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Abstract. In this paper we study some boundary value problems for a fractional analogue of
second order elliptic equation with an involution perturbation in a rectangular domain. Theorems
on existence and uniqueness of a solution of the considered problems are proved by spectral
method.

1. Introduction

The paper is concerned with four boundary value problems concerning the frac-
tional analogue of Helmholtz equation with a perturbation term of involution type in
the space variable. We obtain for them existence and uniqueness results based on the
Fourier method.

To describe the problems, let Ω =
{
(x,y) ∈ R2 : 0 < x < 1,−π < y < π

}
. We con-

sider the equation

Dα
x Dα

x u(x,y)+uyy(x,y)− εuyy (x,−y)− c2u(x,y) = 0, (x,y) ∈ Ω, (1)

where c,ε are real numbers and

Dα
x u(x,y) =

1
Γ(1−α)

x∫
0

(x− s)−α ∂u
∂ s

(s,y)ds

is the Caputo derivative of order α ∈ (0,1] of u with respect to x [1].

Regular solution of Equation (1) is a function u∈C
(

Ω
)

, such that Dα
x u,D2α

x u,uyy

∈C (Ω) .
Since for α = 1:

L2
x +

∂ 2

∂y2 =
∂ 2

∂x2 +
∂ 2

∂y2 = Δ.

Therefore, Equation (1) is a nonlocal generalization of the Helmholtz equation, which
at ε = 0 coincides with the Helmholtz equation.
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PROBLEM D. Find in the domain Ω a regular solution of Equation (1), satisfying
the following boundary value conditions:

u(0,y) = ϕ (y) , u(1,y) = ψ (y) , −π � y � π , (2)

u(x,−π) = u(x,π) = 0, 0 � x � 1.

PROBLEM N. Find in the domain Ω a regular solution of Equation (1), such that

uy (x,y) ∈C
(

Ω
)

and satisfying conditions (2) and:

uy (x,−π) = uy (x,π) = 0, 0 � x � 1.

PROBLEM P. Find in the domain Ω a regular solution of Equation (1), such that

uy (x,y) ∈C
(

Ω
)

and satisfying conditions (2) and:

u(x,−π) = u(x,π) , uy (x,−π) = uy (x,π) , 0 � x � 1.

PROBLEM AP. Find in the domain Ω a regular solution of Equation (1), such

that uy (x,y) ∈C
(

Ω
)

and satisfying conditions (2) and:

u(x,−π) = −u(x,π) , uy (x,−π) = −uy (x,π) , 0 � x � 1.

Here ϕ (y) ,ψ (y) are given sufficiently smooth functions.

Before we describe our results, let us dwell a while on the existing literature con-
cerning equations with involution. Differential equations with modified arguments are
equations in which the unknown function and its derivatives are evaluated with modifi-
cations of the time or space variables; such equations are called in general functional-
differential equations. Among such equation, one can single, equations with involution;
to describe them, let Γ be an open or a closed curve in the complex plane or the plane
of real variables x and y.

The homeomorphism

a2(t) = a(a(t)) = t, t ∈ Γ,

is called a Carleman shift (involution) [2].
Various problems for equations with involution were investigated in [3], [4].
Note that problems D, N and P for Equation (1) at ε = 0 were studied in [5], [6].

Some questions of solvability of boundary value problems with fractional analogues of
the Laplace operator were studied in [7], [8].

Need to study boundary value problems for Equation (1) at ε = 0 is determined
by using fractal Laplace equation to describe the production processes in mathematical
modeling of socio-economic systems [9]. Note also that in [9] attention was drawn to
the fact that the problem of finding a generalized two-factor Cobb-Douglas function is
reduced to the classical boundary value problems for a generalized Laplace equation of
fractional order.
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2. Solution of one-dimensional equation with fractional derivative

Let μ be a positive real number, S = {t : 0 < t < 1}, S = {t : 0 � t � 1}. We
consider the problem

D2αy(t)− μ2y(t) = 0, t ∈ S, (3)

y(0) = a, y(1) = b, (4)

where a,b are real numbers.
A solution of problem (3)–(4) is the function y ∈ C(S), such that Dαy ∈ C(S),

D2αy ∈C (S) .

LEMMA 1. The solution of problem (3)–(4) exists, is unique and it can be written
in the form

y(t) = aC(μt)+bS(μt), (5)

where

C (μt) =
Eα ,1 (μ)Eα ,1 (−μtα)−Eα ,1 (−μ)Eα ,1 (μtα)

2μE2α ,α+1 (μ2)
, (6)

S (μt) =
tαE2α ,α+1

(
μ2t2α)

E2α ,α+1 (μ2)
. (7)

Here

Eα ,β (z) =
∞

∑
k=0

zk

Γ(αk+ β)

is the Mittag-Leffler type function [1].

Proof. From [5] it is known that the general solution of equation (3) has the form

y(t) = D1Eα ,1 (−μtα)+D2Eα ,1 (μtα) , (8)

where D1,D2 are arbitrary constants.
Substituting the function (8) into the boundary conditions (4) for unknown coeffi-

cients D1 and D2 we get

D1 =
aEα ,1 (μ)−aEα ,1 (−μ)+Eα ,1 (−μ)−b

Eα ,1 (μ)−Eα ,1 (−μ)
,

D2 =
b−aEα ,1 (−μ)

Eα ,1 (μ)−Eα ,1 (−μ)
.

Since Eα ,1 (μ)−Eα ,1 (−μ) = 2μE2α ,α+1
(
μ2
)
, after some transformations, the solu-

tion of the problem (3)–(4) can be reduced to the form (5). This proves the lemma. �
Furthermore, for any 0 < α < 1, consider the equation

y′′(t)− μD2−αy(t) = 0, t ∈ S. (9)

The following statement is known (see [10]):
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LEMMA 2. If the function y(t) ∈ C
(
S
)
∩C2 (S) , y(t) �= Const is a solution of

equation (9), then it can not attain its positive maximum (negative minimum) within the
segment S.

LEMMA 3. [1] For Eα ,β (z) as |z|→∞ the following asymptotic estimation holds

Eα ,β (z) =
1
α

z
(1−β)

α ez
1
α −

p

∑
k=1

z−k

Γ(β −αk)
+O

(
1

|z|p+1

)
, (10)

where |argz| � ρ1π ,ρ1 ∈
(α

2 ,min{1,α}) ,α ∈ (0,2) , and for argz = π

Eα ,β (z) =
1

1+ |z| , |z| → ∞. (11)

From Lemmas 2 and 3 follows

LEMMA 4. For any t ∈ [0,1] the following inequalities hold:

0 � S (μt) , C (μt) � 1.

3. Spectral properties of the perturbed Sturm-Liouville problem

Application of the Fourier method for solving problems D, N, P, AP leads to the
spectral equation

Y ′′ (y)− εY ′′ (−y)+ λY (x) = 0, −π < y < π , (12)

supplemented with one of the local

Y (−π) = Y (π) = 0, (13)

Y ′ (−π) = Y ′ (π) = 0, (14)

or nonlocal
Y (−π) = Y (π) , Y ′ (−π) = Y ′ (π) , (15)

Y (−π) = −Y (π) , Y ′ (−π) = −Y ′ (π) (16)

boundary conditions.
The Sturm-Liouville problem for Equation (12) with one of the boundary con-

ditions (13), (14), (15), (16) is self-adjoint so they have real eigenvalues, and their
corresponding eigenfunctions form a complete orthonormal basis in L2 (−π ,π) [11].

For further investigation of the problems under consideration, we need to calculate
the explicit form of the eigenvalues and eigenfunctions.

For |ε| < 1 problem (12), (13) has the following eigenvalues:

λ2k−1,1 = (1+ ε)k2, λ2k,1 = (1− ε)
(

k− 1
2

)2

, k = 1,2, . . . ,
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with the corresponding eigenfunctions

Y2k−1,1 = sinky, Y2k,1 = cos

(
k− 1

2

)
y, k = 1,2, . . . . (17)

Similarly, problem (12), (14) has the eigenvalues

λ2k+1,2 = (1+ ε)
(

k+
1
2

)2

, λ2k,2 = (1− ε)k2, k = 0,1, . . . ,

with the corresponding eigenfunctions

Y2k+1,2 = sin

(
k+

1
2

)
y, Y2k,2 = cosky, k = 0,1, . . . . (18)

The eigenvalues of problem (12), (15) are

λ2k−1,3 = (1+ ε)k2, k = 1,2, . . . , λ2k,3 = (1− ε)k2, k = 0,1, . . . ,

with the corresponding eigenfunctions

Y2k−1,3 = sinky, k = 1,2, . . . , Y2k,3 = cosky, k = 0,1, . . . . (19)

Problem (12), (16) has the following eigenvalues

λ2k+1,4 = (1+ ε)
(

k+
1
2

)2

, λ2k,4 = (1− ε)
(

k+
1
2

)2

, k = 0,1, . . . ,

and corresponding eigenfunctions

Y2k+1,4 = sin

(
k+

1
2

)
y, Y2k,4 = cos

(
k+

1
2

)
y, k = 0,1, . . . . (20)

LEMMA 5. The systems of functions (17), (18), (19), (20) are complete and or-
thonormal in L2 (−π ,π) .

Proof. We prove only the completeness of system (17) in L2(−π ,π). We will
prove that from the equalities

π∫
−π

f (y)sinkydy = 0, k = 1,2, . . . ,

π∫
−π

f (y)cos

(
k− 1

2

)
ydy = 0, k = 1,2, . . . ,

for f ∈ L2(−π ,π), we should obtain f (y) = 0 in L2(−π ,π).
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Suppose that the second equation holds. We transform it as follows

0 =
π∫

−π

f (y)cos

(
k− 1

2

)
ydy =

π∫
0

( f (y)+ f (−y))cos

(
k− 1

2

)
ydy.

Then by the completeness of the system [12]
{
cos
(
k− 1

2

)
y
}∞

k=1 in L2(−π ,π) we have
f (y) = − f (−y) , 0 < y < π .

Similarly

0 =
π∫

−π

f (y)sinkydy =
π∫

0

( f (y)− f (−y))sinkydy.

Then by the completeness of the system [12] {sinky}∞
k=1 in L2(−π ,π) we have f (y) =

f (−y) , 0 < y < π . Then we obtain f (y) = 0 in L2(0,π), and consequently f (y) = 0
in L2(−π ,π).

The completeness of the systems (18), (19) and (20) can be proved similarly. �

4. Main results

For the considered problems D, N, P, AP, the following theorems hold.
Suppose ϕ2k− j,i =

(
ϕ ,Y2k− j,i

)
, ψ2k− j,i =

(
ψ ,Y2k− j,i

)
, j = 0,1, i = 1,2,3,4 are

the Fourier coefficients of functions ϕ ,ψ , by system Y2k− j,i, λ2k− j,i are the corre-
sponding eigenvalues, μ2

2k− j,i = λ2k− j,i+c2, and functions C
(
μ2k− j,ix

)
and S

(
μ2k− j,ix

)
are defined by (6) and (7).

THEOREM 1. Let |ε|< 1 , 0 < δ < 1, ϕ (y)∈C2+δ [−π ,π] , ψ (y)∈C1+δ [−π ,π]
and ϕ (−π) = ϕ (π) = 0, ψ (−π) = ψ (π) = 0. Then the solution of the problem D
exists, is unique and it can be written in the form

u(x,y) =
∞

∑
k=1

[
ϕ2k−1,1C

(
μμ2k−1,1x

)
+ ψ2k−1,1S

(
μμ2k−1,1x

)]
Y2k−1,1 (y)

+
∞

∑
k=1

[
ϕ2k,1C

(
μμ2k,1x

)
+ ψ2k,1S

(
μμ2k,1x

)]
Y2k,1 (y) .

THEOREM 2. Let |ε|< 1 , 0 < δ < 1, ϕ (y)∈C3+δ [−π ,π] , ψ (y)∈C2+δ [−π ,π]
and ϕ ′ (−π) = ϕ ′ (π) = 0, ψ ′ (−π) = ψ ′ (π) = 0. Then the solution of the problem N
exists, is unique and it can be written in the form

u(x,y) = (1− xα)ϕ0,2 + xαψ0,2

+
∞

∑
k=0

[
ϕ2k−1,2C

(
μ2k−1,2x

)
+ ψ2k−1,2S

(
μ2k−1,2x

)]
Y2k−1,2

+
∞

∑
k=1

[
ϕ2k,2C

(
μ2k,2x

)
+ ψ2k,2S2k,2

(
μ2k,2x

)]
Y2k,2.
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THEOREM 3. Let |ε|< 1 , 0 < δ < 1, ϕ (y)∈C3+δ [−π ,π] , ψ (y)∈C2+δ [−π ,π]
and ϕ (−π) = ϕ (π) , ϕ ′ (−π) = ϕ ′ (π) , ψ (−π) = ψ (π) , ψ ′ (−π) = ψ ′ (π) . Then the
solution of the problem P exists, is unique and it can be written in the form

u(x,y) = (1− xα)ϕ0,3 + xαψ0,3

+
∞

∑
k=1

[
ϕ2k,3C

(
μ2k,3x

)
+ ψ2k,3S

(
μ2k,3x

)]
Y2k,3 (y)

+
∞

∑
k=1

[
ϕ2k−1,3C

(
μ2k−1,3x

)
+ ψ2k−1,3S

(
μ2k−1,3x

)]
Y2k−1,3 (y) .

THEOREM 4. Let |ε|< 1 , 0 < δ < 1, ϕ (y)∈C3+δ [−π ,π] , ψ (y)∈C2+δ [−π ,π]
and ϕ (−π) = −ϕ (π) , ϕ ′ (−π) = −ϕ ′ (π) , ψ (−π) = −ψ (π) , ψ ′ (−π) = −ψ ′ (π) .
Then the solution of the problem AP exists, is unique and it can be written in the form

u(x,y) =
∞

∑
k=0

[
ϕ2k,4C

(
μ2k,4x

)
+ ψ2k,4S

(
μ2k,4x

)]
Y2k,4 (y)

+
∞

∑
k=0

[
ϕ2k−1,4C

(
μ2k−1,4x

)
+ ψ2k−1,4S

(
μ2k−1,4x

)]
Y2k−1,4 (y) .

5. Proofs of the main results

As the proofs for the uniqueness of the solutions of each problems are similar, we
will present only the proof for problem D.

As the system of eigenfunctions (17) of problem D forms an orthonormal basis in
L2(−π ,π), the function can be represented as follows

u(x,y) =
∞

∑
k=1

u2k−1,1 (x)Y2k−1,1 (y)+
∞

∑
k=1

u2k,1 (x)Y2k,1 (y), (21)

where u2k−1,1(x) , u2k,1(x) are unknown coefficients. It is well known that if ϕ (y) ,
ψ (y) satisfy the conditions of Theorem 1, then they can be uniquely represented in the
form of a uniformly and absolutely convergent Fourier series by the systems {Y2k−1,1(y),
Y2k,1(y)} :

ϕ (y) =
∞

∑
k=1

ϕ2k−1,1Y2k−1,1 (y)+
∞

∑
k=1

ϕ2k,1Y2k,1 (y),

ψ (y) =
∞

∑
k=1

ψ2k−1,1Y2k−1,1 (y)+
∞

∑
k=1

ψ2k,1Y2k,1 (y),

where ϕ2k− j,1 =
(

ϕ ,Y2k− j,1

)
, ψ2k− j,1 =

(
ψ ,Y2k− j,1

)
, j = 0,1.

Putting (21) into Equation (1) and boundary conditions (2), for finding unknown
functions uk (x) , we obtain the following problem

D2α
y u2k− j,1 (x)− μ2

2k− j,1u2k− j,1 (x) = 0, 0 < x < 1, (22)
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u2k− j,1 (0) = ϕ2k− j,1, u2k− j,1 (1) = ψ2k− j,1, (23)

where μ2
2k− j,1 = λ2k− j,1 + c2, j = 0,1.

Due to Lemma 1 the solution of problem (22)–(23) exists, is unique and it can be
written in the form

u2k− j,1 (x) = ϕ2k− j,1C
(
μ2k− j,1x

)
+ ψ2k− j,1S

(
μ2k− j,1x

)
,

where C
(
μ2k− j,1x

)
and S

(
μ2k− j,1x

)
are defined by (6) and (7), respectively. Further-

more, according to Lemma 4 inequalities

0 � S
(
μ2k− j,1x

)
, C

(
μ2k− j,1x

)
� 1, x ∈ [0,1]

are true.
Further, if the function f (x) belongs to the class Cm+δ [a,b] , m = 0,1, . . . , 0 <

δ < 1, then for Fourier coefficients of this function the following estimation holds (see
[13]):

| fk| = O

(
1

km+δ

)
, k → ∞.

If ϕ ′′ (y)∈Cδ [−π ,π] , ψ ′ (y)∈Cδ [−π ,π] and conditions ϕ (−π)= ϕ (π)= ψ (−π)=
ψ (π) = 0 hold, then

∣∣ϕ2k−1,1
∣∣� C

k2+δ ,
∣∣ϕ2k,1

∣∣� C(
k− 1

2

)2+δ ,

∣∣ψ2k−1,1
∣∣� C

k1+δ ,
∣∣ψ2k,1

∣∣� C(
k− 1

2

)1+δ , C = const.

For such functions, we obtain

∣∣u2k−1,1 (x)
∣∣� C

(
1

k2+δ +
1

k1+δ

)
,

∣∣u2k−1,1 (x)
∣∣� C

(
1(

k− 1
2

)2+δ +
1(

k− 1
2

)1+δ

)
.

(24)

Then the series (21) converges uniformly in the domain Ω and therefore u(x,y) ∈
C
(

Ω
)

. Further, using estimations (10) and (11), we get

S2k− j,1
(
μ2k− j,1x

)
= O

(
eμ

1
α
2k− j,1(x−1)

)
,

C
(
μ2k− j,1x

)
= O

(
1

μ2k− j,1

)
.
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Taking derivative term by term from the series (21) twice by y , we have

uyy (x,y) = −
∞

∑
k=1

λ2k−1,1u2k−1,1 (x)Y2k−1,1 (y)−
∞

∑
k=1

λ2k,1u2k,1 (x)Y2k,1 (y).

Then for all x � x0 > 0, 0 � y � 1, taking into account inequalities (24), we have

∣∣uyy (x,y)
∣∣� C

∞

∑
k=1

(∣∣λ2k−1,1

∣∣ ∣∣u2k−1,1 (x)
∣∣+ ∣∣λ2k,1

∣∣ ∣∣u2k,1 (x)
∣∣)

� C
∞

∑
k=1

(∣∣λ2k−1,1

∣∣ ∣∣u2k−1,1 (x)
∣∣+ ∣∣λ2k,1

∣∣ ∣∣u2k,1 (x)
∣∣)

� C
∞

∑
k=1

k−1−δ + k1−δe−μ2k−1,1(1−x) +
(

k− 1
2

)−1−δ

+C
∞

∑
k=1

(
k− 1

2

)1−δ
e−μ2k,1(1−x) < ∞.

Similarly, estimate the series

D2α
x u(x,y) =

∞

∑
k=1

(
μ2

2k−1,1u2k−1,1 (x)Y2k−1,1 (y)+ μ2
2k,1u2k,1 (x)Y2k,1 (y)

)
.

Then uyy (x,y) ,D2α
x u(x,y) ∈C (Ω) .

The uniqueness of the solution of problem D follows from the uniqueness of the
solution of problem (22)–(23). The theorem is proved.
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