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EXISTENCE AND UNIQUENESS OF SOLUTIONS
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DIFFERENCE SYSTEMS WITH INITIAL CONDITIONS
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Abstract. In this paper, we give sufficient conditions to guarantee the global existence and the
uniqueness of solutions of nonlinear fractional nabla difference systems and study the depen-
dence of solutions on initial conditions and parameters.

1. Introduction

Fractional differential and difference equations with and without delay arise from
a variety of applications including in various fields of science and engineering such as
applied sciences, practical problems concerning mechanics, the engineering technique
fields, economy, control systems, physics, chemistry, biology, medicine, atomic energy,
information theory, harmonic oscillator, nonlinear oscillations, conservative systems,
stability and instability of geodesic on Riemannian manifolds, dynamics in Hamilto-
nian systems, etc. In particular, problems concerning qualitative analysis of fractional
differential and difference equations with and without delay have received the atten-
tion of many authors, see [1]–[10], [12]–[16], [18]–[26], [28]–[31] and the references
therein.

Recently, Agarwal, Zhou and He [3] discussed the existence of solutions for the
neutral fractional differential equation with bounded delay

{
CDα (u(t)−g(t,ut)) = f (t,ut) , t � t0,

ut0 = φ ,

where CDα is the standard Caputo’s fractional derivative of order 0 < α < 1. By em-
ploying the Krasnoselskii’s fixed point theorem, the authors obtained existence results.

Mathematics subject classification (2010): 39A10, 39A99.
Keywords and phrases: Fractional order, nabla difference, fixed point, global existence, uniqueness,

stability.

c© � � , Zagreb
Paper FDC-07-10

247

http://dx.doi.org/10.7153/fdc-2017-07-10


248 H. BOULARES, A. ARDJOUNI AND Y. LASKRI

The fractional difference equation

{
Δαu(t) = f (t + α,u(t + α)) , t ∈ N1−α ,

Δα−1u(t)
∣∣
t=0 = u0,

has been investigated in [14], where Δα denotes Riemann-Liouville like discrete frac-
tional difference of order 0 < α < 1. By using the Krasnoselskii’s fixed point theorem
and discrete Arzela-Ascoli’s theorem, the asymptotic stability has been established.

In [19], Jagan Mohan, Shobanadevi and Deekshitulu investigated the global ex-
istence and the uniqueness of the solutions of the following nonlinear nabla fractional
difference system

{
∇α
−1u(t) = f (t,u(t)), t ∈ N1,

∇−(1−α)
−1 u(t)|t=0 = u(0) = c, 0 < α < 1,

where ∇α
−1 is the Riemann-Liouville type fractional difference operators. By employ-

ing the fixed point theorems and discrete Arzela-Ascoli’s theorem, the authors obtained
the global existence and the uniqueness results. Also the dependence of solutions on
initial conditions and parameters has been established.

Inspired and motivated by the works mentioned above and the papers [1]–[10],
[12]–[16], [18]–[26], [28]-[31] and the references therein, we concentrate on the global
existence and the uniqueness of the solutions for the nonlinear nabla fractional differ-
ence system {

∇α
−1 [u(t)−g(t,u(t))] = f (t,u(t)), t ∈ N1,

∇−(1−α)
−1 u(t)|t=0 = u(0) = c, 0 < α < 1,

(1.1)

where ∇α
−1 is the Riemann-Liouville type fractional difference operators, Nt = {t,t +

1,t + 2, . . .} , u : N0 → R
n , c ∈ R

n is a constant, f : N0 ×R
n → R is continuous in

u , g : N0 ×Rn → R is Lipschitz continuous in u . That is, there is a positive constant
Lg ∈ (0,1) such that

‖g(t,u(t))−g(t,v(t))‖ � Lg ‖u(t)− v(t)‖ , g(t,0) = 0. (1.2)

The purpose of this paper is to use Krasnoselskii’s fixed point theorem, discrete
Arzela-Ascoli’s theorem and generalized Banach fixed point theorem to show the global
existence and the uniqueness of solutions for (1.1). To apply Krasnoselskii’s fixed
point theorem we need to construct two mappings, one is a contraction and the other is
compact. For details on Krasnoselskii’s theorem we refer the reader to [27]. In addition,
the dependence of solutions of (1.1) on initial conditions and parameters is studied.

This paper is organized as follows. Section 2 contains preliminaries on nabla
discrete fractional calculus and functional analysis. In section 3, we give and prove
our main results on the global existence and uniqueness of solutions for (1.1). The
dependence of solutions on initial conditions and parameters is the topic of section 4.
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2. Preliminaries

We shall use the following notations, definitions and known results of discrete
fractional calculus [6, 16, 18, 29, 30] throughout this article. For any a,b ∈ R , Na,b =
{a,a+1,a+2, . . .,b} where b = a+ k for some positive integer k .

DEFINITION 2.1. For any α,t ∈ R , the α rising function is defined by

tα =
Γ(t + α)

Γ(t)
, t ∈ R\{. . . ,−2,−1,0}, 0α = 0.

We observe the following properties of rising factorial function.

LEMMA 2.2. Assume the following factorial functions are well defined.
(1) tα(t + α)β = tα+β .
(2) If t � r then tα � rα .
(3) If α < t � r then r−α � t−α .

DEFINITION 2.3. Let u : Na →R , α ∈R+ and choose N ∈N1 such that N−1 <
α < N .

(1) (Nabla Difference) The first order backward difference or nabla difference of
u is defined by

∇u(t) = u(t)−u(t−1), t ∈ Na+1,

and the Nth -order nabla difference of u is defined recursively by

∇Nu(t) = ∇
(
∇N−1u(t)

)
, t ∈ Na+N .

In addition, we take ∇0 as the identity operator.
(2) (Fractional Nabla Sum) The αth -order fractional nabla sum of u is given by

∇−α
a u(t) =

1
Γ(α)

t

∑
s=a+1

(t−ρ(s))α−1u(s), t ∈ Na (2.1)

where ρ(s) = s−1. Also, we define the trivial sum by ∇−0
a u(t) = u(t) for t ∈ Na .

(3) (R-L Nabla Fractional Difference) The αth -order Riemann-Liouville type
nabla fractional difference of u is given by

∇α
a u(t) = ∇N

[
∇−(N−α)

a u(t)
]
, t ∈ Na+N . (2.2)

For α = 0, we set ∇0
au(t) = u(t) , t ∈ Na .

(4) (Caputo Fractional Nabla Difference) The αth -order Caputo type fractional
nabla difference of u is given by

∇α
a∗u(t) = ∇−(N−α)

a
[
∇Nu(t)

]
, t ∈ Na+N . (2.3)

For α = 0, we set ∇0
a∗u(t) = u(t) , t ∈ Na .
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THEOREM 2.4. (Power Rule) Let α > 0 and μ > −1 . Then,

(1) ∇−α
a (t −a)μ = Γ(μ+1)

Γ(μ+α+1) (t−a)μ+α , t ∈ Na .

(2) ∇α
a (t−a)μ = Γ(μ+1)

Γ(μ−α+1) (t−a)μ−α , t ∈ Na+N .
Let f : Na ×R −→ R , u : Na−→ R and 0 < α < 1. Consider a fractional nabla

difference equation of Riemann-Liouville type together with an initial condition of the
form {

∇α
a−1u(t) = f (t,u(t)), t ∈ Na+1,

∇−(1−α)
a−1 u(t)|t=a = u(a) = u0.

(2.4)

Then, from [30], u is a solution of the initial value problem (2.4) if and only if it has
the following representation

u(t) =
(t −a+1)α−1

Γ(α)
u0 +

1
Γ(α)

t

∑
s=a+1

(t−ρ(s))α−1 f (s,u(s)), t ∈ Na. (2.5)

Now we present some important definitions and theorems of functional analysis
[11, 17, 27] which will be useful in establishing main results.

DEFINITION 2.5. Rn is the space of all ordered n -tuples of real numbers. Clearly,
Rn is a Banach space with respect to the supremum norm. A closed ball with radius r
centered at the origin of Rn is defined by

B∞
0 (r) = {u = (u1,u2, . . . ,un) ∈ R

n : ‖u‖∞ � r} .

DEFINITION 2.6. l∞ = l∞(R) is the space of all real sequences defined on the set
of positive integers where any individual sequence is bounded with respect to the usual
supremum norm. Clearly l∞ is a Banach space under the supremum norm. A closed
ball with radius r centered on the null sequence of l∞ is defined by

B∞
0 (r) = {u = {u(t)}∞

t=0 ∈ l∞ : ‖u‖∞ � r} .

DEFINITION 2.7. A subset S of l∞ is uniformly Cauchy (or equi-Cauchy), if
for every ε > 0, there exists k ∈ N1 such that |u(t1)−u(t2)| < ε whenever t1, t2 ∈
Nk+1 , for any u = {u(t)}∞

t=0 in S .

THEOREM 2.8. (Discrete Arzela-Ascoli’s Theorem) A bounded uniformly Cauchy
subset S of l∞ is relatively compact.

THEOREM 2.9. (Krasnoselskii’s Fixed Point Theorem) Let S be a nonempty,
closed, convex and bounded subset of a Banach space X , and let A : X −→ X and
B : S −→ X be two operators such that

(1) A is a contraction with constant L < 1 ,
(2) B is continuous, BS resides in a compact subset of X ,
(3) [x = Ax+By; y ∈ S] =⇒ x ∈ S .

Then the operator equation Ax+Bx = x has a solution in S .
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THEOREM 2.10. (Generalized Banach Fixed Point Theorem) Let S be a nonempty,
closed subset of a Banach space (X ,‖.‖), and let a ωn � 0 for every n ∈ N0 and such
∑∞

n=0ωn converges. Moreover, let the mapping T : S −→ S satisfy the inequality

‖Tnu−Tnv‖� ωn‖u− v‖,

for every n ∈ N1 and any u,v ∈ S . Then, T has a uniquely defined fixed point u∗ .
Furthermore, for any u0 ∈ S , the sequence (Tnu0)∞

n=1 converges to this fixed point u∗ .

DEFINITION 2.11. Let X be a Banach space with respect to a norm ‖.‖ . Define
the

S = S(X) = {u : u = {u(t)}∞
t=0 , u(t) ∈ X} .

Then, S is a linear space of sequences of elements of X under obvious definition of
addition and scalar multiplication. Now we employ the notation

u = {u(t)}∞
t=0 , ‖u‖∞ = sup

t∈N0

|u(t)| ,

and define the set
S

∞(X) = {u : u ∈ S(X) with ‖u‖∞ � ∞} .

Clearly S∞(X) is a Banach space consisting of elements of S(X) , with respect to the
supremum norm.

DEFINITION 2.12. From Definitions 2.6 and 2.11, we observe that l∞ = l∞(R) =
S

∞(R). Now we choose X = R
n in Definition 2.11 to define

�∞ = �∞(Rn) = S
∞(Rn) = {u : u = {u(t)}∞

t=0 , u(t) ∈ R
n with ‖u‖∞ � ∞} .

Thus, �∞ denotes the Banach space comprising sequences of vectors with respect to the
supremum norm ‖.‖∞ defined by

‖u‖∞ = sup
t∈N0

‖u(t)‖ .

A closed ball with radius r centered on the null sequence in �∞ is defined by

B∞
0 (r) = {u = {u(t)}∞

t=0 ∈ �∞ : ‖u‖∞ � r} .

3. Existence and uniqueness

In this section we prove existence and uniqueness theorems to (1.1).
Let u : N0 −→ �∞ and f ,g : N0× �∞ −→ �∞ . Analogous to (2.5), u = {u(t)}∞

t=0 ∈
�∞ is any solution of the initial value problem (1.1) if and only if

u(t) =
(t +1)α−1

Γ(α)
[c−g(0,c)]+g(t,u(t))+

1
Γ(α)

t

∑
s=1

(t−ρ(s))α−1 f (s,u(s)), t ∈ N0.

(3.1)
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Define the operators

Tu(t) =
(t +1)α−1

Γ(α)
[c−g(0,c)]+g(t,u(t))+

1
Γ(α)

t

∑
s=1

(t−ρ(s))α−1 f (s,u(s)), t ∈ N0,

(3.2)

Au(t) =
(t +1)α−1

Γ(α)
[c−g(0,c)]+g(t,u(t)), t ∈ N0, (3.3)

and

Bu(t) =
1

Γ(α)

t

∑
s=1

(t−ρ(s))α−1 f (s,u(s)), t ∈ N0. (3.4)

It is evident from (3.1)–(3.2) that u is a fixed point of T if and only if u is a solution
of (1.1). First we use Krasnoselskii’s fixed point theorem (Theorem 2.9) to establish
global existence of solutions of (1.1).

THEOREM 3.1. (Global Existence) Assume that (1.2) holds and there exist con-
stants β1 ∈ [α,1) and L1 � 0 such that

‖ f (t,u(t))‖ � L1t
−β1 , t ∈ N1, (3.5)

then the initial value problem (1.1) has at least one bounded solution in �∞ .

Proof. To prove condition (2) of Theorem 2.9, we define a set

S1 =
{

u : ‖u(t)‖ � (1+Lg)‖c‖+L1Γ(1−β1)
1−Lg

, t ∈ N1

}
.

Clearly S1 is a nonempty, closed, bounded and convex subset of �∞ . First, we show
that B maps S1 into S1 . Using Lemma 2.2, Theorem 2.4 and (3.5), we have

‖Bu(t)‖ � 1
Γ(α)

t

∑
s=1

(t−ρ(s))α−1‖ f (s,u(s))‖

� L1

Γ(α)

t

∑
s=1

(t−ρ(s))α−1s−β1 = L1∇−α
0 t−β1 =

L1Γ(1−β1)
Γ(1−β1 + α)

t−(β1−α)

� L1Γ(1−β1)
Γ(1−β1 + α)

(1)−(β1−α) = L1Γ(1−β1)

� (1+Lg)‖c‖+L1Γ(1−β1)
1−Lg

, t ∈ N1,

implies BS1 ⊂ S1 . Next, we show that B is continuous on S1 . Let ε > 0 be given.
Then there exists m ∈ N1 such that, for t ∈ Nm+1,

L1Γ(1−β1)
Γ(1−β1 + α)

t−(β1−α) <
ε
2
.
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Let {uk} , (k = 1,2, . . .) be a sequence in S1 such that uk −→ u in S1 . Then, we have
‖uk −u‖∞ −→ 0 as k −→ ∞ . Since f is continuous with respect to the second variable,
we get ‖ f (t,uk)− f (t,u)‖∞ −→ 0 as k −→ ∞ . For t � m ,

‖Buk (t)−Bu(t)‖

� 1
Γ(α)

t

∑
s=1

(t−ρ(s))α−1‖ f (s,uk(s))− f (s,u(s))‖

�
[

1
Γ(α)

t

∑
s=1

(t−ρ(s))α−1

][
sup

s∈{1,2,...,m}
‖ f (s,uk(s))− f (s,u(s))‖

]

� tα

Γ(α +1)
‖ f (s,uk)− f (s,u)‖∞ −→ 0 as k −→ ∞.

For t ∈ Nm+1 ,

‖Buk (t)−Bu(t)‖

� 1
Γ(α)

t

∑
s=1

(t−ρ(s))α−1 [‖ f (s,uk(s))‖+‖ f (s,u(s))‖]

� 2L1Γ(1−β1)
Γ(1−β1 + α)

t−(β1−α) < ε.

Thus we have, ‖Buk −Bu‖∞ → 0 as k −→ ∞ , implies B is continuous. Now, we show
that BS1 is relatively compact. Let t1,t2 ∈ Nm+1 such that t2 > t1 . Then, we have

‖Bu(t1)−Bu(t2)‖

� 1
Γ(α)

t1

∑
s=1

(t1 −ρ(s))α−1‖ f (s,u(s))‖+
1

Γ(α)

t2

∑
s=1

(t2−ρ(s))α−1‖ f (s,u(s))‖

� L1Γ(1−β1)
Γ(1−β1 + α)

t−(β1−α)
1 +

L1Γ(1−β1)
Γ(1−β1 + α)

t−(β1−α)
2 < ε.

Thus {Bu : u ∈ S1} is a bounded and uniformly Cauchy subset of �∞ . Hence, by The-
orem 2.8, BS1 is relatively compact.

Now we prove condition (3) of Theorem 2.9. Let us suppose, for a fixed v ∈ S1 ,
u = Au+Bv . Using Lemma 2.2, Theorem 2.4 and (3.5), we have

‖u(t)‖ � ‖Au(t)‖+‖Bv(t)‖

� (t +1)α−1

Γ(α)
‖c−g(0,c)‖+‖g(t,u(t))‖+

1
Γ(α)

t

∑
s=1

(t −ρ(s))α−1‖ f (s,v(s))‖

� (1)α−1

Γ(α)
(1+Lg)‖c‖+Lg‖u(t)‖+

L1Γ(1−β1)
Γ(1−β1 + α)

t−(β1−α)

� (1+Lg)‖c‖+Lg‖u(t)‖+
L1Γ(1−β1)

Γ(1−β1 + α)
(1)−(β1−α)

= Lg ‖u(t)‖+(1+Lg)‖c‖+L1Γ(1−β1), t ∈ N1.
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Then

‖u(t)‖ � (1+Lg)‖c‖+L1Γ(1−β1)
1−Lg

, t ∈ N1.

Thus u ∈ S1 .
Lastly, we prove that A is contraction. Let u,v ∈ �∞ , we have

‖Au(t)−Av(t)‖ = ‖g(t,u(t))−g(t,v(t))‖ � Lg ‖u− v‖∞ .

Then
‖Au−Av‖∞ � Lg ‖u− v‖∞ ,

which means that A is a contraction by (1.2).
According to Theorem 2.9, T has a fixed point in S1 which is a solution of (1.1).

Hence the proof is complete. �

THEOREM 3.2. (Global Existence) Assume that (1.2) holds and there exist con-
stants β2 ∈ [α,1) and L2 � 0 such that

‖ f (t,u(t))‖ � L2t
−β2 ‖u(t)‖ , t ∈ N1, (3.6)

then the initial value problem (1.1) has at least one bounded solution in �∞ provided
that

Lg +L2Γ(1−β2) < 1. (3.7)

Proof. Define

S2 =
{

u : ‖u(t)‖ � (1+Lg)‖c‖
1−Lg−L2Γ(1−β2)

, t ∈ N1

}
.

Clearly S2 is a nonempty, closed, bounded and convex subset of �∞ . First, we show
that B maps S2 into S2 . Using Lemma 2.2, Theorem 2.4 and (3.6), we have

‖Bu(t)‖ � 1
Γ(α)

t

∑
s=1

(t−ρ(s))α−1‖ f (s,u(s))‖

� L2

Γ(α)

t

∑
s=1

(t−ρ(s))α−1s−β2 ‖u(s)‖

� L2
(1+Lg)‖c‖

1−Lg−L2Γ(1−β2)
1

Γ(α)

t

∑
s=1

(t −ρ(s))α−1s−β2

=
L2 (1+Lg)‖c‖

1−Lg−L2Γ(1−β2)
∇−α

0 t−β2

=
L2 (1+Lg)‖c‖

1−Lg−L2Γ(1−β2)
Γ(1−β2)

Γ(1−β2 + α)
t−(β2−α)

� L2 (1+Lg)‖c‖
1−Lg−L2Γ(1−β2)

Γ(1−β2)
Γ(1−β2 + α)

(1)−(β2−α)
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=
(1+Lg)‖c‖L2Γ(1−β2)

1−Lg−L2Γ(1−β2)

� (1+Lg)‖c‖
1−Lg−L2Γ(1−β2)

, t ∈ N1,

implies BS2 ⊂ S2 . The remaining proof of conditions (1) and (2) is similar to that
of Theorem 3.1 and we omit it. Now we prove condition (3) of Theorem 2.9. Let us
suppose, for a fixed v ∈ S2 , u = Au+Bv . Using Lemma 2.2, Theorem 2.4 and (3.6),
we have

‖u(t)‖ � ‖Au(t)‖+‖Bv(t)‖

� (t +1)α−1

Γ(α)
(1+Lg)‖c‖+Lg‖u(t)‖+

1
Γ(α)

t

∑
s=1

(t−ρ(s))α−1‖ f (s,v(s))‖

� (1)α−1

Γ(α)
(1+Lg)‖c‖+Lg ‖u(t)‖+

(1+Lg)‖c‖L2Γ(1−β2)
1−Lg−L2Γ(1−β2)

= Lg ‖u(t)‖+
(1+Lg)‖c‖(1−Lg)
1−Lg−L2Γ(1−β2)

, t ∈ N1.

Then

‖u(t)‖ � (1+Lg)‖c‖
1−Lg−L2Γ(1−β2)

, t ∈ N1.

Thus u ∈ S2 . According to Theorem 2.9, T has a fixed point in S2 which is a solution
of (1.1). Hence the proof is complete. �

We use generalized Banach fixed point theorem (Theorem 2.10) to prove the
uniqueness of solutions of (1.1).

THEOREM 3.3. (Global Uniqueness) Assume that (1.2) holds and there exist con-
stants γ ∈ [α,1) and M � 0 such that

‖ f (t,u)− f (t,v)‖∞ � t−γM ‖u− v‖∞ , t ∈ N1, (3.8)

for any pair of elements u and v in �∞ . Then the initial value problem (1.1) has a
unique bounded solution in �∞ provided that

ρ = Lg +MΓ(1− γ) < 1. (3.9)

Proof. Let us define the iterates of operator T as follows

T 1 = T, Tn = T ◦Tn−1, n ∈ N1.

It is sufficient to prove that Tn is a contraction operator for sufficiently large n . Actu-
ally, we have

‖Tnu−Tnv‖∞ � ρn ‖u− v‖∞ , (3.10)
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where the constant ρ depends only on Lg , M and γ . In fact, using Lemma 2.2, Theo-
rem 2.4 and (3.8), we get

‖Tu(t)−Tv(t)‖

� 1
Γ(α)

t

∑
s=1

(t −ρ(s))α−1‖ f (s,u(s))− f (s,v(s))‖+‖g(t,u(t))−g(t,v(t))‖

� 1
Γ(α)

t

∑
s=1

(t −ρ(s))α−1s−γM ‖u− v‖∞ +Lg ‖u− v‖∞

= M∇−α
0 t−γ ‖u− v‖∞ +Lg‖u− v‖∞ =

MΓ(1− γ)
Γ(1− γ + α)

t−(γ−α)‖u− v‖∞ +Lg‖u− v‖∞

� MΓ(1− γ)
Γ(1− γ + α)

(1)−(γ−α)‖u− v‖∞ +Lg‖u− v‖∞

= (Lg +MΓ(1− γ))‖u− v‖∞ = ρ ‖u− v‖∞ ,

implies
‖Tu−Tv‖∞ � ρ ‖u− v‖∞ . (3.11)

Therefore (3.10) is true for n = 1. Assuming (3.10) is valid for n , we obtain similarly∥∥Tn+1u(t)−Tn+1v(t)
∥∥

= ‖(T ◦Tn)u(t)− (T ◦Tn)v(t)‖

� 1
Γ(α)

t

∑
s=1

(t−ρ(s))α−1‖ f (s,T nu(s))− f (s,T nv(s))‖+‖g(t,Tnu(s))−g(t,Tnv(s))‖

� M
Γ(α)

t

∑
s=1

(t−ρ(s))α−1s−γ ‖Tnu−Tnv‖∞ +Lg‖Tnu−Tnv‖∞

� Mρn∇−α
0 t−γ ‖u− v‖∞ + ρnLg ‖u− v‖∞

=
MρnΓ(1− γ)
Γ(1− γ + α)

t−(γ−α)‖u− v‖∞ + ρnLg ‖u− v‖∞

� MρnΓ(1− γ)
Γ(1− γ + α)

(1)−(γ−α)‖u− v‖∞ + ρnLg ‖u− v‖∞

= [Lg +MΓ(1− γ)]ρn ‖u− v‖∞ = ρn+1‖u− v‖∞ .

Thus, by the principle of mathematical induction on n , the statement (3.10) is true for

each n ∈ N1 . Since ρ < 1, the geometric series
∞
∑

n=o
ρn converges. Hence T has a

uniquely defined point u∗ in S1 (or S2 ). This completes the proof. �

EXAMPLE 3.4. Consider the scalar initial value problem{
∇0.5
−1 [u(t)− (0.32)cos(t)sin(u(t))] = (0.15)t−0.75 cos(u(t)) , t ∈ N1,

∇−0.5
−1 u(t)|t=0 = u(0) = c.

(3.12)
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Then

α = 0.5, g(t,u) = (0.32)cos(t)sin(u) , f (t,u) = (0.15)t−0.75 cos(u) .

Doing straightforward computations, we obtain

γ = 0.75, g(t,0) = 0, Lg = 0.32, M = 0.15, ρ = 0.864.

Thus, all the assumptions of Theorem 3.3 hold and hence the initial value problem
(3.12) has a unique solution in �∞ .

4. Dependence of solutions on initial conditions and parameters

The initial value problem (1.1) describes a model of a physical problem in which
often some parameters such as lengths, masses, temperature, etc. are involved. The
values of these parameters can be measured only up to a certain degree of accuracy.
Thus, in (1.1), the initial value c , the order of the difference operator and the function
f , may be subject to some errors either by necessity or for convenience. Hence, it is
important to know how the solution changes when these parameters are slightly altered.
We shall discuss this question quantitatively in the following theorems.

THEOREM 4.1. Assume that (1.2) holds and f satisfies (3.8). Suppose u and v
are the solutions of the initial value problems

{
∇α+ε
−1 [u(t)−g(t,u(t))] = f (t,u(t)),

∇−(1−α−ε)
−1 u(t)|t=0 = u(0) = c, t ∈ N1,

(4.1)

{
∇α
−1 [v(t)−g(t,v(t))] = f (t,v(t)),

∇−(1−α)
−1 v(t)|t=0 = v(0) = c, t ∈ N1,

(4.2)

respectively, where ε > 0 and 0 < α < α + ε < 1 . Then

‖u− v‖∞ = O(ε) , (4.3)

provided that (3.9) holds.

Proof. We have

u(t)=
(t +1)α+ε−1

Γ(α + ε)
[c−g(0,c)]+g(t,u(t))+

1
Γ(α)

t

∑
s=1

(t−ρ(s))α+ε−1 f (s,u(s)), t ∈N0,

v(t) =
(t +1)α−1

Γ(α)
[c−g(0,c)]+g(t,v(t))+

1
Γ(α)

t

∑
s=1

(t −ρ(s))α−1 f (s,v(s)), t ∈ N0.
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Consider

‖u(t)− v(t)‖

�
∣∣∣∣∣(t +1)α+ε−1

Γ(α + ε)
− (t +1)α−1

Γ(α)

∣∣∣∣∣(1+Lg)‖c‖+‖g(t,u(t))−g(t,v(t))‖

+

∥∥∥∥∥ 1
Γ(α + ε)

t

∑
s=1

(t−ρ(s))α+ε−1 f (s,u(s))− 1
Γ(α)

t

∑
s=1

(t−ρ(s))α−1 f (s,v(s))

∥∥∥∥∥
�

∣∣∣∣ Γ(α)
Γ(α + ε)

(t + α)ε −1

∣∣∣∣ (t +1)α−1

Γ(α)
(1+Lg)‖c‖∞ +Lg‖u(t)− v(t)‖

+

∥∥∥∥∥ 1
Γ(α + ε)

t

∑
s=1

(t−ρ(s))α+ε−1 [ f (s,u(s))− f (s,v(s))]

∥∥∥∥∥
+

∥∥∥∥∥ 1
Γ(α)

t

∑
s=1

(t−ρ(s))α−1 f (s,v(s))
[
1− Γ(α)

Γ(α + ε)
(t − s+ α)ε

]∥∥∥∥∥
�

∣∣∣∣ Γ(α)
Γ(t + α)

Γ(ε + t + α)
Γ(ε + α)

−1

∣∣∣∣ (2)α−1

Γ(α)
(1+Lg)‖c‖∞ +Lg‖u(t)− v(t)‖

+
1

Γ(α + ε)

t

∑
s=1

(t−ρ(s))α+ε−1‖ f (s,u(s))− f (s,v(s))‖

+
1

Γ(α)
∑t

s=1(t−ρ(s))α−1 ‖ f (s,v(s))‖
∣∣∣∣1− Γ(α)

Γ(t− s+ α)
Γ(ε + t− s+ α)

Γ(ε + α)

∣∣∣∣ , t ∈N1.

(4.4)

Since

lim
ε−→0

1
ε

[
Γ(α)

Γ(t + α)
Γ(ε + t + α)

Γ(ε + α)
−1

]
= C1 (a constant independent of ε),

and

lim
ε−→0

1
ε

[
1− Γ(α)

Γ(t − s+ α)
Γ(ε + t− s+ α)

Γ(ε + α)

]
= C2 (a constant independent of ε),

we have [
Γ(α)

Γ(t + α)
Γ(ε + t + α)

Γ(ε + α)
−1

]
= O(ε), (4.5)

[
1− Γ(α)

Γ(t− s+ α)
Γ(ε + t− s+ α)

Γ(ε + α)

]
= O(ε). (4.6)



NONLINEAR FRACTIONAL NABLA DIFFERENCE SYSTEMS 259

Using (4.5) and (4.6) in (4.4), we get

‖u(t)− v(t)‖

� O(ε)α (1+Lg)‖c‖∞ +Lg‖u− v‖∞ +M‖u− v‖∞
1

Γ(α + ε)

t

∑
s=1

(t −ρ(s))α+ε−1s−γ

+O(ε)‖ f‖∞
1

Γ(α)

t

∑
s=1

(t −ρ(s))α−1s−γ

= O(ε)α (1+Lg)‖c‖∞ +Lg‖u− v‖∞ +M‖u− v‖∞ ∇−(α+ε)
0 t−γ +O(ε)‖ f‖∞ ∇−α

0 t−γ

= O(ε)α (1+Lg)‖c‖∞ +Lg‖u− v‖∞ +M‖u− v‖∞
Γ(1− γ)

Γ(1+ α + ε − γ)
tα+ε−γ

+O(ε)‖ f‖∞
Γ(1− γ)

Γ(1+ α − γ)
tα−γ

� O(ε)α (1+Lg)‖c‖∞ +Lg‖u− v‖∞ +M‖u− v‖∞
Γ(1− γ)

Γ(1+ α + ε − γ)
(1)α+ε−γ

+O(ε)‖ f‖∞
Γ(1− γ)

Γ(1+ α − γ)
(1)α−γ

= O(ε)α (1+Lg)‖c‖∞ +Lg ‖u−v‖∞ +M ‖u−v‖∞ Γ(1−γ)+O(ε)‖ f‖∞ Γ(1−γ), t ∈ N1.

Then, we have the relation

‖u− v‖∞ � [α (1+Lg)‖c‖∞ +‖ f‖∞ Γ(1− γ)]
1−Lg−MΓ(1− γ)

O(ε),

implies
‖u− v‖∞ = O(ε). �

THEOREM 4.2. Assume that (1.2) holds and f satisfies (3.8). Suppose u and v
are the solutions of the initial value problems{

∇α
−1 [u(t)−g(t,u(t))] = f (t,u(t)),

∇−(1−α)
−1 u(t)|t=0 = u(0) = c, t ∈ N1,

(4.7)

{
∇α
−1 [v(t)−g(t,v(t))] = f (t,v(t)),

∇−(1−α)
−1 v(t)|t=0 = v(0) = d, t ∈ N1,

(4.8)

respectively, where 0 < α < 1 . Then

‖u− v‖∞ = O(‖c−d‖∞) , (4.9)

provided that (3.9) holds.

Proof. We have

u(t) =
(t +1)α−1

Γ(α)
[c−g(0,c)]+g(t,u(t))+

1
Γ(α)

t

∑
s=1

(t−ρ(s))α−1 f (s,u(s)), t ∈ N0,
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v(t) =
(t +1)α−1

Γ(α)
[d−g(0,d)]+g(t,v(t))+

1
Γ(α)

t

∑
s=1

(t −ρ(s))α−1 f (s,v(s)), t ∈ N0.

Consider

‖u(t)− v(t)‖

� ‖c−d +g(0,c)−g(0,d)‖ (t +1)α−1

Γ(α)
+‖g(t,u(t))−g(t,v(t))‖

+
1

Γ(α)

t

∑
s=1

(t−ρ(s))α−1‖ f (s,u(s))− f (s,v(s))‖

� (1+Lg)‖c−d‖∞
(2)α−1

Γ(α)
+Lg ‖u− v‖∞ +M‖u− v‖∞

1
Γ(α)

t

∑
s=1

(t −ρ(s))α−1s−γ

= α (1+Lg)‖c−d‖∞ +Lg‖u− v‖∞ +M‖u− v‖∞ ∇−α
0 t−γ

= α (1+Lg)‖c−d‖∞ +Lg‖u− v‖∞ +M‖u− v‖∞
Γ(1− γ)

Γ(1+ α − γ)
tα−γ

� α (1+Lg)‖c−d‖∞ +Lg ‖u− v‖∞ +M‖u− v‖∞
Γ(1− γ)

Γ(1+ α − γ)
(1)α−γ

= α (1+Lg)‖c−d‖∞ +Lg‖u− v‖∞ +M‖u− v‖∞ Γ(1− γ), t ∈N1.

Then, we have the relation

‖u− v‖∞ � α (1+Lg)
1−Lg−MΓ(1− γ)

‖c−d‖∞ ,

implies
‖u− v‖∞ = O(‖c−d‖∞) . �

THEOREM 4.3. Let (1.2) holds for g and G with g(0,c) = G(0,c) . Assume that
f and F are continuous and satisfy (3.8). Suppose u and v are the solutions of the
initial value problems

{
∇α
−1 [u(t)−g(t,u(t)))] = f (t,u(t)),

∇−(1−α)
−1 u(t)|t=0 = u(0) = c, t ∈ N1,

(4.10)

{
∇α
−1 [v(t)−G(t,v(t))] = F(t,v(t)),

∇−(1−α)
−1 v(t)|t=0 = v(0) = c, t ∈ N1,

(4.11)

respectively, where 0 < α < 1 . Then

‖u− v‖∞ = O(‖ f −F‖∞ +‖g−G‖∞) (4.12)

provided that (3.9) holds.
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Proof. We have

u(t) =
(t +1)α−1

Γ(α)
[c−g(0,c)]+g(t,u(t))+

1
Γ(α)

t

∑
s=1

(t−ρ(s))α−1 f (s,u(s)), t ∈ N0,

v(t) =
(t +1)α−1

Γ(α)
[c−G(0,c)]+G(t,v(t))+

1
Γ(α)

t

∑
s=1

(t−ρ(s))α−1F(s,v(s)), t ∈ N0.

Consider

‖u(t)− v(t)‖

� 1
Γ(α)

t

∑
s=1

(t−ρ(s))α−1 ‖ f (s,u(s))−F(s,v(s))‖+‖g(t,u(t))−G(t,v(t))‖

=
1

Γ(α)

t

∑
s=1

(t−ρ(s))α−1‖ f (s,u(s))− f (s,v(s))+ f (s,v(s))−F(s,v(s))‖

+‖g(t,u(t))−g(t,v(t))+g(t,v(t))−G(t,v(t))‖

� 1
Γ(α)

t

∑
s=1

(t−ρ(s))α−1 ‖ f (s,u(s))− f (s,v(s))‖

+
1

Γ(α)

t

∑
s=1

(t −ρ(s))α−1‖ f (s,v(s))−F(s,v(s))‖+Lg‖u− v‖∞ +‖g−G‖∞

� [M‖u− v‖∞ +‖ f −F‖∞]
1

Γ(α)

t

∑
s=1

(t −ρ(s))α−1s−γ +Lg‖u− v‖∞ +‖g−G‖∞

= [M‖u− v‖∞ +‖ f −F‖∞]∇−α
0 s−γ +Lg‖u− v‖∞ +‖g−G‖∞

= [M‖u− v‖∞ +‖ f −F‖∞]
Γ(1− γ)

Γ(1+ α − γ)
tα−γ +Lg‖u− v‖∞ +‖g−G‖∞

� [M‖u− v‖∞ +‖ f −F‖∞]
Γ(1− γ)

Γ(1+ α − γ)
(1)α−γ +Lg‖u− v‖∞ +‖g−G‖∞

= [M‖u− v‖∞ +‖ f −F‖∞]Γ(1− γ)+Lg‖u− v‖∞ +‖g−G‖∞ , t ∈ N1.

Then, we have the relation

‖u− v‖∞ � Γ(1− γ)‖ f −F‖∞ +‖g−G‖∞
1−Lg−MΓ(1− γ)

,

implies
‖u− v‖∞ = O(‖ f −F‖∞ +‖g−G‖∞) . �

DEFINITION 4.4. A solution ũ∈ �∞ is said to be stable, if given ε > 0 and t0 � 0,
there exists δ = δ (ε, t0) such that ‖u(t0)− ũ(t0)‖∞ < δ =⇒‖u− ũ‖∞ < ε for all t � t0 .

THEOREM 4.5. Assume that (1.2) holds and f satisfies (3.8). Then the solutions
of (1.1) are stable provided that (3.9) holds.
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Proof. The proof is a direct consequence of Theorem 2.9. �
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