.2) and (2.4) follow immediately from Lemmas 4.2–4.4 and
Proposition 4.2. The uniqueness of the constructed solution (u+,u−,ρ) follows from
(2.2). Proposition 4.1 together with results from [27] ensure that functions u+,u−,ρ
satisfy conditions (1.1)–(1.5). Thus, we prove Theorem 2.1 under condition (2.5). To
remove this restriction, we apply method of a parameter extension together with the
results of Theorem 2.1 in the case of (2.5).

Using the arguments above one can easily verify the following result, which will
be essentially use to prove Theorem 5.2 in Subsection 5.4.

REMARK 4.1. Let conditions of Theorem 2.1 hold and boundary conditions (1.3),
(1.4) be changed by

Dνt ρ+a0
∂u+

∂ n
= f (x′,t) on R

n−1
T ,

∂u−
∂ n

− kδ
∂u+

∂ n
= f2(x′,t) on R

n−1
T , (4.45)

where δ ∈ [0,1] . Then problem (1.1), (1.2), (4.45) and (1.5) has a unique classical
solution (u+,u−,ρ) which satisfies inequalities (2.2) and (2.4) with the constants inde-
pendent of δ .

5. Nonlinear free boundary problem subjected by anomalous diffusion

In this Section we apply the results of Theorem 2.1 to investigate the Muskat prob-
lem with surface tension on a free boundary in the case of subdiffusion (“fractional”
Muskat problem).
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5.1. Statement of the problem

Let Ω be a double-connected bounded open domain in Rn, n � 2 with the bound-
ary ∂Ω= Γ1

⋃
Γ2, Γ1

⋂
Γ2 = /0 . Let ϒ(t), for each t ∈ [0,T ], be a surface: ϒ(t) ⊂Ω ,

that separates Ω into two subdomains Ω1(t) and Ω2(t) such that Ω=Ω1(t)
⋃
ϒ(t)

⋃
Ω2(t) , and ∂Ωi = Γi

⋃
ϒ(t), i = 1,2.

The mathematical model of the “fractional” Muskat problem in the case of nonzero
surface tension is determining functions pi(y,t), y ∈Ωi(t), t ∈ [0,T ], i = 1,2, and an
unknown boundary ϒ(t) by the following conditions:

−Δypi = 0 in Ωi(t), i = 1,2, t ∈ [0,T ], (5.1)

p1− p2 = γκ(ϒ(t)) on ϒ(t), (5.2)

V νnt
= −k1

∂ p1

∂nt
= −k2

∂ p2

∂nt
on ϒ(t), ν ∈ (0,1); (5.3)

pi = ψi(y) on ΓiT = Γi × [0,T ], (5.4)

Ωi(t)|t=0 =Ωi, and, hence, ϒ(t)|t=0 = ϒ are given. (5.5)

Here γ , ki, i = 1,2, are given positive constants, k1 �= k2 , the quantity κ(ϒ(t)) de-
fined on ϒ(t) denotes the mean curvature of this surface; nt is the unit normal to ϒ(t)
directed in Ω1(t) ; ψi(y) , i = 1,2, are given positive functions; V νnt

is the fractional
velocity of the boundary ϒ(t) in the direction of the normal nt and is represented by
(see, e.g., [33]):

V νnt
= 〈Dνt ϒ(t),nt〉.

We assume that

ϒ ∈Ck+α , Γi ∈Ck−2+α , k � 7, i = 1,2, α ∈ (0,1). (5.6)

5.2. The nonlinear mapping and main results

We apply Hanzawa approach [9] to reduce free boundary problem (5.1)–(5.5) to a
problem in a fixed domain.

Let ω = (ω1, . . . ,ωn−1) be some coordinates on ϒ . We represent ϒ in the form
y = m(ω) and denote by n(ω) the normal to ϒ directed into Ω1 . For sufficiently
small γ0 > 0, ω−surfaces: m(ω) + ηn(ω), |η | < 2γ0 , do not intersect each other
and Γ1

⋃
Γ2 . On the set N = {y ∈ Rn : dist(y,ϒ) < 3γ0/2} we introduce the local

coordinates (ω ,η) by

y = (y1, . . . ,yn) = m(ω)+ηn(ω), m(ω) ⊂ ϒ.
The free boundary in problem (5.1)–(5.5) can be represented as

ϒ(t) = {(y,t) : y(ω ,t) = m(ω)+℘(ω ,t)n(ω), t ∈ [0,T ]}, (5.7)

where℘(ω , t) is an unknown function, and

|℘(ω ,t)| < γ0C0, 0 < C0 < 1, ℘(ω ,0) = 0. (5.8)
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Thus, the surface ϒ(t) in the local variables is given by

Φ℘(y,t) = η(y)−℘(ω(y),t) = 0. (5.9)

As well as in [31] and [29], we can rewrite boundary conditions (5.2) and (5.3) as

Dνt℘
〈∇yΦ℘(y,0),∇yΦ℘(y,t)〉

|∇yΦ℘(y,0)| = −k1〈∇y p1,∇yΦ℘(y,t)〉
= −k2〈∇y p2,∇yΦ℘(y,t)〉; (5.10)

p1− p2 = γ∇y

(
∇yΦ℘(y,t)
|∇yΦ℘(y,t)|

)∣∣∣∣
ϒ(t)

. (5.11)

Let χ(λ ) ∈ C∞0 (R1), χ(λ ) = 1 if |λ | < γ0/4 and χ(λ ) = 0 if |λ | > 3γ0/4, |χ (k)| �
C1/γk0 , k = 1,3. We choose the constant C0 in (5.8) such that C0 < 1

2C1
then 1 +

χ ′(λ )μ � 1/2 if |μ | � γ0C0 . We will use the coordinates (ω ,η) to define the diffeo-
morphism

e℘ : (x,t) → (y,t)

from XT = Rn × [0,T ] onto YT = Rn× [0,T ] by setting{
y = x, if dist(x,ϒ) > 3γ0/4,
ω(y) = ω(x),η(y) = λ (x)+ χ(λ (x))℘(ω(x),t) otherwise,

(5.12)

such that the transform e−1
℘ maps Ωi(t) onto Ωi × (0,T ) := ΩiT , i = 1,2; and ϒ(t)

onto ϒ× [0,T ] := ϒT ; the free boundary is given by

e℘({λ (x) = 0}), (5.13)

and ω(x) , λ (x) are the coordinates in XT similar to the coordinates ω(y) , η(y) in YT .
After the change of variables (5.12), we have the new desired functions

vi(x1, . . . ,xn,t) = pi(y1, . . . ,yn,t)◦ e℘(x, t), i = 1,2. (5.14)

Denote by ∇℘= (E∗
℘)−1∇x where E℘ is the Jacobi matrix of the mapping y = e℘(x,t)

so that
∇y = ∇℘ and Δy = ∇2

℘.

Taking into account that y = x near ΓiT , i = 1,2, we reduce free boundary problem
(5.1)–(5.5) to the following nonlinear problem in the fixed domain:

∇2
℘vi(x,t) = 0 in ΩiT i = 1,2; (5.15)

v1(x, t)−v2(x, t) = γ
n−1

∑
i j=1

Ai j(ω ,℘,∇ω℘)
∂ 2℘
∂ωi∂ω j

+A0(ω ,℘,∇ω℘) on ϒT ; (5.16)

−Dνt℘= k1

[
S(ω ,℘,∇ω℘)

∂v1

∂λ
+

n−1

∑
i=1

Si(ω ,℘,∇ω℘)
∂v1

∂ωi

]
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= k2

[
S(ω ,℘,∇ω℘)

∂v2

∂λ
+

n−1

∑
i=1

Si(ω ,℘,∇ω℘)
∂v2

∂ωi

]
on ϒT ; (5.17)

vi = ψi(x) on ΓiT ; (5.18)

℘(ω ,0) = 0, ω ∈ ϒ, (5.19)

where ∇ω℘=
(
∂℘
∂ω1

, . . . , ∂℘
∂ωn−1

)
; S(ω ,℘,∇ω℘) , Si(ω ,℘,∇ω℘) , Ai j(ω ,℘,∇ω℘) ,

i, j = 1,n−1, A0(ω ,℘,∇ω℘) are some specific smooth functions (their representa-
tions and properties can be found in [1], [5] and [30]) such that

S(ω ,0,0) = 1,
∂S
∂℘ωi

(ω ,0,0) = 0, Si(ω ,0,0) = 0, i = 1,n−1,

det{Ai j(ω ,0,0)} � ε0 > 0. (5.20)

As easily verified,
∇2
℘|t=0 = Δx. (5.21)

We look for the functions vi0(x) as a solution of the following transmission problem:

Δxvi0 = 0 in Ωi, i = 1,2; vi0|Γi = ψi(x);

v10− v20 = γκ(ϒ) and k1
∂v10

∂ n(ω)
= k2

∂v20

∂ n(ω)
on ϒ. (5.22)

We assume that conditions (5.6) hold, and

ψi(x) ∈C5+α(Γi), i = 1,2. (5.23)

Then, the regularity theory for transmission problems (see, e.g., [27]) can be applied to
problem (5.22) that yields the one-valued solvability of this problem and

2

∑
i=1

‖vi0‖C5+α (Ωi)
� C(

2

∑
i=1

‖ψi‖C5+α (Γi) +‖κ(ϒ)‖C5+α(ϒ)), vi0(x) = vi(x,0) in Ωi.

(5.24)

THEOREM 5.1. Let α, ν ∈ (0,1); Γi and ϒ satisfy assumptions mentioned in
Subsection 5.1 and conditions (5.6), (5.23) hold. Then for some small T , there exists
a unique solution (v1(x,t),v2(x,t),℘(ω ,t)) of nonlinear problem (5.15)–(5.19) for t ∈
[0,T ] such that

vi(x,t)∈C2+α , αν3 ,α(ΩiT ), ℘(ω ,t)∈C4+α , αν3 ,α(ϒT ), Dνt℘(ω ,t)∈C1+α , αν3 ,α(ϒT ),

and vi(x,0) is given with (5.22) and (5.24).

The proof of Theorem 5.1 consists in two steps. The first is the linearization of
nonlinear problem (5.15)–(5.19) on the initial data (v10, v20) , and then proving that the
linear problem has a unique solution. On the next step we show that the corresponding
nonlinear mapping is a contraction, and so it has a unique fixed point.
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5.3. Linearization of system (5.15)–(5.19)

Based on boundary conditions (5.17) and relations (5.20), (5.24), we can conclude

Dνt℘(ω ,0) = −k1S(ω ,0,0)
∂v10

∂λ
|ϒ = −k2S(ω ,0,0)

∂v20

∂λ
|ϒ. (5.25)

Let us define a function s(ω ,t) as

s(ω ,0) = 0, Dνt s(ω ,0) = Dνt℘(ω ,0) on ϒ. (5.26)

In virtue of Dνt
tν

Γ(1+ν) = 1, we may choose the function s(ω ,t) as

s(ω ,t) =
tν

Γ(1+ν)
Dνt℘(ω ,0)

∣∣∣∣
ϒ
. (5.27)

Using (5.24)–(5.27), one can easily verify the following:

COROLLARY 5.1. The function s(ω ,t) given by (5.27) satisfies (5.26) and

‖s‖C([0,T ],C4+α (ϒ)) +‖Dνt s‖C([0,T ],C4+α (ϒ)) +
4

∑
|l|=0

〈Dνt Dl
ω s〉(β )

t,ϒT

� C(
2

∑
j=1

‖ψ j‖C5+α (Γ j) +‖κ(ϒ)‖C5+α(ϒ)), β ∈ (0,1).

Then we introduce the new unknown functions wi(x,t), i = 1,2, and σ as

σ(ω , t) =℘(ω ,t)− s(ω ,t); wi(x,t) = vi(x,t)− vi0(x), i = 1,2. (5.28)

After some tedious calculations, we get next problem:

Δxwi = Fi0(wi,σ) in ΩiT , i = 1,2;

w1−w2−
n−1

∑
l j=1

bl j(ω ,t)
∂ 2σ
∂ωl∂ω j

+
n−1

∑
l=1

bl(ω ,t)
∂σ
∂ωl

= F1(σ) on ϒT ;

Dνt σ = −k1b0(ω)
∂w1

∂ n(ω)
+F2(w1,σ)

= −k2b0(ω)
∂w2

∂ n(ω)
+F3(w2,σ) on ϒT ;

wi = 0 on ΓiT ; σ(ω ,0) = Dνt σ(ω ,0) = 0, ω ∈ ϒ, (5.29)

where the representations of the functions Fi0(wi,σ), i = 1,2, F1(σ), F2(w1,σ),
F3(w2,σ), bl j, bl , l, j = 1,n−1, b0 can be found in [1], [31].
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System (5.29) can be written briefly as

A z = F (z), where z = (w1,w2,σ), (5.30)

where a linear operator A is defined by the left-hand side of (5.29), and F is a non-
linear operator, F (z) = {F10(z),F20(z),F1(z),F2(z),F3(z)} . Following the argu-
ments from Subsection 3.2 [31], we can deduce the following result.

COROLLARY 5.2. The functions Fi0, i = 1,2, F j , j = 1,3, contain the higher
derivatives of wi(x, t) and σ(ω ,t) with the coefficients that tend to zero as t → 0 , the
“quadratic” terms of minor differential orders of unknown functions. Moreover,

Fi0|t=0 = 0, i = 1,2, F j|t=0 = 0 j = 1,2,3; (5.31)

bl j(ω , t), b j(ω , t) ∈C3+α ,ν,α(ϒT ); b0(ω) ∈C5+α(ϒT ), l, j = 1,n−1; (5.32)

b0(ω) > 0,β0|ξ |2 �
n−1

∑
l j=1

bl jξlξ j � β−1
0 |ξ |2, ξ ∈ Rn−1, (ω ,t) ∈ ϒT ; (5.33)

where β0 is a positive constant.

Note that results of Corollary 5.2 together with conditions (5.29) provide

wi(x,0) = 0, x ∈Ωi, i = 1,2. (5.34)

5.4. Proof of Theorem 5.1

First of all we prove the boundedness of the linear operator A in the correspond-
ing functional spaces. To this end, we freeze the functional arguments in the functions
and put

Fi0(wi,σ) := Fi0(x,t), i = 1,2, F1(σ) := F1(x,t),

F2(w1,σ) := F2(x,t), F3(w2,σ) := F3(x,t). (5.35)

Then system (5.30) can be considered as a linear system with variable coefficients.
The solvability of this system will be proved under the weaker assumptions on the
coefficients then in Corollary 5.2.

THEOREM 5.2. Let α, ν ∈ (0,1), ϒ, Γi ∈C3+α , k1, k2 be positive and k1 �= k2

condition (5.35) hold and

Fi0 ∈Cα , να3 ,α(ΩiT ), i = 1,2, F1 ∈C2+α , να3 ,α(ϒT ), Fj ∈C1+α , να3 ,α(ϒT ), j = 2,3,

Fj(x,0) = 0, j = 1,3 Fi0(x,0) = 0; (5.36)

β0|ξ |2 �
n−1

∑
lm=1

blm(ω ,t)ξlξm � β−1
0 |ξ |2, (ω ,t) ∈ ϒT , ξ ∈ Rn−1, (5.37)

b0(ω) > 0; b0 ∈C1+α(ϒ), blm, bl ∈C2+α ,ν,α(ϒT ), l,m = 1,n−1. (5.38)
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Then for some small T , there exists a unique solution (w1,w2,σ) of linear problem
(5.30), such that

2

∑
i=1

‖wi‖
C2+α, να3 ,α (ΩiT )

+‖σ‖
C4+α, να3 ,α (ϒT )

+‖Dνt σ‖C1+α, να3 ,α (ϒT )

� C

[ 2

∑
i=1

‖Fi0‖
Cα, να3 ,α (ΩiT )

+‖F1‖
C2+α, να3 ,α (ϒT )

+‖F2‖
C1+α, να3 ,α (ϒT )

+‖F3‖
C1+α, να3 ,α (ϒT )

]
,

(5.39)

where C is a positive constant independent of the right-hand sides of (5.30) and de-
pends only on the measure of Ωi, Γi, ϒ, and ‖b0‖C1+α (ϒ) , ‖blm‖C2+α,ν,α (ϒT ) ,
‖bl‖C2+α,ν,α (ϒT ) .

Proof. At first, we prove Theorem 5.2 under condition:

Fi0, F1 ≡ 0, i = 1,2, F2 = F3. (5.40)

We apply the method of parameter extension to solve problem (5.30) and rewrite it as

Δxwi = 0 in ΩiT , i = 1,2;

w1 −w2−
n−1

∑
lm=1

blm(ω ,t)
∂ 2σ

∂ωl∂ωm
+

n−1

∑
l=1

bl(ω ,t)
∂σ
∂ωl

= 0 on ϒT ;

Dνt σ + k2b0(ω)
∂w2

∂ n(ω)
= F2 on ϒT ;

∂w1

∂ n(ω)
− kδ

∂w2

∂ n(ω)
= 0 on ϒT , k =

k2

k1
;

wi = 0 on ΓiT ; σ(ω ,0) = Dνt σ(ω ,0) = 0, ω ∈ ϒ, (5.41)

where δ ∈ [0,1] .
If δ = 1, problem (5.41) is just problem (5.29), when δ = 0, problem (5.41) splits

into two boundary value problems:

Δxw1 = 0 in Ω1T ,
∂w1

∂ n(ω)
|ϒT = 0, w1|Γ1T = 0, (5.42)

so w1 ≡ 0 in Ω1T ; and

Δxw2 = 0 in Ω2T ; σ(ω ,0) = Dνt σ(ω ,0) = 0, ω ∈ ϒ;

w2 +
n−1

∑
lm=1

blm(ω ,t)
∂ 2σ

∂ωl∂ωm
−

n−1

∑
l=1

bl(ω ,t)
∂σ
∂ωl

= 0 on ϒT ;

Dνt σ + k2b0(ω)
∂w2

∂ n(ω)
= F2 on ϒT . (5.43)
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Problem (5.43) has been studied in Section 5 [29] (see Theorem 5.1) where one-to-one
local solvability of (5.43) has been proved: w2 ∈C2+α , να3 ,α(Ω2T ), σ ∈C4+α , να3 ,α(ϒT ),
Dνt σ ∈C1+α , να3 ,α(ϒT ), and

‖w2‖
C2+α, να3 ,α (Ω2T )

+‖σ‖
C4+α, να3 ,α (ϒT )

+‖Dνt σ‖C1+α, να3 ,α (ϒT )

� C‖F2‖
C1+α, να3 ,α (ϒT )

, (5.44)

where the positive constant C depends only on the measure of Ωi, Γi, ϒ, and ‖b0‖C1+α (ϒ) ,
‖bl j‖C2+α,ν,α (ϒT ) , ‖bi‖C2+α,ν,α (ϒT ) .

To show the well-posedness of linear problem (5.29), we have to obtain apriori
estimate uniformly with respect to δ for the solution (w1,w2,σ) of problem (5.41).

Adapting the standard Schauder technique to the case of a fractional derivative and
applying the results of Theorem 2.1 and Remark 4.1, we deduce:

2

∑
i=1

‖wi‖
C2+α, να3 ,α (ΩiT )

+‖σ‖
C4+α, να3 ,α (ϒT )

+‖Dνt σ‖C1+α, να3 ,α (ϒT )

� C1‖F2‖
C1+α, να3 ,α (ϒT )

+
C1

ε2+α

2

∑
i=1

〈wi〉(να/3)
t,ΩiT

, (5.45)

where the positive constant C1 is independent of δ ; ε is a positive constant which will
be chosen below.

Let us denote

Vi := wi(·,t1)−wi(·,t2), i = 1,2, S := σ(·,t1)−σ(·,t2),

Bl j := bl j(·, t1)−bl j(·,t2), Bj := b j(·,t1)−b j(·,t2), l, j = 1,n−1,

and apply the results from [27] and embedding theorem to the following transmission
problem

ΔxVi = 0 in ΩiT , Vi = 0 on ΓiT ;

V1−V2 =
n−1

∑
l j=1

[
Bl j(ω ,t)

∂ 2σ
∂ωl∂ω j

+bl j(ω ,t2)
∂ 2S

∂ωl∂ω j

]

−
n−1

∑
l=1

[
Bl(ω ,t)

∂σ
∂ωl

+bl(ω ,t2)
∂S
∂ωl

]
≡ g0 on ϒT ;

∂V1

∂ n(ω)
− kδ

∂V2

∂ n(ω)
= 0 on ϒT . (5.46)

Thus, we can deduce

sup
ΩiT

|Vi| � C‖g0‖C([0,T ],C1(ϒ)), i = 1,2. (5.47)
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Finally, interpolation inequality (2.1) together with (5.47) allow us to conclude

2

∑
i=1

〈wi〉(
1+α

3 ν)
t,ΩiT

� CT να/3[‖σ‖
C4+α, να3 ,α (ϒT )

+‖Dνt σ‖C1+α, να3 ,α (ϒT )
]. (5.48)

Then we choose ε such that C1CT
1+α

3 νε−2−α < 1/2 and get from (5.48) and (5.45)
the uniformly estimate

2

∑
i=1

‖wi‖
C2+α, να3 ,α (ΩiT )

+‖σ‖
C4+α, να3 ,α (ϒT )

+‖Dνt σ‖C1+α, να3 ,α (ϒT )

� C‖F2‖
C1+α, να3 ,α (ϒT )

, (5.49)

where the positive constant C is independent of δ . Thus, we have proved Theorem 5.2
under condition (5.40). To avoid this restriction it is enough to use statement (ii) from
Proposition 2.3 [31]. �

Next we prove solvability of nonlinear problem (5.29), and hence, (5.15)–(5.19).
We introduce the functional spaces H1 and H2 , such that z ∈ H1 and Fz ∈ H2 ,

H1 = C
0

2+α ,να/3,α(Ω1T )×C
0

2+α ,να/3,α(Ω2T )×C
0

4+α ,να/3,α(ϒT )

×C
0

1+α ,να/3,α(ϒT );

H2 = C
0

α ,να/3,α(Ω1T )×C
0

α ,να/3,α(Ω2T )×C
0

2+α ,να/3,α(ϒT )×C
0

1+α ,να/3,α(ϒT )

×C
0

1+α ,να/3,α(ϒT )×C5+α(Γ1)×C5+α(Γ2);

and

‖z‖H1 = ‖(w1,w2,σ)‖H1

=
2

∑
i=1

‖wi‖C2+α,να/3,α (ΩiT ) +‖σ‖C4+α,να/3,α (ϒT ) +‖Dνt σ‖C1+α,να/3,α (ϒT );

‖Fz‖H2 = ‖(F10(z),F20(z),F1(z),F2(z),F3(z),0,0)‖H2

=
2

∑
i=1

‖Fi0(z)‖Cα,να/3,α (ΩiT ) +‖F1(z)‖C2+α,να/3,α (ϒT )

+
3

∑
j=2

‖F j(z)‖C1+α,να/3,α (ϒT ).

By Theorem 5.2 we can rewrite equation (5.30) as

z = A −1F (z) ≡ℜ(z),

where ℜ(z) is a nonlinear operator, ℜ : H1 → H2 . To show that ℜ is a contraction
operator we apply standard arguments from Subsection 5.2 [31] together with results
of Theorem 5.2. That finishes the proof of Theorem 5.1.
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