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POSITIVE SOLUTIONS OF A SYSTEM OF FRACTIONAL

FUNCTIONAL DIFFERENTIAL EQUATIONS

WITH NONLOCAL BOUNDARY CONDITIONS
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(Communicated by N. Vasylyeva)

Abstract. We study the system of two fractional functional differential equations with the Ca-
puto fractional derivative. Using the Guo–Krasnoselskii fixed point theorem on cones and the
nonlinear Leray–Schauder alternative the existence of positive solutions to the system satisfying
nonlocal boundary conditions is proved. The boundary conditions are given by linear bounded
functionals. Examples are given to illustrate our results.

1. Introduction

Let T > 0 be given, J = [0,T ] , R+ = [0,∞) and X = C(J)×C(J) . Let ‖x‖ =
max{|x(t)| : t ∈ J} and ‖(x1,x2)‖1 = ‖x1‖+‖x2‖ be the norm in C(J) and X, respec-
tively. Besides, P+ = {x ∈C(J) : x(t) � 0 for t ∈ J} and X+ = {(x1,x2) ∈ X : x1(t) �
0, x2(t) � 0 for t ∈ J} .

Let A be the set of all linear bounded functionals � : C(J) → R which are non-
negative, that is,

x ∈C(J), x � 0 on J ⇒ �(x) � 0,

and ‖�‖ < 1, where ‖�‖ is the norm of � .

REMARK 1. The Riesz representation theorem says that linear bounded function-
als � on C(J) are given by the Riemann–Stieltjes integral as

�(x) =
∫ T

0
x(s)dg(t), x ∈C(J), (1)

and ‖�‖= varT
0 g , where varT

0 g denotes the total variation of g over J . Hence function-
als � belonging to the set A are represented by (1), where g : J → R is nondecreasing
and g(T )−g(0) < 1.

In particular, if v : J → R is nondecreasing, v(T )− v(0) < 1 and {rn} ⊂ (0,∞) ,
∑∞

n=1 rn < 1, {tn} ⊂ J , ti �= t j for i �= j , then the functionals

�1(x) =
∫ T

0
x(t)v′(t)dt, �2(x) =

∞

∑
n=1

rnx(tn),

belong to A .
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We discuss the system of fractional differential equations
cDαx1(t)+a(t) cDβ x2(t) = L1(x1,x2)(t),
cDγx2(t)+b(t) cDμx1(t) = L2(x1,x2)(t),

(2)

where 0 < μ < α < 1, 0 < β < γ < 1, a,b ∈C(J) , a � 0, b � 0 on J and L j : X+ →
P+ is continuous, j = 1,2. Here, cD denotes the Caputo fractional derivative. Further
conditions on L j will be specified later.

Together with system (2) we investigate the boundary conditions

x j(0) = � j(x j), � j ∈ A , j = 1,2. (3)

DEFINITION 1. We say that (x1,x2) ∈ X+ is a solution of system (2) if cDαx1 ,
cDγx2 ∈C(J) and equality (2) holds for t ∈ J . A solution of (2) satisfying the boundary
condition (3) is said to be a solution of problem (2), (3).

If a solution (x1,x2) of (2) satisfies ‖(x1,x2)‖1 > 0, then we say that it is a positive
solution of system (2). Similarly, for positive solutions of problem (2), (3).

We recall the definitions and properties of the Riemann-Liouville fractional inte-
gral and the Caputo fractional derivative [8, 3].

The Riemann-Liouville fractional integral Iδ x of order δ > 0 of a function x : J →
R is defined as

Iδ x(t) =
∫ t

0

(t− s)δ−1

Γ(δ )
x(s)ds,

where Γ is the Euler gamma function. I0 is the identical operator.
The Caputo fractional derivative cDδ x of order δ > 0, δ �∈ N , of a function

x : J → R is given as

cDδ x(t) =
dn

dtn

∫ t

0

(t− s)n−δ−1

Γ(n− δ )

(
x(s)−

n−1

∑
k=0

x(k)(0)
k!

sk

)
ds,

where n = [δ ]+1, [δ ] means the integral part of the fractional number δ .
In particular,

cDδ x(t) =
d
dt

∫ t

0

(t− s)−δ

Γ(1− δ )
(x(s)− x(0))ds =

d
dt

I1−δ (x(t)− x(0)), δ ∈ (0,1).

It is well known that Iδ : C(J) → C(J) for δ ∈ (0,1) ; Iδ Iνx(t) = Iδ+νx(t) for
x ∈C(J) and δ ,ν ∈ (0,∞) ; cDδ Iδ x(t) = x(t) for x ∈C(J) and δ > 0; d

dt I
1x(t) = x(t)

for x ∈C(J) ; if δ ∈ (0,1) , x, cDδ x ∈C(J) , then Iδ cDδ x(t) = x(t)− x(0) .

REMARK 2. If (x1,x2) is a solution of system (2), then cDμx1,
cDβ x2 ∈ C(J) . It

follows from the conditions α > μ , γ > β and the equalities cDμx1 = Iα−μcDαx1 ,
cDβ x2 = Iγ−β cDγx2

Let f j ∈C(J×R
2
+) and f j � 0, j = 1,2. Let L j(x1,x2)(t) = f j(t,x1(t),x2(t)) .

Then L j : X+ → P+ is continuous, and therefore the special case of (2) is the system
cDαx1(t)+a(t) cDβ x2(t) = f1(t,x1(t),x2(t)),
cDγx2(t)+b(t) cDμx1(t) = f2(t,x1(t),x2(t)).

(4)
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The solvability of systems of fractional differential equations with local and non-
local boundary conditions was extensively considered in the literature (see [1], [5], [6],
[9]–[16] and references therein). In these papers associated homogeneous systems have
the form either

cDαx1(t) = 0, cDβ x2(t) = 0,

or (Dγ denotes the Riemann–Liouville fractional derivative of order γ )

Dαx1(t) = 0, Dβ x2(t) = 0,

where α,β ∈ (1,∞) . This form plays the important role to obtain operators whose fixed
points are solutions of considered problems. Moreover, the nonlinearities of systems
are given by functions f1, f2 .

For example Henderson and Luca [6] considered the problem

Dαx1(t)+ λ f1(t,x1(t),x2(t)) = 0, n−1 < α � n,

Dβ x2(t)+ μ f2(t,x1(t),x2(t)) = 0, m−1 < β � m,

x1(0) = x′1(0) = · · · = x(n−2)
1 (0) = 0, x1(1) =

∫ 1

0
x2(s)dH1(s),

x2(0) = x′2(0) = · · · = x(m−2)
2 (0) = 0, x2(1) =

∫ 1

0
x1(s)dH2(s),

where n,m � 3, λ ,μ are parameters, fi is continuous on J×R
2
+ and Hi is a function

of bounded variation. Existence results for positive solutions were proved by the non-
linerar alternative of the Leray–Schauder type and the Guo–Krasnoselskii fixed point
theorem on cones.

Zhao and Liu [16] discussed the problem
cDαx1(t)+ f1(t,x2(t)) = 0,
cDαx2(t)+ f2(t,x1(t)) = 0,

x( j)
1 (0) = x( j)

2 (0) = 0, 0 � j � n−1, j �= 1,

x′1(1) = λ
∫ 1

0
x1(s)ds, x′2(1) = λ

∫ 1

0
x2(s)ds,

where n−1 < α � n , n � 3, 0 � λ < 2 and fi ∈C(J×R+) is nonnegative. Existence
and uniqueness results are established by using the monotone method, fixed point index
theorems on cones and the properties of Green’s function.

In [1] the authors studied the problem
cDαx1(t) = f1 (t,x1(t),x2(t), cDγx2(t)) ,

cDβ x2(t) = f2
(
t,x1(t), cDδ x1(t),x2(t)

)
,

x1(0) = h1(x2),
∫ T

0
x2(s)ds = μ1x1(η),

x2(0) = h2(x1),
∫ T

0
x1(s)ds = μ2x2(ξ ),

where α,β ∈ (1,2] , γ,δ ∈ (0,1) , η ,ξ ∈ (0,T ) , fi ∈C([0,T ]×R
3) and hi : C[0,T ]→

R is continuous. By using the Banach fixed point theorem and the Leray–Schauder
nonlinear alternative, the existence and uniqueness of solutions was proved.



286 S. STANĚK

Shah at al. [13] studied the problem
cDαx1(t) = f1(t,x1(t),x2(t)),
cDβ x2(t) = f2(t,x1(t),x2(t)),
x1(0) = h1(x1), x1(1) = δx1(η),
x2(0) = h2(x2), x2(0) = γx2(ξ ),

where α,β ∈ (1,2] , 0 < δ ,γ < 1, fi ∈ C(J ×R
2) and hi : C(J) → R is continuous.

The existence of solutins was proved by a coincidence degree theory approach for con-
densing maps.

In contrast to papers [1], [5], [6] and [9]–[16], associated homogeneous system of
(2) has the form

cDαx1(t)+a(t) cDβ x2(t) = 0,
cDγx2(t)+b(t) cDμx1(t) = 0,

where 0 < μ < α < 1, 0 < β < γ < 1, and the nonlinearities are operators L1,L2 .
The aim of this paper is to discuss the existence of positive solutions to problem

(2), (3). To this end we introduce an integral operator H : X+ → X+ and show that
fixed points of H are solutions to problem (2), (3) (Lemma 5 below). Existence of
a fixed point of H is proved by the Guo–Krasnoselskii fixed point theorem on cones
(Lemma 7 below) and the nonlinear Leray–Schauder alterative (Lemma 8 below).

We work with the following conditions on L j :

(H1) L j takes bounded sets into bounded sets, j = 1,2.

(H2) There exists ε > 0 such that either

L1(x1,x2)(t) � ε for t ∈ J , (x1,x2) ∈ X+ ,

or
L2(x1,x2)(t) � ε for t ∈ J , (x1,x2) ∈ X+ .

(H3) There exists a nondecreasing positive function w ∈C(R+) such that

lim
x→∞

w(x)
x

= 0

and
‖L j(x1,x2)‖ � w(‖(x1,x2)‖1) for (x1,x2) ∈ X+ , j = 1,2 .

(H4) lim(x1,x2)∈X+,‖(x1,x2)‖1→0
‖L j(x1,x2)‖
‖(x1,x2)‖1

= 0, j = 1,2.

(H5) Either

lim
(x1,x2)∈X+,‖(x1,x2)‖1→∞

‖L1(x1,x2)‖
‖(x1,x2)‖1

>
Γ(α +1)

T α

or

lim
(x1,x2)∈X+, ‖(x1,x2)‖1→∞

‖L2(x1,x2)‖
‖(x1,x2)‖1

>
Γ(γ +1)

T γ .
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It is obvious that (H3) ⇒ (H1) .
The paper is organized as follows. In Section 2 we introduce an operator Q , prove

its properties and discuss the existence of solutions to an auxiliary linear fractional sys-
tem satisfying the boundary condition (3). In Section 3, a key operator H is introduced
and its properties are given. The existence results for positive solutions of problem (2),
(3) are stated and proved in Section 4. Some examples are given to illustrate the results.

2. Preliminaries

We need a generalization of the Gronwall lemma for singular kernels [7, Lemma
7.1.1].

LEMMA 1. Let 0 < δ < 1 , d ∈C(J) be nonnegative and V be a positive constant.
Suppose that w ∈C(J) is nonnegative and

w(t) � d(t)+V
∫ t

0
(t − s)δ−1w(s)ds, t ∈ J.

Then

w(t) � d(t)+VK
∫ t

0
(t− s)δ−1d(s)ds, t ∈ J,

where K = K(δ ) is a positive constant.

Introduce operator Λ j : C(J) →C(J) , j = 1,2, as

Λ1x(t) = a(t)Iγ−β b(t)Iα−μx(t),

Λ2x(t) = b(t)Iα−μa(t)Iγ−β x(t),

where a,b are from (2). Since a � 0, b � 0 on J ,

Λ j maps P+ into P+ , j = 1,2 . (5)

For n ∈ N , let Λn
j be n th iteration of Λ j , that is, Λn

j = Λ j ◦Λ j ◦ · · · ◦Λ j︸ ︷︷ ︸
n

, and Λ0
j be the

identical operator in C(J) .
Finally, introduce operator Q j acting on C(J) by the formula

Q jx(t) =
∞

∑
k=0

Λk
jx(t), j = 1,2.

For ν > 0, let Eν : R → R ,

Eν(y) =
∞

∑
k=0

yk

Γ(kν +1)

be the classical Mittag–Leffler function [8, 3].

The properties of Q j are summarize in the following two lemmas. Let

ρ = α −β + γ − μ , M = ‖a‖‖b‖.
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LEMMA 2. For each x ∈C(J) the series ∑∞
k=0 Λk

jx is uniformly convergent on J
and

∞

∑
k=0

∣∣∣Λk
jx(t)

∣∣∣� ‖x‖Eρ (Mtρ) , t ∈ J, j = 1,2. (6)

Proof. We first prove that∣∣∣Λk
jx(t)

∣∣∣� MkIkρ |x(t)|, t ∈ J, x ∈C(J), k ∈ N, j = 1,2. (7)

It is clear that |Λ jx| � MIρ |x| for x ∈ C(J) . We now proceed by induction. Suppose
that |Λn

jx| � MnInρ |x| for x ∈C(J) and some n ∈ N . Then∣∣∣Λn+1
j x

∣∣∣= ∣∣Λn
jΛ jx

∣∣� MnInρ ∣∣Λ jx
∣∣� Mn+1I(n+1)ρ |x|, x ∈C(J).

Therefore estimate (7) is valid.
Choose x ∈C(J) . Since

Ikρ |x(t)| =
∫ t

0

(t− s)kρ−1

Γ(kρ)
|x(s)|ds � ‖x‖ tkρ

Γ(kρ +1)
,

we have (note that Λ0
j x = x )

∞

∑
k=0

∣∣∣Λk
jx(t)

∣∣∣� ‖x‖
∞

∑
k=0

(Mtρ)k

Γ(kρ +1)
= ‖x‖Eρ(Mtρ) � ‖x‖Eρ(MT ρ), j = 1,2.

Consequently, ∑∞
k=0 Λk

jx is uniformly convergent on J and (6) follows. �

LEMMA 3. Q j : C(J) →C(J) , Q j is a linear bounded operator,

|Q jx(t)| � ‖x‖Eρ (Mtρ ) , t ∈ J, x ∈C(J), j = 1,2, (8)

and for x ∈C(J) ,
a(t)Iγ−β Q2x(t) = Q1a(t)Iγ−β x(t),

b(t)Iα−μQ1x(t) = Q2b(t)Iα−μx(t).
(9)

Proof. Let x ∈C(J) and j = 1,2. By Lemma 2, the series ∑∞
k=0 Λk

jx is uniformly

convergent on J , and since Λk
jx ∈C(J) for k ∈ N , we have Q jx ∈C(J) .

Inequality (8) follows from (6). The linearity of Q j and (8) imply that Q j is a
linear bounded operator.

In order to prove (9) it is sufficient to show that

a(t)Iγ−β Λk
2x(t) = Λk

1a(t)Iγ−β x(t),

b(t)Iα−μΛk
1x(t) = Λk

2b(t)Iα−μx(t),
k ∈ N∪{0}, x ∈C(J). (10)

In view of Λ0
j x = x , (10) holds for k = 0. Suppose that

aIγ−β Λn
2x = Λn

1aIγ−β x for some n ∈ N∪{0}.

Then
aIγ−β Λn+1

2 x = aIγ−β Λn
2Λ2x = Λn

1aIγ−β Λ2x = Λn
1aIγ−β bIα−μaIγ−β x

= Λn
1Λ1aIγ−β x = Λn+1

1 aIγ−βx.

We have proved by induction that the first equality of (10) holds. Similarly, we
can verify its second equality. �
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COROLLARY 1. Q j maps P+ into P+ and

0 � Q jx(t) � ‖x‖Eρ (MT ρ) , t ∈ J, x ∈ P+, j = 1,2. (11)

Proof. In view of (5), we see that Q j maps P+ into P+ . Estimate (11) follows
from (8). �

We now consider the auxiliary linear system of fractional differential equations
cDαx1(t)+a(t) cDβ x2(t) = r1(t),
cDγx2(t)+b(t) cDμx1(t) = r2(t),

(12)

where r1,r2 ∈C(J) .

LEMMA 4. Let r1,r2 ∈C(J) and

x1(t) = �1(x1)+ IαQ1

(
r1(t)−a(t)Iγ−β r2(t)

)
, (13)

x2(t) = �2(x2)+ IγQ2
(
r2(t)−b(t)Iα−μr1(t)

)
. (14)

Then (x1,x2) ∈ X and it is the unique solution of problem (12), (3) .

Proof. It is obvious that (x1,x2) ∈ X and x j(0) = � j(x j) , j = 1,2. Hence (x1,x2)
satisfies the boundary condition (3).

We prove that cDαx1,
cDγx2 ∈C(J) . In view of

I1−α(x1(t)− x1(0)) = I1Q1(r1(t)−a(t)Iγ−β r2(t)),
I1−γ(x2(t)− x2(0)) = I1Q2(r2(t)−b(t)Iα−μr1(t)),

it follows that
cDαx1(t) = Q1(r1(t)−a(t)Iγ−β r2(t)),
cDγx2(t) = Q2(r2(t)−b(t)Iα−μr1(t)),

and therefore cDαx1,
cDγx2 ∈C(J) , because r1 −aIγ−β r2, r2 −bIα−μr1 ∈C(J) .

We now show that (x1,x2) satisfies (12) for t ∈ J . Since

I1−α(x1(t)− x1(0)) = I1Q1(r1(t)−a(t)Iγ−βr2(t)),

I1−β (x2(t)− x2(0)) = I1+γ−β Q2(r2(t)−b(t)Iα−μr1(t)),

we obtain (cf. (9))
cDαx1 +acDβ x2 = Q1(r1 −aIγ−β r2)+aIγ−βQ2(r2−bIα−μr1)

= Q1r1−Q1aIγ−β r2 +aIγ−βQ2r2 −aIγ−βQ2bIα−μr1

= Q1r1−aIγ−βQ2r2 +aIγ−βQ2r2 −Q1aIγ−β bIα−μr1

= Q1r1−Q1Λ1r1 = r1.

Similarly,

I1−γ(x2(t)− x2(0)) = I1Q2(r2(t)−b(t)Iα−μr1(t)),

I1−μ(x1(t)− x1(0)) = I1+α−μQ1(r1(t)−a(t)Iγ−βr2(t)),
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and
cDγx2 +bcDμx1 = Q2(r2 −bIα−μr1)+bIα−μQ1(r1 −aIγ−β r2)

= Q2r2 −Q2bIα−μr1 +bIα−μQ1r1 −bIα−μQ1aIγ−β r2

= = Q2r2 −Q2bIα−μr1 +Q2bIα−μr1 −Q2bIα−μaIγ−β r2

= Q2r2 −Q2Λ2r2 = r2.

Consequently, (x1,x2) satisfies (12) for t ∈ J .
It remains to prove that (x1,x2) is the unique solution of problem (12), (3). Let

(y1,y2) be another solution of this problem and let wj = x j−y j , j = 1,2. Then wj(0)=
� j(wj) and the equalities

cDαw1(t)+a(t) cDβ w2(t) = 0,

cDγw2(t)+b(t) cDμw1(t) = 0,
(15)

hold for t ∈ J . Since (cf. Remark 2) cDμw1 = Iα−μ cDαw1 , cDβ w2 = Iγ−β cDγw2 , we
conclude that

cDαw1(t)+a(t)Iγ−β cDγw2(t) = 0,

cDγw2(t)+b(t)Iα−μ cDαw1(t) = 0.

Hence
cDαw1(t)−a(t)Iγ−βb(t)Iα−μcDαw1(t) = 0, t ∈ J,

and so
u(t) = a(t)Iγ−β b(t)Iα−μu(t), t ∈ J, (16)

where u = cDαw1 . It follows from (16) that |u(t)| � MIρ |u(t)| , hence that

|u(t)| � M
∫ t

0

(t − s)ρ−1

Γ(ρ)
|u(s)|ds, t ∈ J. (17)

If ρ ∈ (0,1) , then (17) together with Lemma 1 yield u = 0. If ρ ∈ [1,2) , then

|u(t)| � MT ρ−1

Γ(ρ)

∫ t

0
|u(s)|ds, t ∈ J,

and u = 0 now follows from the Gronwall–Bellman lemma. We have proved that
u = 0, that is, cDαw1 = 0. Then w1 is a constant function on J and it follows from
w1 = �1(w1) and ‖�1‖< 1 that w1 = 0. Therefore (cf. (15)) cDγw2 = 0 and the analyze
similar to w1 gives w2 = 0. To summarize, (w1,w2) = (0,0) . �

3. Operator H and its properties

Keeping in mind Lemma 4, define operators H1,H2 : X+ →C(J) , j = 1,2, as

H1(x1,x2)(t) = �1(x1)+ IαQ1K1(x1,x2)(t),
H2(x1,x2)(t) = �2(x2)+ IγQ2K2(x1,x2)(t),

where K j : X+ →C(J) ,

K1(x1,x2)(t) = L1(x1,x2)(t)−a(t)Iγ−βL2(x1,x2)(t),

K2(x1,x2)(t) = L2(x1,x2)(t)−b(t)Iα−μL1(x1,x2)(t).
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Finally, let an operator H : X+ → X be given by the formula
H (x1,x2) = (H1(x1,x2),H2(x1,x2)) .

The following two lemmas state that fixed points of H are positive solutions to
problem (2), (3) and H is completely continuous.

LEMMA 5. H : X+ → X+ and if (x1,x2) is a fixed point of H , then (x1,x2) is
a solution of problem (2), (3) .

Proof. Since L j(x1,x2)(t) : X+ → P+ and a � 0, b � 0 on J , we conclude that
K j : X+ → P+ , which together with Corollary 1 and the non-negativity of � j give
H j : X+ → P+ . Consequently, H : X+ → X+ .

Let (x1,x2) be a fixed point of H and let r j(t) = L j(x1,x2)(t) , j = 1,2. Then
(x1,x2) ∈ X+ ,

K1(x1,x2) = r1−aIγ−β r2, K2(x1,x2) = r2 −bIα−μr1,

and equalities (13), (14) hold. Hence Lemma 4 guarantees that (x1,x2) is a solution of
problem (2), (3) . �

LEMMA 6. Let (H1) hold. Then H is a completely continuous operator.

Proof. H is completely continuous if and only if the operators H1 and H2 are
completely continuous. We only prove that H1 is completely continuous, because for
H2 the proof is similar.

Step 1. H1 is continuous.
Let {(un,vn)} ⊂ X+ be a convergent sequence and let (u,v) ∈ X+ be its limit.

Then limn→∞ ‖L j(un,vn)− L j(u,v)‖ = 0, j = 1,2, and so limn→∞ ‖K1(un,vn) −
K1(u,v)‖ = 0. This together with the continuity of �1 and Q1 give

lim
n→∞

‖H1(un,vn)−H1(u,v)‖ = 0.

Step 2. H1 takes bounded sets into bounded sets.
Let Ω ⊂ X+ be bounded. Then there exist positive constants L1,L2 such that

‖(u,v)‖1 � L1, 0 � L j(u,v)(t) � L2, t ∈ J , (u,v) ∈ Ω , j = 1,2 ,

and so

|K1(u,v)(t)| � L2

(
1+

‖a‖tγ−β

Γ(γ −β +1)

)
� W, t ∈ J, (u,v) ∈ Ω,

where

W = L2

(
1+

‖a‖T γ−β

Γ(γ −β +1)

)
.

Hence (cf. (8))

|H1(u,v)(t)| � �1(u)+‖K1(u,v)‖Eρ (MT ρ)
Tα

Γ(α +1)

� ‖�1‖‖u‖+
WEρ (MT ρ)Tα

Γ(α +1)

< L1 +
WEρ (MT ρ)T α

Γ(α +1)
, t ∈ J, (u,v) ∈ Ω,
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and therefore H1(Ω) = {H1(u,v) : (u,v) ∈ Ω} is bounded in P+ .
Step 3. H1 takes bounded sets into equicontinuous sets.
Let Ω,L and W be from Step 2. Let (u,v) ∈ Ω and 0 � t1 < t2 � T . Then

|H1(u,v)(t2)−H1(u,v)(t1)| = |IαQ1K1(u,v)(t2)− IαQ1K1(u,v)(t1)|

�
∫ t1

0

(t1 − s)α−1− (t2− s)α−1

Γ(α)
|Q1K1(u,v)(s)| ds

+
∫ t2

t1

(t2 − s)α−1

Γ(α)
|Q1K1(u,v)(s)| ds

� WEρ(MT ρ)
tα
1 +2(t2− t1)α − tα

2

Γ(α +1)
.

Since the function tα is uniformly continuous on the interval J , we see that the family
H1(Ω) is equicontinuous on J .

To summarize, we conclude from Steps 1–3 and the Arzelà–Ascoli theorem that
H1 is completely continuous. �

4. Existence results for problem (2), (3)

In the first part of this section, we prove the existence of positive solutions to
problem (2), (3) (Theorems 1 and 2 below) by the well known Guo–Krasnoselskii fixed
point theorem on cones [4] (Lemma 7 bellow).

LEMMA 7. Let Y be a Banach space and D ⊂ Y be a cone in Y . Assume that
Ω1,Ω2 are open subset of Y with 0 ∈ Ω1 , Ω1 ⊂ Ω2 , and let S : D ∩ (Ω2 \Ω1

)→ D
be a completely continuous operator such that either

‖S u‖ � ‖u‖, u ∈ D ∩∂Ω1 and ‖S u‖ � ‖u‖, u ∈ D ∩∂Ω2

or
‖S u‖ � ‖u‖, u ∈ D ∩∂Ω1 and ‖S u‖ � ‖u‖, u ∈ D ∩∂Ω2

Then S has a fixed point in D ∩ (Ω2 \Ω1
)
.

We are now in the position to state and prove the existence results for problem (2),
(3).

THEOREM 1. Let (H2) and (H3) hold. Then there exist 0 < r1 < r2 and a positive
solution (x1,x2) ∈ X+ of problem (2), (3) such that r1 � ‖(x1,x2)‖1 � r2 .

Proof. We apply Lemma 7 for Y = X , D = X+ , S = H and Ωi = {(x1,x2) ∈
X : ‖(x1,x2)‖1 < ri} , i = 1,2, where r1,r2 will be specified later.

It is clear that X+ is a cone in X . By Lemmas 5 and 6, H : X+ → X+ is a
completely continuous operator. The next part of the proof is divided into two steps.

Step 1. There exists r1 > 0 such that ‖H (x1,x2)‖1 � ‖(x1,x2)‖1 for (x1,x2)∈X+
and ‖(x1,x2)‖1 = r1 .

In view of (5), we have Q jx(t) � Λ0
j x(t) = x(t) for x ∈ P+ and j = 1,2.
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Suppose that (cf. (H2)) L1(x1,x2)(t) � ε for t ∈ J and (x1,x2) ∈ X+ . Then (note
that L2(x1,x2) � 0 because L2 : X+ → P+ )

K1(x1,x2)(t) � L1(x1,x2)(t) � ε, K2(x1,x2)(t) � 0,

and therefore for t ∈ J and (x1,x2) ∈ X+

IαQ1K1(x1,x2)(t) � IαK1(x1,x2)(t) � εtα

Γ(α +1)
, IγQ2K2(x1,x2)(t) � 0.

Hence (note that � j(x j) � 0 for x j ∈ P+ since � j ∈ A )

H1(x1,x2)(t) � IαQ1K1(x1,x2)(t) � εtα

Γ(α +1)
,

H2(x1,x2)(t) � IγQ2K2(x1,x2)(t) � 0

for t ∈ J and (x1,x2) ∈ X+ . Consequently,

‖H (x1,x2)‖1 = ‖H1(x1,x2)‖+‖H2(x1,x2)‖ � εT α

Γ(α +1)
, (x1,x2) ∈ X+.

Let c1 = εT α/Γ(α +1) . Then

‖H (x1,x2)‖1 � c1, (x1,x2) ∈ X+.

If L2(x1,x2)(t) � ε for t ∈ J and (x1,x2) ∈ X+ , we have in an analogous way
that

H1(x1,x2)(t) � 0, H2(x1,x2)(t) � εtγ

Γ(γ +1)

and
‖H (x1,x2)‖1 � c2, (x1,x2) ∈ X+,

where c2 = εT γ/Γ(γ +1) . Let r1 = min{c1,c2} . We have proved that

‖H (x1,x2)‖1 � r1, for (x1,x2) ∈ X+ .

In particular,

‖H (x1,x2)‖1 � ‖(x1,x2)‖1 for (x1,x2) ∈ X+ , ‖(x1,x2)‖1 = r1 .

Step 2. There exists r2 > r1 such that ‖H (x1,x2)‖1 � ‖(x1,x2)‖1 for (x1,x2) ∈
X+ and ‖(x1,x2)‖1 = r2 .

In view of (H3) , we have

0 � K1(x1,x2)(t) �
(

1+
‖a‖T γ−β

Γ(γ −β +1)

)
w(‖(x1,x2)‖1),

0 � K2(x1,x2)(t) �
(

1+
‖b‖Tα−μ

Γ(α − μ +1)

)
w(‖(x1,x2)‖1),

which together with (8) give

0 � Q1K1(x1,x2)(t) � Eρ (MT ρ)

(
1+

‖a‖T γ−β

Γ(γ −β +1)

)
w(‖(x1,x2)‖1),

0 � Q2K2(x1,x2)(t) � Eρ (MT ρ)
(

1+
‖b‖Tα−μ

Γ(α − μ +1)

)
w(‖(x1,x2)‖1).
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Therefore

0 � IαQ1K1(x1,x2)(t) � R1w(‖(x1,x2)‖1),

0 � IγQ2K2(x1,x2)(t) � R2w(‖(x1,x2)‖1),

where

R1 =
T αEρ (MT ρ)

Γ(α +1)

(
1+

‖a‖T γ−β

Γ(γ −β +1)

)
,

R2 =
T γEρ (MT ρ)

Γ(γ +1)

(
1+

‖b‖Tα−μ

Γ(α − μ +1)

)
.

Let d = max{‖�1‖,‖�2‖} , R = max{R1,R2} . Then d < 1 and

‖H1(x1,x2)‖ � ‖�1‖‖x1‖+R1w(‖(x1,x2)‖1) � d‖x1‖+Rw(‖(x1,x2)‖1),

‖H2(x1,x2)‖ � ‖�2‖‖x2‖+R2w(‖(x1,x2)‖1) � d‖x2‖+Rw(‖(x1,x2)‖1).

Hence

‖H (x1,x2)‖1 � d‖(x1,x2)‖1 +2Rw(‖(x1,x2)‖1), (x1,x2) ∈ X+. (18)

Since, by (H3) , limx→∞ w(x)/x = 0, we have limx→∞(d + 2Rw(x)/x) = d < 1, and
therefore there exists r2 > r1 such that d +2Rw(x)/x < 1 for all x � r2 . In particular,
dx+2Rw(x) < x for x = r2 , that is,

d‖(x1,x2)‖1 +2Rw(‖(x1,x2)‖1) < ‖(x1,x2)‖1 for ‖(x1,x2)‖1 = r2 . (19)

Combining (18) with (19) yields

‖H (x1,x2)‖1 < ‖(x1,x2)‖1 for (x1,x2) ∈ X+ , ‖(x1,x2)‖1 = r2 .

To summarize, we conclude from Steps 1 and 2 that for the sets Ωi = {(x1,x2) ∈
X+ : ‖(x1,x2)‖1 < ri} the inequalities

‖H (x1,x2)‖1 � ‖(x1,x2)‖1 for (x1,x2) ∈ X+∩∂Ω1,

‖H (x1,x2)‖1 < ‖(x1,x2)‖1 for (x1,x2) ∈ X+∩∂Ω2,

hold. Hence there exists at least one fixed point (x1,x2) of H in X+ ∩ (Ω2 \Ω1
)
.

Therefore r1 � ‖(x1,x2)‖1 � r2 and Lemma 5 gives that (x1,x2) is a positive solution
of problem (2), (3). �

EXAMPLE 1. Let r j : J×R
2
+ → R+ be continuous and bounded, j = 1,2, r1 �

ε > 0 on J×R
2
+ , ϕ ,ψ : J → J be continuous, ν ∈ (0,1/2) and τi ∈ (0,1) , i = 1,2,3.

Let L j : X+ → P+ ,

L1(x1,x2)(t) = r1(t,x1(t),x2(t))+‖x1x2‖ν +(x1(ϕ(t)))τ1 ,

L2(x1,x2)(t) =
∫ ψ(t)

0
r2(s,x1(s),x2(s))

(
(x1(s))τ2 +(x2(s))τ3

)
ds.

Then L j is continuous and satisfies (H2) and (H3) for ω(x) = K + 2(1 + KT ) +
2(1 + KT )xη , where K = sup{r j(t,x1,x2) : (t,x1,x2) ∈ J ×R

2
+, j = 1,2} and η =
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max{2ν,τ1,τ2,τ3} . Hence, by Theorem 1, there exists at least one positive solution
(x1,x2) of the system

cDαx1(t)+a(t) cDβ x2(t) = r1(t,x1(t),x2(t))+‖x1x2‖ν +(x1(ϕ(t)))τ1 ,

cDγx2(t)+b(t) cDμx1(t) =
∫ ψ(t)

0
r2(s,x1(s),x2(s))

(
(x1(s))τ2 +(x2(s))τ3

)
ds,

(20)

satisfying the boundary condition (3).

For the solvability of problem (4), (3) we have the following result.

COROLLARY 2. Let f j ∈C(J×R
2
+) and f j � 0 , j = 1,2 . Let

(P1) there exists ε > 0 such that either

f1(t,x1,x2) � ε for t ∈ J , x1,x2 ∈ R+

or
f2(t,x1,x2) � ε for t ∈ J , x1,x2 ∈ R+ ,

(P2) there exists a nondecreasing w ∈C(R+) such that limx→∞ w(x)/x = 0 and

f j(t,x1,x2) � w(x1 + x2) for t ∈ J , x1,x2 ∈ R+ , j = 1,2 .

Then there exists at least one positive solution (x1,x2) of problem (4), (3) .

Proof. Let L j(x1,x2)(t) = f j(t,x1(t),x2(t)) for t ∈ J , (x1,x2) ∈ X+ , j = 1,2.
Then system (4) can be written as (2). Conditions (P1) and (P2) guarantee that L j

satisfies (H2) , (H3) . The existence result for problem (4), (3) now follows from Theo-
rem 1. �

EXAMPLE 2. Let τi ∈ (0,1) , i = 1,2,3. Then f1(t,x1,x2) = et + xτ1
2 ln

(
1+ x2

1

)
,

f2(t,x1,x2) = |sin t|+ xτ2
1 + xτ3

2 satisfy conditions (P1) and (P2) for ε = 1 and w(x) =
eT + xτ1 ln

(
1+ x2

)
+ xτ2 + xτ3 . Hence Corollary 2 guarantees that the system

cDαx1 +a(t) cDβ x2 = et + xτ1
2 ln

(
1+ x2

1

)
,

cDγx2 +b(t) cDμx1 = |sin t|+ xτ2
1 + xτ3

2 ,

has at least one positive solution (x1,x2) satisfying the boundary condition (3).

THEOREM 2. Let (H1) , (H4) and (H5) hold. Then there exist 0 < r1 < r2 and a
positive solution (x1,x2) ∈ X+ of problem (2), (3) such that r1 � ‖(x1,x2)‖1 � r2 .

Proof. As in the proof of Theorem 1, we apply Lemma 7.
Step 1. There exists r1 > 0 such that ‖H (x1,x2)‖1 � ‖(x1,x2)‖1 for (x1,x2)∈X+

and ‖(x1,x2)‖1 = r1 .
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Let

R1 = 1+
‖a‖T γ−β

Γ(γ −β +1)
, R2 = 1+

‖b‖Tα−μ

Γ(α − μ +1)

K1 =
R1Eρ(MT ρ)T α

Γ(α +1)
, K2 =

R2Eρ(MT ρ)T γ

Γ(γ +1)
,

S =
1−d

K1 +K2
, d = max{‖�1‖,‖�2‖} ,

where �1, �2 are from (3). In view of (H4) , there exists r1 > 0 such that

‖L j(x1,x2)‖ � S‖(x1,x2)‖1 for (x1,x2) ∈ X+ , ‖(x1,x2)‖1 � r1 , j = 1,2 .

Hence for these (x1,x2) and j we have

‖K j(x1,x2)‖ � SRj‖(x1,x2)‖1

and (cf. (8))
‖Q jK j(x1,x2)‖ � SRjEρ(MT ρ)‖(x1,x2)‖1.

Therefore for (x1,x2) ∈ X+ , ‖(x1,x2)‖ � r1 and j = 1,2,

‖H j(x1,x2)‖ � ‖� j‖‖x j‖+SKj‖(x1,x2)‖1.

Consequently, for (x1,x2) ∈ X+ , ‖(x1,x2)‖ � r1 ,

‖H (x1,x2)‖1 � (d +S(K1 +K2))‖(x1,x2)‖1 = ‖(x1,x2)‖1.

In particular,

‖H (x1,x2)‖1 � ‖(x1,x2)‖1, (x1,x2) ∈ X+, ‖(x1,x2)‖1 = r1.

Step 2. There exists r2 > r1 such that ‖H (x1,x2)‖1 � ‖(x1,x2)‖1 for (x1,x2) ∈
X+ and ‖(x1,x2)‖1 = r2 .

Let (cf. (H5))

lim
(x1,x2)∈X+,‖(x1,x2)‖1→∞

‖L1(x1,x2)‖
‖(x1,x2)‖1

>
Γ(α +1)

Tα .

Then there exists p1 > r1 such that

‖L1(x1,x2)‖ � Γ(α +1)
Tα ‖(x1,x2)‖1 for (x1,x2) ∈ X+ , ‖(x1,x2)‖1 � p1 .

Hence for these (x1,x2) the estimates

‖K1(x1,x2)‖ � Γ(α +1)
Tα ‖(x1,x2)‖1,

H1(x1,x2)(t) � IαQ1K1(x1,x2)(t), t ∈ J,

hold. Since Q1x(t) � x(t) for x ∈ P+ , we have

H1(x1,x2)(t) � IαK1(x1,x2)(t) � Γ(α +1)tα

T α Γ(α +1)
‖(x1,x2)‖1, t ∈ J,

and so
‖H1(x1,x2)‖ � ‖(x1,x2‖1, (x1,x2) ∈ X+, ‖(x1,x2)‖1 � p1.
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Consequently,

‖H (x1,x2)‖1 � ‖H1(x1,x2)‖ � ‖(x1,x2)‖1, (x1,x2) ∈ X+, ‖(x1,x2)‖1 � p1. (21)

If

lim
(x1,x1)∈X+,‖(x1,x2)‖1→∞

‖L2(x1,x2)‖
‖(x1,x2)‖1

>
Γ(γ +1)

T γ ,

then there exists p2 > r1 such that

‖L2(x1,x2)‖ � Γ(γ +1)
T γ ‖(x1,x2)‖1 for (x1,x2) ∈ X+ , ‖(x1,x2)‖1 � p2 .

We can now proceed analogously to the above part of this step and have

‖H2(x1,x2)‖ � ‖(x1,x2)‖1 for (x1,x2) ∈ X+ , ‖(x1,x2)‖1 � p2 . (22)

Let r2 = max{p1, p2} . Then it follows from (21) and (22) that

‖H (x1,x2)‖1 � ‖(x1,x2)‖1 for (x1,x2) ∈ X+ , ‖(x1,x2)‖1 = r2 .

As a result, we conclude from Steps 1 and 2 and Lemma 7 that H (x1,x2) =
(x1,x2) for some (x1,x2)∈ X+ , r1 � ‖(x1,x2)‖1 � r2 . This fact together with Lemma 5
give that (x1,x2) is a positive solution of problem (2), (3). �

EXAMPLE 3. Let r1,r2 ∈ C(J) , r1 > 0, r2 � 0 on J , ϕ : J → J be continuous
and τi ∈ (1,∞) , i = 1,2,3,4. Let L j : X+ → P+ ,

L1(x1,x2)(t) = r1(t)(‖x1‖τ1 +‖x2‖τ2) ,

L2(x1,x2)(t) =
∫ t

0
r2(s)(x1(s))

τ3 ds+(x2(ϕ(t)))τ4 .

Then L j is continuous, satisfies condition (H1) and it follows from the estimates

L1(x1,x2)(t) � ‖r1‖(‖(x1,x2)‖τ1 +‖(x1,x2)‖τ2)
L2(x1,x2)(t) � ‖r2‖T‖(x1,x2)‖τ3 +‖(x1,x2)‖τ4 ,

that L j fulfils condition (H4) .
If ‖x1‖ � ‖x2‖ , then

‖x1‖τ1 =
(‖x1‖

2
+

‖x1‖
2

)τ1

�
(‖x1‖

2
+

‖x2‖
2

)τ1

=
(‖(x1,x2)‖1

2

)τ1

.

Similarly, if ‖x2‖ � ‖x1‖ , then ‖x1‖τ2 � (‖(x1,x2)‖1/2)τ2 . Hence (for (x1,x2) ∈ X+ ,
‖(x1,x2)‖1 � 1)

‖L1(x1,x2)‖ � min{r1(t) : t ∈ J}min

{
1

2τ1
,

1
2τ2

}
‖(x1,x2)‖η

1 ,

where η = min{τ1,τ2} , and therefore L1 satisfies condition (H5) . By Theorem 2,
there exists at least one positive solution of the system

cDαx1(t)+a(t) cDβ x2(t) = r1(t)(‖x1‖τ1 +‖x2‖τ2) ,

cDγx2(t)+b(t) cDμx1(t) =
∫ t

0
r2(s)(x1(s))

τ3 ds+(x2(ϕ(t)))τ4 ,
(23)

satisfying the boundary condition (3). We note that problem (23), (3) has also the trivial
solution (x1,x2) = (0,0) .
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In the second part of this section, the existence of positive solutions (Theorem 3
below) is proved by the following nonlinear Leray–Schauder alternative [2, Corollary
8.1].

LEMMA 8. Let Y be a Banach space and let S : Y → Y be a completely con-
tinuous operator. Then the following alternative holds: Either the equation x = λS x
has a solution for every λ ∈ [0,1] or the set {x ∈Y : x = λS x for some λ ∈ (0,1)} is
unbounded.

THEOREM 3. Let (H3) hold and let

L1(0,0)(t0)+L2(0,0)(t0) > 0 for some t0 ∈ J . (24)

Then problem (2),(3) has at least one positive solution.

Proof. Let L ∗
j ,K ∗

j : X → P+ and H ∗
j : X → C(J) , j = 1,2, be defined by the

formulas
L ∗

j (x1,x2)(t) = L j(|x1|, |x2|)(t), j = 1,2,

K ∗
1 (x1,x2)(t) = L ∗

1 (x1,x1)(t)−a(t)Iγ−βL ∗
2 (x1,x2)(t),

K ∗
2 (x1,x2)(t) = L ∗

2 (x1,x1)(t)−b(t)Iα−μL ∗
1 (x1,x2)(t),

H ∗
1 (x1,x2)(t) = �1(x1)+ IαQ1K

∗
1 (x1,x2)(t),

H ∗
2 (x1,x2)(t) = �2(x2)+ IγQ2K

∗
2 (x1,x2)(t).

Finally, let H ∗ : X → X ,

H ∗(x1,x2) = (H ∗
1 (x1,x2),H ∗

1 (x1,x2)) .

We can proceed analogously to the proof of Lemma 6 and show that H ∗ is a com-
pletely continuous operator.

Suppose that (x1,x2) = λH ∗(x1,x2) for some (x1,x2) ∈ X and λ ∈ (0,1] . Then

x1(t) = λ
(
�1(x1)+ IαQ1K

∗
1 (x1,x2)(t)

)
,

x2(t) = λ
(
�2(x1)+ IγQ2K

∗
2 (x1,x2)(t)

)
.

In view of IαQ1K
∗

1 (x1,x2), IγQ2K
∗

2 (x1,x2)∈ P+ , we have x j(t) � λ � j(x j) , j = 1,2.
Applying � j to both sides of the last relation we get � j(x j)(1−λ � j(1)) � 0 and since
λ � j(1) ∈ (0,1) , � j(x j) � 0. Consequently, x j � 0 on J and H ∗(x1,x2) = H (x1,x2) .
We now argue as in Step 2 of the proof of Theorem 1 and show that condition (H3)
guarantees the estimate

‖H (y1,y2)‖1 � (d +R1)w(‖(y1,y2)‖1), (y1,y2) ∈ X+,

where d = max{‖�1‖,‖�2‖} and R1 is a positive constant. Hence

‖(x1,x2)‖1 � ‖H ∗(x1,x2)‖1 = ‖H (x1,x2)‖1 � (d +R1)w(‖(x1,x2)‖1). (25)

Since limx→∞ w(x)/x = 0, we have limx→∞(d + R1)w(x)/x = 0, and therefore there
exists r > 0 such that (d +R1)w(x) < x for all x � r . The last relation together with
(25) give ‖(x1,x2)‖1 < r .
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We have proved that every fixed point (x1,x2) of the operator λH ∗ , λ ∈ (0,1] ,
belongs to the set X+ and that the set {(x1,x2)∈X : (x1,x2)= λH ∗(x1,x2)} is bounded
in C(J) . By Lemma 8 (for Y = X and S = H ∗ ), there exists a fixed point (x1,x2) of
H ∗ . Hence (x1,x2) ∈ X+ , and so (x1,x2) is a fixed point of H . In view of Lemma 5,
(x1,x2) is a solution of problem (2), (3). It remains to prove that (x1,x2) is a posi-
tive solution of this problem. Suppose that (x1,x2) = (0,0) . Then IαQ1K1(0,0)(t)+
IγQ2K2(0,0)(t) = 0 for t ∈ J . Hence K1(0,0)(t)+K2(0,0)(t) = 0 on J , which con-
tradicts K1(0,0)(t)+K2(0,0)(t) � L1(0,0)(t)+L2(0,0)(t) for t ∈ J and (24). �

EXAMPLE 4. Let ϕ ,ψ ,ν,τi,L j be as in Example 1, where r j : J ×R
2
+ → R+

is continuous and bounded, j = 1,2, and r1(t0,0,0) > 0 for some t0 ∈ J . Then
L j : X+ →P+ is continuous, satisfies condition (H3) and L1(0,0)(t0)+L2(0,0)(t0) =
L1(0,0)(t0) > 0. By Theorem 3 there exists at least one positive solution (x1,x2) of
system (20) satisfying the boundary condition (3).
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