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Abstract. In this paper, firstly we deal with solvability of a first kind nonlinear interval integral
equation of fractional order. Then we present a theorem giving sufficient conditions for existence
of solution of a second kind nonlinear interval integral equation of fractional order in the space of
continuous interval-valued functions on the interval [a,b] by using Banach fixed point theorem.
We give also some examples satisfying the conditions of our main theorems.

1. Introduction

As it is known, nonlinear integral equations and set-valued analysis constitute im-
portant branchs of nonlinear functional analysis. Particularly, integral equations are
often used in characterization of several problems of engineering, mechanics, physics,
economics, biology and so on, [4], [5]. On the other hand, set-valued maps provide
a useful framework for control theory, optimization theory, game theory, robotics,
chemical engineering and mathematical economics, [2], [8], [13]. For this reason
C ([a,b],ΩC(R)) and L1 ([a,b],ΩC(R)) which are two classes of interval-valued maps
have important places in set-valued analysis.

In recent years, some authors such as S. Arshad [1], V. Lupulescu [9], [10], Y.
Shen [16], M.T. Malinowski [11], L. Stefanini and B. Bede [18], S. Salahshour and M.
Khan [14] and references therein give various results about interval-valued differential
and integral equations.

As one of these studies, the following interval integral equation (for short, IIE) has
been considered in [10]

Y (t) =
1

Γ(α)

∫ t

a
(t − s)α−1X(s)ds, (1)

where Y and X are set-valued functions and t ∈ [a,b] .
In this paper, we consider the following nonlinear Volterra IIEs of fractional order

in L1 ([a,b],ΩC(R)) and C ([a,b],ΩC(R))

Y (t) =
1

Γ(α)

∫ t

a
(t− s)α−1 (TX)(s)ds (2)
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and

X(t) =
1

Γ(α)

∫ t

a
(t − s)α−1 (TX)(s)ds, (3)

respectively. Here α ∈ (0,1) and T transforms Z into itself ( Z =C ([a,b],ΩC(R)) or
L1 ([a,b],ΩC(R)) ).

It should be indicated that this paper is a generalization of several ones obtained
up to now. If operator T is chosen as unit operator IIE (2) turns into IIE (1) .

In Section 2, we present some definitions and preliminary results such as the
interval-valued maps and Banach fixed point theorem. In Section 3, we give our main
results concerning the existence of solutions of the IIEs (2) and (3) . Also we establish
two examples showing that our results are applicable.

2. Preliminaries

In this section, we give some definitions and results which will be needed in the
next section (see [12] and [17] for more information).

Let us write ΩC (R) to denote the family of all nonempty, closed, bounded and
convex subsets of real numbers.

For
[
A,A

]
,
[
B,B

]∈ΩC (R) and λ ∈R, the usual interval operations, i.e. Minkowski
addition and scalar multiplication are defined by

[
A,A

]
+
[
B,B

]
=
[
A+B,A+B

]
and

λ · [A,A
]
=

⎧⎨
⎩
[
λA,λA

]
, λ > 0

{0} , λ = 0[
λA,λA

]
, λ < 0

,

respectively. Also (−1) · [A,A
]
= −[A,A

]
=
[−A,−A

]
.

A metric structure on ΩC (R) is given by the Hausdorff-Pompeiu distance H :
ΩC (R)×ΩC (R) → R

+ = [0,∞) defined by

H(A,B) = max
{|A−B| , ∣∣A−B

∣∣} .

It is well known that (ΩC (R) ,H) is a complete metric space.
We denote the width of an interval A =

[
A,A

]
by w(A) = A−A.

Also we say that an interval-valued function F : [a,b] → ΩC (R) is w-increasing
(w-decreasing) on [a,b] , if the real function wF : [a,b] → R

+ defined by wF(t) =
w(F(t)) is increasing (decreasing) on [a,b] . Then we say that F is w-monotone on
[a,b] , [12].

The generalized Hukuhara difference (or gH -difference) of two intervals
[
A,A

]
,[

B,B
] ∈ ΩC (R) is defined as follows

[
A,A

]�g
[
B,B

]
=
[
min

{
A−B,A−B

}
,max

{
A−B,A−B

}]
.
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DEFINITION 1. [12] Let F : [a,b] → ΩC (R) be an interval-valued function, t0 ∈
[a,b] and F ′(t0) ∈ ΩC (R) be define as (if it exists)

F ′(t0) = lim
h→0

F(t0 +h)�g F(t0)
h

.

Then it is said that F ′(t0) is generalized Hukuhara derivative (gH-derivative, for short)
of F at t0 . Also we say that F is generalizedHukuhara differentiable (gH-differentiable,
for short) on [a,b] if F ′(t) ∈ ΩC (R) exists at each point t ∈ [a,b] . Then the interval-
valued function F ′ : [a,b] → ΩC (R) is called gH-derivative of F on [a,b].

PROPOSITION 1. [12] Let F : [a,b]→ΩC (R) be an interval-valued function such
that F(t) = [F(t),F(t)] for t ∈ [a,b]. If the real-valued functions F and F are differ-
entiable at t ∈ [a,b] then F is gH-differentiable at t ∈ [a,b] and

F ′(t) =
[
min

{
d
dt

F(t),
d
dt

F(t)
}

,max

{
d
dt

F(t),
d
dt

F(t)
}]

. (4)

The converse of Proposition 1 is not true, that is, the gH-differentiability of F does
not imply the differentiability of F and F , [12].

It is known that C [a,b] which is the family of all real-valued and continuous func-
tions defined on interval [a,b] is a complete metric space with the standard metric

h( f ,g) = max{| f (t)−g(t)| : t ∈ [a,b]} .

Let C ([a,b] ,ΩC (R)) denote the set of all continuous interval-valued functions
defined on [a,b] . Then C ([a,b] ,ΩC (R)) is a complete metric space with the following
metric

HC(F,G) = sup
a�t�b

H(F(t),G(t)).

DEFINITION 2. [12] An interval-valued function F : [a,b]→ ΩC (R) is said to be
absolutely continuous if for each ε > 0 there exists δ > 0 such that for each family
{(sk,tk) : k = 1,2, ...,n} of disjoint open intervals in [a,b] with ∑n

k=1 (tk − sk) < δ , the
inequality ∑n

k=1 H (F (tk) ,F (sk)) < ε holds.
Let AC([a,b],ΩC (R)) denote the set of all absolutely continuous interval-valued

functions defined on [a,b] .

REMARK 1. [10] Let F be an element of AC ([a,b],ΩC (R)) such that F(t) =
[F(t),F(t)] and t ∈ [a,b]. If F is w-monotone on [a,b] then it is easy to check that

F is absolutely continuous if and only if the real-valued functions both F and F are
absolutely continuous. Therefore, if F : [a,b] → ΩC (R) is absolutely continuous and
w-monotone on [a,b] then F is gH-differentiable a.e. on [a,b] , and (4) holds for a.e.
t ∈ [a,b].

The Lebesgue integral for interval-valued functions is a special case of the Lebesgue
integral for set-valued mappings, [3].
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Let F : [a,b]→ΩC (R) be an interval-valued function such that F(t) = [F(t),F(t)]
and F , F are measurable and Lebesgue integrable on [a,b] . Then it is said that F is
Lebesgue integrable on [a,b] and

∫ b

a
F(t)dt =

[∫ b

a
F(t)dt,

∫ b

a
F(t)dt

]
.

Let 1 � p � ∞ and Lp([a,b],ΩC (R)) denote the set of all interval-valued func-
tions F : [a,b] → ΩC (R) such that the real function K : [a,b] → R defined as K (t) =
H(F(t),θ ) belong to Lp[a,b] . Then Lp([a,b],ΩC (R)) is a complete metric space with
respect to the following metric [6]

Hp(F,G) =

⎧⎪⎨
⎪⎩
(∫ b

a H (F(t),G(t))p dt
)1/p

, 1 � p < ∞
esssup
t∈[a,b]

H (F(t),G(t)) , p = ∞ .

PROPOSITION 2. [12] If F : [a,b]→ ΩC (R) is Lebesgue integrable on [a,b] then
the interval-valued function G : [a,b] → ΩC (R) defined by G(t) =

∫ b
a F(s)ds for t ∈

[a,b] is w-increasing, absolutely continuous and G′(t) = F(t) .

DEFINITION 3. [10] Let x ∈ L1 [a,b] and α > 0. Then the Riemann-Liouville
fractional integral of order α is defined by

Iα
a+x(t) =

1
Γ(α)

∫ t

a

x(s)
(t − s)1−α ds.

Let F ∈ L1([a,b],ΩC (R)) and α > 0. Then the integral defined as

Iα
a+F(t) =

1
Γ(α)

∫ t

a

F(s)
(t − s)1−α ds

is called the interval-valued Riemann-Liouville fractional integral of order α > 0. Also
it is obviously that if F ∈ L1([a,b],ΩC (R)) then

Iα
a+F(t) =

[
Iα
a+F(t), Iα

a+F(t)
]

for a.e. t ∈ [a,b] .

We will write F1−α (·) instead of I1−α
a+ F (·) .

LEMMA 1. [10] The Riemann-Liouville integral of order α > 0 is a bounded
operator from L1([a,b],ΩC (R)) into L1([a,b],ΩC (R)) .

Furthermore the reader can benefit from the papers [9], [15] and references therein
for the more informations about the fractional calculus.

THEOREM 1. (Banach Fixed Point Theorem) [7] Let X be a complete metric space.
If T : X → X is a contraction on X then T has precisely one fixed point in X .
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3. The Main Results

In this section, we firstly consider IIE (2) under the following conditions:

(a1) Y ∈L1([a,b],ΩC (R)) and Y1−α is w− increasing and AC on [a,b]. Also Y1−α(a)=
{0} .

(b1) T is an injective operator on L1([a,b],ΩC (R)).

THEOREM 2. If the assumptions (a1) and (b1) are satisfied then IIE (2) has a
unique solution X(t) = T−1

(
Y ′

1−α(t)
)

for t ∈ [a,b].

Proof. Let us define

Z (t) =
1

Γ(α)

∫ t

a
(t − s)α−1Y ′

1−α(s)ds (5)

Taking (a1) , (b1) and Remark 1 into account, we say that Y ′
1−α (·) exists a.e. on [a,b]

and Y ′
1−α (·)∈ L1([a,b],ΩC (R)) . Therefore we conclude that Z (·) ∈ L1([a,b],ΩC (R))

from Lemma 1.
We must to show that Z (t) = Y (t) for a.e. t ∈ [a,b] . To do this, multiplying with

Γ(α)(t − s)α−1 both sides of IIE (5) , we write

Γ(α)(t − s)−αZ(s) = (t − s)−α
∫ s

a
(s− τ)α−1Y ′

1−α(τ)dτ

and after integrating from a to t, we get

Γ(α)
∫ t

a
(t− s)−αZ(s)ds =

∫ t

a
(t− s)−α

(∫ s

a
(s− τ)α−1Y ′

1−α(τ)dτ
)

ds

and so

Γ(α)
[∫ t

a
(t− s)−αZ(s)ds,

∫ t

a
(t − s)−αZ(s)ds

]
(6)

=
[∫ t

a
(t− s)−α

(∫ s

a
(s− τ)α−1Y ′

1−α(τ)dτ
)

ds,

∫ t

a
(t − s)−α

(∫ s

a
(s− τ)α−1Y ′

1−α(τ)dτ
)

ds

]
.

By using Dirichlet Formula, we obtain

∫ t

a
(t− s)−α

(∫ s

a
(s− τ)α−1Y ′

1−α(τ)dτ
)

ds =
∫ t

a
Y ′

1−α(τ)dτ
∫ t

τ
(t− s)−α(s− τ)α−1ds

= Γ(α)Γ(1−α)
∫ t

a
Y ′

1−α(τ)dτ
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and similarly
∫ t

a
(t− s)−α

(∫ s

a
(s− τ)α−1Y ′

1−α(τ)dτ
)

ds =
∫ t

a
Y ′

1−α(τ)dτ
∫ t

τ
(t− s)−α(s− τ)α−1ds

= Γ(α)Γ(1−α)
∫ t

a
Y ′

1−α(τ)dτ.

Taking these last two equations and (6) into account, we have

Γ(α)
∫ t

a
(t− s)−αZ(s)ds = Γ(α)Γ(1−α)

∫ t

a
Y ′

1−α(τ)dτ

and so
1

Γ(1−α)

∫ t

a
(t− s)−αZ(s)ds =

∫ t

a
Y ′

1−α(τ)dτ,

Z1−α (t) =
∫ t

a
Y ′

1−α(τ)dτ.

Since Y ′
1−α (·) ∈ L1([a,b],ΩC (R)), the interval-valued function Z1−α is AC and w-

monotone on [a,b] from Proposition 2. Also Z1−α is differentiable a.e. on [a,b] from
Remark 1. Therefore, by using again Proposition 2 we have

Z′
1−α (t) = Y ′

1−α(t) (7)

for a.e. on [a,b] . On the other hand, it can be seen that (7) implies Z (t) = Y (t) for
a.e. t ∈ [a,b] , (see [10]).
So we infer that X = X (t) is a solution of IIE (2) if and only if X satisfies the equation

(TX)(t) = Y ′
1−α(t)

for a.e. t ∈ [a,b]. Also, since T is an injective operator then we can apply inverse
operator T−1 to both sides of the last equality. Then we get that

X(t) = T−1 (Y ′
1−α(t)

)
= T−1

(
1

Γ(1−α)

(∫ t

a
(t− s)−αY (s)ds

)′)

for a.e. t ∈ [a,b] and T−1
(
Y ′

1−α(t)
)

is the unique solution of IIE (2) .

REMARK 2. It can be easily seen that if T is chosen as unit operator then IIE (2)
returns to IIE (1) considering in [10]. Then the solution of (2) is T−1

(
Y ′

1−α(t)
)

=
Y ′

1−α(t). Also, if Y1−α is not w-increasing then Y ′
1−α(t) may not be a solution of IIE

(2) (see Example 1 in [10]).

EXAMPLE 1. Let us consider the following first kind nonlinear Volterra IIE in
L1([0,1],ΩC (R)) :

[√
t,
√

t + t2
]
=

1
Γ(1/2)

∫ t

0
(t− s)−1/2

[
eX(s),eX(s)

]
ds. (8)
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Here the operator T : L1([0,1],ΩC (R)) → L1([0,1],ΩC (R)) and the interval-valued
function Y : [0,1] → ΩC (R) are defined by

(TX)(t) = eX(t) =
[
eX(t),eX(t)

]

and

Y (t) =
[√

t,
√

t + t2
]
,

respectively. Since f (x) = ex is an increasing real-valued function, the notation eX(t) =[
eX(t),eX(t)

]
is meaningful for all X (t) ∈ ΩC (R) . On the other hand

Y1− 1
2
(t) =

1
Γ(1/2)

∫ t

a
(t − s)−1/2 [√s,

√
s+ s2]ds

=

[√
π

2
t,

√
π

2
t +

16
√

πt5/2

15π

]

for t ∈ [0,1] and so Y1− 1
2
∈ AC([0,1],ΩC (R)).

Also

w
(
Y1− 1

2
(t)
)

=
16

√
πt5/2

15π

and

w′
(
Y1− 1

2
(t)
)

=
8
√

πt3/2

3π
� 0.

Then Y1− 1
2

is w-increasing on [0,1] and

Y ′
1− 1

2
(t) =

[√
π

2
,

√
π

2
+

8
√

πt3/2

3π

]
,

for t ∈ [0,1] . So

(TX)(t) = eX(t) =
[
eX(t),eX(t)

]
= Y ′

1− 1
2
(t) =

[√
π

2
,

√
π

2
+

8
√

πt3/2

3π

]

and we obtain that

X(t) = T−1
(
Y ′

1− 1
2
(t)
)

=

[
ln

√
π

2
, ln

(√
π

2
+

8
√

πt3/2

3π

)]

is solution of IIE (8). Figure 1 shows the graph of this solution.
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Figure 1. X(t) =
[
X (t),X (t)

]
. For example, X (0.5) = [−0.120...,0.349...] and

X (0.8) = [−0.120...,0.674...] .

The main tool used in next theorem depends on the following lemma. Before
giving the our other principal result, let us prove this fact.

LEMMA 2. The equality

HC (X ,Y ) = sup
t∈[a,b]

A(X ,Y ) (t)

holds for all X ,Y ∈C([a,b],ΩC (R)) , where

A(X ,Y ) (t) = sup
s∈[a,t]

(
max

{∣∣∣X(s)−Y(s)
∣∣∣ , ∣∣∣X(s)−Y(s)

∣∣∣})

and
HC (X ,Y ) = sup

t∈[a,b]

(
max

{∣∣∣X(t)−Y(t)
∣∣∣ , ∣∣∣X(t)−Y (t)

∣∣∣}) .

Proof. First of all, we should indicate that the function A(X ,Y ) : [a,b] → R is well
defined and

0 � A(X ,Y ) (t) � HC (X ,Y )

holds for all t ∈ [a,b] . Then we can write

sup
t∈[a,b]

A(X ,Y ) (t) � HC (X ,Y ) (9)
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and

A(X ,Y ) (b) = HC (X ,Y ) � sup
t∈[a,b]

A(X ,Y ) (t) (10)

from the properties of supremum. So, we obtain

HC (X ,Y ) = sup
t∈[a,b]

A(X ,Y ) (t)

by using the inequalities (9) and (10) .

Now, we consider the second kind nonlinear IIE (3) in C([a,b],ΩC (R)) under the
following conditions:

(a2) There exists a nonnegative constant M such that the operator T : D⊆C([a,b],ΩC (R))→
C([a,b],ΩC (R)) satisfies the inequalities

∣∣∣(TX)(t)− (TY )(t)
∣∣∣ � M

∣∣∣X (t)−Y (t)
∣∣∣ ,∣∣∣(TX)(t)− (TY )(t)

∣∣∣ � M
∣∣∣X (t)−Y (t)

∣∣∣
for all X ,Y ∈ D⊆C([a,b],ΩC (R)) and t ∈ [a,b] , where D is a closed subset of
C([a,b],ΩC (R)) .

(b2) The inequality

M(b−a)α

Γ(α +1)
< 1

holds.

THEOREM 3. Under the assumptions (a2) and (b2) , there exists a solution X =
X(t) of IIE (3) .

Proof. Theorem 1 will be used as the main tool in this proof. Let us define the
operator F by

(FX)(t) =
1

Γ(α)

∫ t

a
(t− s)α−1 (TX)(s)ds

for every X ∈ D ⊆C([a,b],ΩC (R)) and t ∈ [a,b] .
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Then by using Lemma 2 and conditions (a2) and (b2), we get

HC (FX ,FY )
= sup

t∈[a,b]
H ((FX)(t),(FY ) (t))

= sup
t∈[a,b]

(
max

{∣∣∣(FX)(t)− (FY ) (t)
∣∣∣ , ∣∣∣(FX)(t)− (FY ) (t)

∣∣∣})

= sup
t∈[a,b]

(
max

{∣∣∣∣ 1
Γ(α)

∫ t

a
(t− s)α−1(TX)(s)ds− 1

Γ(α)

∫ t

a
(t− s)α−1(TY )(s)ds

∣∣∣∣ ,∣∣∣∣ 1
Γ(α)

∫ t

a
(t− s)α−1(TX)(s)ds− 1

Γ(α)

∫ t

a
(t− s)α−1(TY )(s)ds

∣∣∣∣
})

� 1
Γ(α)

sup
t∈[a,b]

(
max

{∫ t

a
(t − s)α−1

∣∣∣(TX)(s)− (TY ) (s)
∣∣∣ds,

∫ t

a
(t− s)α−1

∣∣∣(TX)(s)− (TY ) (s)
∣∣∣ds

})

� 1
Γ(α)

sup
t∈[a,b]

(
max

{∫ t

a
(t − s)α−1M

∣∣∣X(s)−Y (s)
∣∣∣ds,

∫ t

a
(t− s)α−1M

∣∣∣X(s)−Y (s)
∣∣∣ds

})

� M
Γ(α)

sup
t∈[a,b]

(∫ t

a
(t− s)α−1 max

{∣∣∣X(s)−Y (s)
∣∣∣ , ∣∣∣X(s)−Y (s)

∣∣∣}ds

)

� M
Γ(α)

sup
t∈[a,b]

(∫ t

a
(t− s)α−1A(X ,Y ) (t)ds

)

=
M

Γ(α)
sup

t∈[a,b]

(
A(X ,Y ) (t)

∫ t

a
(t − s)α−1ds

)

� M(b−a)α

Γ(α +1)
sup

t∈[a,b]
A(X ,Y ) (t)

=
M(b−a)α

Γ(α +1)
HC(X ,Y )

for all X ,Y ∈ D ⊆C([a,b],ΩC (R)).
Since D is a complete subspace of C([a,b],ΩC (R)) and M(b−a)α

Γ(α+1) < 1 by assump-

tion (b2) , the operator F is a contraction on D ⊆ C([a,b],ΩC (R)). Therefore, from
Theorem 1 we say that F has precisely one fixed point in D ⊆C([a,b],ΩC (R)). Con-
sequently, the nonlinear IIE (3) has a solution in C([a,b],ΩC (R)). This completes the
proof.

EXAMPLE 2. Let us consider the nonlinear Volterra IIE of the second kind

X(t) =
1

Γ(1/2)

∫ t

0
(t− s)−1/2 sinX (s)

2
ds (11)
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in B
[
θ , π

2

]⊂C([0, π
2 ],ΩC (R)) .

It should be noted that the closed ball B
[
θ , π

2

]
is a complete subspace of

C([0, π
2 ],ΩC (R)) . So Banach fixed point theorem can be used on B

[
θ , π

2

]
.

On the other hand we have X (t) ⊆ [− π
2 , π

2 ] for all X ∈ B
[
θ , π

2

]
and f (x) = sinx

is an increasing real-valued function on [− π
2 , π

2 ] . Therefore the notation sinX (t) =[
sinX(t),sinX(t)

]
is meaningful for all X ∈ B

[
θ , π

2

]⊂C([0, π
2 ],ΩC (R)) .

For this equation,

(TX)(t) =
sinX (t)

2
=

1
2

[
sinX(t),sinX(t)

]
and a = 0, b = π

2 , α = 1
2 . On the other hand,∣∣∣(TX)(t)− (TY ) (t)

∣∣∣
=

1
2

∣∣∣sinX(t)− sinY (t)
∣∣∣

=

∣∣∣∣∣sin
(

X(t)−Y (t)

2

)∣∣∣∣∣
∣∣∣∣∣cos

(
X(t)+Y (t)

2

)∣∣∣∣∣
�
∣∣∣∣∣sin

(
X(t)−Y (t)

2

)∣∣∣∣∣
� 1

2

∣∣∣X(t)−Y (t)
∣∣∣

and similarly ∣∣∣(TX)(t)− (TY )(t)
∣∣∣� 1

2

∣∣∣X(t)−Y (t)
∣∣∣ .

It is easy to see that the operator T satisfies the condition (a2) with M = 1/2. Also,

M(b−a)α

Γ(α +1)
=

√
2

2
< 1.

Therefore, Theorem 3 guarantees that IIE (11) has a solution X = X(t) in B
[
θ , π

2

]⊂
C([0, π

2 ],ΩC (R)) .
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