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Abstract. Let X be a complex Banach space and Z+ be the set of all nonnegative integers.
Let K00(Z+,X ) be the space of all X -valued bounded sequences which decays to zero at
0 and at ∞ . Using the space K00(Z+,X ) , we give Kallman-Rota type inequality for the
discrete evolution family U = {U(m,n) : m,n ∈ Z+, m � n} of bounded linear operators. We
also present the same inequality for (r,q) -resolvent operators, which arises in the solution of
fractional difference equation. In particular, if A is the algebraic generator of α -times family of
bounded and linear operators, arising from the well posedness of fractional difference equations
of order β +1 , then we prove that the inequality

‖A x‖2 � 8η2 Γ(α +β +2)2

Γ(α +1)Γ(α +2β +3)
‖x‖‖A 2x‖,

holds for all x ∈ D(A 2) .

1. Introduction

A well-known result established by Hardy, Littlewood and Pólya (see [9], p. 187)
asserts that ‖ f ′‖2

2 � 2‖ f‖2‖ f ′′‖2 for any function f on R+ , where f , f ′ , f ′′ ∈
L 2(R+) . In [12], Kallman and Rota proved that

‖A x‖2 � 4‖x‖‖A 2x‖, for all x ∈ D(A 2), (1.1)

where A is the infinitesimal generator of a strongly continuous contraction semigroup
on a Banach space (X ,‖.‖) , and x , A x are in the domain of A . In [14] Kraljevi ć
and Kurepa extended the above result for bounded and strongly continuous semigroups
with the bound constant W > 0, as ‖A x‖2 � 4W 2‖x‖‖A 2x‖ , for x ∈ D(A 2) . In
[12], it was shown that the Hardy-Littlewood-Pólya inequality implies the Kallman-
Rota inequality for C0 -semigroups. A special interest has been taken to improve, and in
some cases to obtain, the optimal constant 4 in the inequality (1.1). For Hilbert spaces,
in [6] Goldstein showed that the optimal constant for a C0 -contraction semigroup is 2.
In C-Euclidean spaces for analytic semigroups, different optimal constants are obtained
by different approaches, see [10, 19]. In [3] Buşe and Dragomir studied Kallman-Rota
inequality by using the evolution semigroup approach in continuous case.
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On the other hand in the last decade, the study of existence and qualitative prop-
erties of fractional difference equations has drawn a great deal of interest, for instance,
see [1, 8, 7, 11]. Miller and Ross [18] defined a fractional sum via the solution of a
linear difference equation. More recently, Atici and Eloe [2] introduced the Riemann-
Liouville like fractional difference equation by using the definition of fractional sum
of Miller and Ross, and developed some of its properties that allow us to obtain so-
lutions of certain fractional difference equations, such solutions lead to the idea of
(r,q)-resolvent operators theory, see [15, 17]. Discrete (r,q)-resolvent operators treat
different families of bounded linear operators in a unified way, where r and q represent
sequences rn and qn such that rn ∈ l1(Z+,X ) and qn ∈ K00(Z+,X ) , respectively.

Our main result of this paper is to give Kallman-Rota inequality with the help of
discrete evolution family U , over Banach space X . Also we present the same in-
equality by using certain discrete (r,q)-resolvent families which arises from fractional
difference equation. Our approach is based on “CP-condition”. We also give applica-
tions of our results.

2. Preliminaries

In the following we introduce few sequence spaces which needed in next sections.

• K00(Z+,X ) , consisting of all X -valued sequences f , such that f (n) gives
zero at 0 and at ∞ .

• l p(Z+,X ), 1 � p � ∞ is the usual Lebesgue-Bochner space of all measurable
sequences N : Z+ → X , which are equal almost everywhere, such that

‖N‖p :=

(
n

∑
s=0

‖N(s)‖p

) 1
p

< ∞.

• l1(Z+,X ) is the space of all sequences Q : Z+ → X , such that

‖Q‖1 := sup
n�0

‖Q(s)‖ < ∞.

Let X be a real or complex Banach space and L (X ) the Banach algebra of all
linear and bounded operators acting on X . The norm in X and in L (X ) will be
denoted by ‖ · ‖ . Let Z+ be the set of all non-negative integers. The family U :=
{U(n,m) : n,m ∈ Z+,n � m} is called discrete evolution family of bounded linear
operators on X , if it satisfies the following properties:

• U(n,n) = I , for all n ∈ Z+ .

• U(n,m)U(m,r) = U(n,r) , for all n � m � r , n,m,r ∈ Z+ .

It is well known that the evolution family U is exponentially bounded, if there exist
σ ∈ R and Wσ � 0 such that,

‖U(n,m)‖ � Wσ eσ(n−m), for all n � m ∈ Z+, (2.1)
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and uniformly bounded if there exists W � 0 such that,

‖U(n,m)‖ � W < ∞, for all n � m ∈ Z+. (2.2)

For more details about discrete evolution families we refer [4, 5, 13, 20, 21, 23, 22].
Here we define some conditions of (r,q)-resolvent operators. Let rn ∈ l1(Z+,X )

and qn ∈ K00(Z+,X ) , and let A be a bounded operator defined on a Banach space
X . Following [17], a bounded linear operator family (Kn)n�0 ⊂ L (X ) is called
(r,q)-resolvent family, with algebraic generator A if the following holds:

(i) KnA x = A Knx for all x ∈ D(A ) ; n � 0 and K0 = q0I .

(ii) Knx = qnx+
n
∑
s=0

r(n−s)A Ksx ; x ∈ D(A ) , n � 0.

In addition, if there is some constant η > 1, such that ‖Kn‖ � ηqn , for all n �
0, then the family (Kn)n�0 is called exponentially bounded. The usual convolution
product r ∗ q is denoted by,

(r ∗ q)n :=
n

∑
s=0

r(n−s)q(s), n > 0.

In the case that rn is a positive sequence a.e., then

∞

∑
s=0

(r ∗ r)s =

(
∞

∑
s=0

rs

)2

and
∞
∑

s=0
r ∗ rs = ∞ if and only if

∞
∑

s=0
rs = ∞ .

DEFINITION 2.1. We say that the pair (r,q) satisfies CP-condition if for any μ >
0 there exists nμ > 0 such that

μq(nμ) = (r ∗ r ∗ q)(nμ). (2.3)

Let gα(n) = nα−1

Γ(α) for α � 0 and enμ = eμn for μ ∈ Z+ . Let 1{1,...,n} be the

characteristic sequence. It is easy to check that (gθ ,gϑ ) , with θ ,ϑ > 0, (e1,e1) ,
(e−1,e−1) and (e1,e−1) satisfies (2.3), however the pair (e−1,e1) does not satisfy it,
because

e−1 ∗ e−1 ∗ e1 =
n

∑
s=0

e−n+se−s
n

∑
s=0

e2s, s � 0,

= ne−n
n

∑
s=0

e2s, s � 0.

In the following lemma and example, we show some necessary conditions to get pairs
(r,q) , which satisfy the CP-condition.
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LEMMA 2.2. Let rn ∈ l1(Z+,X ) be a positive sequence and qn ∈K00(Z+,X ) .

(i) If qn > 0 , q is decreasing sequence and
∞
∑

s=0
rs = ∞ , then the pair (r,q) satisfies

the CP-condition.

(ii) The pair (rn,11,...,n) satisfies the CP-condition if and only if
∞
∑

s=0
rs = ∞ .

Proof. (i) Fixed μ > 0. We apply Bolzano’s theorem to the sequence g := μq−
r ∗ r ∗ q . Note that g(0) > 0 and

lim
n→∞

r ∗ r ∗ qn

qn
� lim

n→∞

n

∑
s=0

r ∗ rn = +∞,

and then limn→∞ gn = −∞ . We conclude that there exists nμ > 0 such that μq(nμ) =
(r ∗ r ∗ q)(nμ) .

(ii) If the pair (rn,11,...,n) satisfies the CP-condition, then there exists nμ such
that

nμ

∑
s=0

r ∗ rs = μ

for all μ > 0. We may conclude that
∞
∑

s=0
r ∗ rs = ∞ and then

∞
∑

s=0
rs = ∞ . The converse

statement is proven in a similar way. �

EXAMPLE 2.3. The pairs (gα .eμ ,gβ ) and (gα .eμ ,11,...,n) with α � 0, μ > 0 and
0 < β � 1 satisfy the CP-condition.

3. Evolution semigroups

Let X be either space K00(Z+,X ) or l p(Z+,X ) and U = {U(n,m); n,m ∈
Z+, n � m} be an exponentially bounded discrete evolution family of bounded linear
operators on Banach space X . For every n ∈ Z+ and each f ∈ X , the sequence

n → (T (s) f )(n) := U(n,n− s) f (n− s) : Z+ → X (3.1)

belongs to X and the family T = {T (n) : n ∈ Z+} is a discrete semigroup on X ,
[16].

LEMMA 3.1. The discrete semigroup T = {T (n) : n ∈ Z+} described by (3.1)
acts on lp(Z+,X ) .

Proof. Let fn be a sequence on the space X such that ‖ f (0)‖p = 0 = f (0) . It
can be seen that for all n ∈ Z+ , we have

(T (s) f )(n) := U(n,n− s) f (n− s) : Z+ → X .
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Taking norm on both sides we get

‖(T (s) f )(n)‖p = ‖U(n,n− s) f (n− s)‖p

=
( n

∑
s=0

‖U(n,n− s) f (n− s)‖p
) 1

p

�
( n

∑
s=0

‖U(n,n− s)‖p×‖ f (n− s)‖p
) 1

p

�
( n

∑
s=0

W p‖ f (n− s)‖p
) 1

p

= W
( n

∑
s=0

‖ f (n− s)‖p
) 1

p

= W ‖ f (n− s)‖p < ∞,

belong to l p(Z+,X ) . Hence, the lemma is proved. �
The discrete semigroup Tn defined by (3.1) is called evolution semigroup associ-

ated to U on the space X . The “infinitesimal generator” of the discrete semigroup is
denoted by A is define as A := T (1)− I . It is clear that

T (n)x− x =
n−1

∑
s=0

T (s)A x, for all n ∈ Z+, x ∈ X . (3.2)

LEMMA 3.2. Let T = {T (n)}n∈Z+ be the evolution semigroup associated to the
discrete evolution family U on the space X and let x, f ∈ X . The following two
statements are equivalent:

(i) A x = − f .

(ii) x(n) =
n
∑

s=0
U(n,s) f (s) for all n ∈ Z+ .

Proof. (i) ⇒ (ii) For n = 0 the assertion is obvious. Let n ∈ Z+ , n � 1. From
(3.2) follows:

T (n)x− x =
n−1

∑
s=0

T (s)A x = −
n−1

∑
s=0

T (s) f

(T (n)x− x)(n) = −
n−1

∑
s=0

(T (s) f )(n)

x(n) =
(
T (n)x

)
(n)+

(n−1

∑
s=0

T (s) f
)
(n)

= U(n,0)x(0)+
n−1

∑
s=0

U(n,n− s) f (n− s)

=
n

∑
r=0

U(n,r) f (r).
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(ii) ⇒ (i) Let n � 1, successively one has:

(A x)(n) = [(T (1)− I)x](n)
= U(n,n−1)x(n−1)− x(n), using (3.1)

=
n−1

∑
s=0

U(n,s) f (s)− x(n)

=
n

∑
s=0

U(n,s) f (s)−U(n,n) f (n)− x(n)

= − f (n).

Hence proved that statements (i) and (ii) are equivalent. �

4. Main results

Now we are in the position to prove our main results about Kallman-Rota type
inequality.

LEMMA 4.1. Let T = {T (n) : n ∈ Z+} be a discrete semigroup. If T is uni-
formly bounded, that is, there is a positive constant W such that supn∈Z+ ‖T (n)‖ �
W , then

‖A x‖2 � 4W 2‖x‖‖A 2x‖, f or all x ∈ D(A 2). (4.1)

For proof see [12].
Now we state the same inequality for evolution semigroups on the space X as

given in section 2.

THEOREM 4.2. Let U be a uniformly stable evolution family of bounded linear
operators acting on X , and let fn ∈ X . Suppose that the following conditions are
fulfilled:

(i)
n
∑

s=0
U(n,s) f (s) belong to X .

(ii)
n
∑

s=0
1{0,...,r}(s)(n− s)U(n,s) f (s) belong to X .

Then the following inequality holds

∥∥∥ n

∑
s=0

U(n,s) f (s)
∥∥∥2

X
� 4W 2‖ f‖X ×

∥∥∥ n

∑
s=0

1{0,...,r}(s)(n− s)U(n,s) f (s)
∥∥∥

X
, (4.2)

where W is a constant from the estimation of (2.2) and 1{0,...,r} is the characteristic
function.

Proof. Let T be the evolution semigroup associated to U on the space X and
let A be its algebraic generator. Let f be any arbitrary element of the space X , From
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condition (i) we know that
n
∑

s=0
U(n,s) f (s) is also an element of X , so let us denote

n
∑

s=0
U(n,s) f (s) by ϑn i.e.

ϑn :=
n

∑
s=0

U(n,s) f (s).

Then by using Lemma 3.2 we have

A ϑn = − fn. (4.3)

Also we claimed that
n
∑

s=0
U(n,s)ϑ(s) ∈ X , because,

n

∑
s=0

U(n,s)ϑ(s) =
n

∑
r=0

U(n,r)
r

∑
s=0

U(r,s) f (s) where n � r � s � 0

=
n

∑
r=0

n

∑
s=0

1{0,...,r}(s)U(n,s) f (s)

=
n

∑
s=0

n

∑
r=0

1{0,...,r}(s)U(n,s) f (s)

=
n

∑
r=0

U(n,0) f (0)+
n

∑
r=0

U(n,1) f (1)+ . . .

+
n

∑
r=0

U(n,n) f (n), where n � r � s � 0

= nU(n,0) f (0)+ (n−1)U(n,1) f (1)+ . . .+(n− r)U(n,r) f (r)

=
n

∑
s=0

1{0,...,r}(s)(n− s)U(n,s) f (s), where n � r � s � 0

i.e.
n
∑

s=0
U(n,s)ϑ(s) =

n
∑

s=0
1{0,...,r}(s)(n− s)U(n,s) f (s) .

The condition (ii)
n
∑

s=0
1{0,...,r}(s)(n−s)U(n,s) f (s)∈X implies that

n
∑

s=0
U(n,s)ϑ(s)∈

X . Let b̂n =
n
∑

s=0
U(n,s)ϑ(s) i.e. b̂n,ϑn ∈ X . Then again by Lemma 3.2, we get

A b̂n = −ϑn.

Applying A on both sides we get

A (A b̂n) = A (−ϑn)
= −A ϑn, (using (4.3))
= −(− fn),

A 2b̂n = fn ∈ X . (4.4)
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As fn is an element from X , so b̂n belong to X , i.e. b̂n ∈ D(A 2) . If we replace x
by b̂n and A x , A 2x from (4.3) and (4.4) respectively, from (4.1), we get∥∥∥ n

∑
s=0

U(n,s) f (s)
∥∥∥2

X
� 4W 2‖ f‖X ×

∥∥∥ n

∑
s=0

1{0,...,r}(n− s)U(n,s) f (s)
∥∥∥

X
.

Hence this completes the proof. �
Now we prove some applications of inequality (4.2) on the spaces K00(Z+,Z )

and lp(Z+,Z ) , as corollaries.

COROLLARY 4.3. Let {ν}Z+ or ν : Z+ → Z be a sequence such that it decays
to zero at 0 and ∞ , so limn→∞ νn = 0 . Suppose that the sequences

n 	→ y(n) :=
n

∑
s=0

ν(s)

and

n 	→ J(n) :=
n

∑
s=0

(n− s)ν(s)

verifies the condition limn→∞ y(n) = limn→∞ J(n) = 0 .
Then the following inequality holds:

sup
n∈Z+

|
n

∑
s=0

ν(s)|2 � 4 sup
n∈Z+

|ν(s)|× |
n

∑
s=0

(n− s)ν(s)|.

Proof. We apply Theorem 4.2 for X = K00(Z+,Z ) and for U(n,m)x = x where
n � m � 0 and x ∈ Z . �

COROLLARY 4.4. Let ν , y , J be as in Corollary 4.3 and λn be a positive non-
decreasing sequence on Z+ . The following inequality holds:

sup
n∈Z+

⎡
⎢⎢⎢⎣
∣∣∣∣ n

∑
s=0

λ (s)ν(s)
∣∣∣∣
2

λ (n)2

⎤
⎥⎥⎥⎦� 4 sup

n∈Z+

|ν(s)|× sup
n∈Z+

⎡
⎢⎢⎣
∣∣∣∣ n

∑
s=0

(n− s)λ (s)ν(s)
∣∣∣∣

λ (n)

⎤
⎥⎥⎦ .

Proof. Follows by Theorem 4.2 for X = K00(Z+,Z ) and U(n,m) = λ (m)
λ (n) . �

COROLLARY 4.5. Let 1 � p � ∞ and f̂ ∈ l p(Z+,Z ) . If the sequences

n 	→ ĝ(n) :=
n

∑
s=0

f̂ (s) and n 	→ ĥ(n) :=
n

∑
s=0

(n− s) f̂ (s)

belong to lp(Z+,Z ) , then the following inequality holds:

‖
n

∑
s=0

f̂ (s)‖2
p � 4‖ f̂‖p×‖

n

∑
s=0

(n− s) f̂ (s)‖p .
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Proof. We apply Theorem 4.2 for X = l p(Z+,Z ) and for U(n,m)x = x where
n � m � 0 and x ∈ Z . �

Now we state the same inequality for (r,q)-resolvent, when both sequences rn ∈
l1(Z+,X ) and qn ∈ K00(Z+,X ) are positive.

THEOREM 4.6. Let (r,q) be the pair satisfying the CP-condition and

Cr,q := sup
n>0

(r ∗ r ∗ q)nqn

(q ∗ r)2
n

< ∞. (4.5)

Assume that A is the algebraic generator of the (r,q)-resolvent {Kn}n�0 , such that

‖Kn‖ � ηqn, n � 0, (4.6)

with η � 1 . Then the Kallman-Rota inequality,

‖A x‖2 � 8η2Cr,q‖x‖‖A 2x‖, (4.7)

holds for all x ∈ D(A 2) .

Proof. For all x∈D(A 2) and n∈Z+ we have Knx∈D(A ) and A Knx∈D(A ) ,
hence

Knx = (r ∗A K)nx+qnx

= r ∗A [(r ∗A K)nx+qnx]+qnx

= (r ∗ r ∗A 2K)nx+(r ∗ q)nA x+qnx.

Therefore,

‖(r ∗ q)nA x‖ � ‖Knx‖+‖(r ∗ r ∗A 2K)nx‖+‖qnx‖
= ‖Knx‖+‖

n

∑
s=0

(r ∗ r)(n−s)A
2Ksx‖+‖qnx‖

� ‖Knx‖+
n

∑
s=0

(r ∗ r)(n−s)‖KsA
2x‖+‖qnx‖

� ‖Knx‖+
n

∑
s=0

(r ∗ r)(n−s)‖Ks‖‖A 2x‖+‖qnx‖

� ηqn‖x‖+ η
n

∑
s=0

(r ∗ r)(n−s)qs‖A 2x‖+qn‖x‖, using (4.6)

‖(r ∗ q)nA x‖ � ηqn‖x‖+ η(r ∗ r ∗ q)n‖A 2x‖+qn‖x‖,
or, equivalently,

‖A x‖ � 2η
qn

(r ∗ q)n
‖x‖+ η

(r ∗ r ∗ q)n

(r ∗ q)n
‖A 2x‖, n > 0. (4.8)
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Let d = 2η‖x‖ and e = η‖A 2x‖ , we define

yn = d
qn

(r ∗ q)n
+ e

(r ∗ r ∗ q)n

(r ∗ q)n
,

yn =
(
√

e
√

(r ∗ r ∗ q)n−
√

d
√

qn)2 +2
√

de
√

(r ∗ r ∗ q)nqn

(r ∗ q)n
. (4.9)

As (
√

e
√

(r ∗ r ∗ q)n−
√

d
√

qn)2 � 0, the equation (4.9) can be written as

yn � 2
√

de

√
(r ∗ r ∗ q)nqn

(r ∗ q)2
n

, for all n > 0, (4.10)

and

yn = 2
√

de

√
(r ∗ r ∗ q)nqn

(r ∗ q)2
n

, (4.11)

for those n > 0 such that
√

e
√

(r ∗ r ∗ q)n−
√

d
√

qn = 0. Since the pair (r,q) satisfies
the CP-condition, we conclude that there exists n0 > 0, depending on d and e , such
that

d
e
q(n0) = (r ∗ r ∗ q)(n0). (4.12)

Hence,

yn0 = 2
√

de

√
(r ∗ r ∗ q)n0qn0

(r ∗ q)2
n0

= 2d
qn0

(r ∗ q)n0

. (4.13)

From (4.8) we deduce that for all x ∈ D(A 2) ,

‖A x‖ � min
n>0

y(n) � yn0 � 2η
√

2‖x‖‖A 2x‖
√

(r ∗ r ∗ q)nqn

(r ∗ q)2
n

. (4.14)

Putting (4.5) in (4.14), we get

‖A x‖2 � 8η2Cr,q‖x‖‖A 2x‖.
Hence the proof is complete. �

In the next main result, we used the sequence hα , defined by

hα(b) :=
Γ(α +b+2)2

Γ(α +1)Γ(α +2b+3)
, b > −1, (4.15)

for all α > −1, and it will play an important role in several estimates, see Theorem 4.8
below. In the following proposition, we collect some interesting properties of hα .
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PROPOSITION 4.7. Let α > −1 and hα be defined by (4.15). Then hα(−1) =
1 , 0 < hα(b) � 1 , hα is a decreasing sequence in (−1,+∞) for any α > −1 and
limα→∞ hα(b) = 1 for any b ∈ (−1,+∞) .

Proof. We directly check that hα(−1) = 1. To show that hα is decreasing, we
prove that Δhα(b) < 0 for b > −1. Note that

Δhα(b) :=
( Γ(α +b+3)2

Γ(α +1)Γ(α +2b+5)
− Γ(α +b+2)2

Γ(α +1)Γ(α +2b+3)

)
< 0,

if and only if
Γ(α +2b+3)
Γ(α +2b+5)

<
Γ(α +b+2)2

Γ(α +b+3)2 , for all b > −1.

The above inequality is obvious, so we conclude that hα is decreasing for any α >−1.
Then 1 = hα(−1) � hα(b) for any b > −1.

It is known that

lim
α→∞

hα(b) = lim
α→∞

Γ(α +b+2)2

Γ(α +1)Γ(α +2b+3)

= lim
α→∞

(
(α +b+1)!

)2

α!(α +2b+2)!
= 1

and we conclude the proof. �

In what follows we will deduce from our main result examples concerning differ-
ent types of algebraic generators families arising in applications to abstract evolution
equations. We begin with norm inequalities for generators of α -times β -resolvents
(Sα ,β (n))n∈Z+ families. According to the definition given in preliminaries, they sat-
isfy:

Sα ,β (n)x =
nα

Γ(α +1)
x+

n−1

∑
s=1

(n− s)β

Γ(β +1)
A Sα ,β (s)x, n ∈ Z+, x ∈ X ,

i.e. a (gβ+1,gα+1)-resolvent for some α,β > −1. Recall that for α = 0, the exis-
tence of (S0,β (n))n∈Z+ is equivalent to the well-posedness of the abstract fractional
difference equation

Δβ+1
c v(n) = A v(n), n ∈ Z+, β > −1, (4.16)

with some initial conditions, where Δβ+1
c denotes the Caputo’s fractional difference,

see [1]. In case α > 0, there families corresponds to α -times solutions of the above
equation.
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THEOREM 4.8. Let A be the algebraic generator of α -times β -resolvent (Sα ,β (n))n∈Z+

for some α,β > −1 and suppose that there is η � 1 such that

‖Sα ,β (n)‖ � η
nα

Γ(α +1)
, n ∈ Z+.

Then for all x ∈ D(A 2) we have

‖A x‖2 � 8η2 Γ(α + β +2)2

Γ(α +1)Γ(α +2β +3)
‖x‖‖A 2x‖. (4.17)

Proof. The pair (gβ+1,gα+1) satisfies the CP-condition and the following in-
equality

(r ∗ r ∗ q)nqn

(r ∗ q)2
n

� Γ(α + β +2)2

Γ(α +1)Γ(α +2β +3)

holds for any n ∈ Z+ . Hence, the conclusion follows from Theorem 4.6. �

REMARK 4.9. In the case of the well-posed fractional difference equation (4.16),
for different values of α , we find out the qualitative behavior of hα(β ) , given in Propo-
sition 4.7. Then we apply it in the study of the Kallman-Rota type inequality (4.17).

(i) When α →−1 then hα(β )→ 0 for some β >−1. As a consequence, we can
choose constant ωα ,β as smaller as we want, such that

‖A x‖2 � ωα ,β‖x‖‖A 2x‖, x ∈ D(A 2). (4.18)

(ii) When α = 0 then h0(β ) = Γ(β+2)2

Γ(2β+3) for β > −1. Note that such sequence is
decreasing so that the constant in case of the second order abstract difference equation
(h0(1) = 1

6 ) , will be always smaller than the constant in case of the first order equation
(h0(0) = 1

2) .
(iii) When α → ∞ then hα(β ) → 1. The situation is different as in case (i) and

(ii) : If α → ∞ , then the constant ωα ,β in (4.18) tends to 8η2 . Moreover, again the
constant near to the abstract difference equation of order 2 is smaller than the constant
near to abstract difference equation of order 1, for the same value of α .

The cases β = 0 and β = 1 in Theorem 4.8 give, respectively, the following
corollaries.

COROLLARY 4.10. Let A be the algebraic generator of the α -times semigroup
(Sα(n))n∈Z+ for some α � 0 and suppose that there is η � 1 such that

‖Sα(n)‖ � η
nα

Γ(α +1)
, n ∈ Z+.

Then for all x ∈ D(A 2) we have

‖A x‖2 � η2 (α +1)
(α +2)

‖x‖‖A 2x‖. (4.19)
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COROLLARY 4.11. Let A be the algebraic generator of the α -times sums cosine
sequence (Cα(n))n∈Z+ for some α � 0 and suppose that there is η � 1 such that

‖Cα(n)‖ � η
nα

Γ(α +1)
, n ∈ Z+.

Then for all x ∈ D(A 2) we have

‖A x‖2 � η2 (α +1)(α +2)
(α +3)(α +4)

‖x‖‖A 2x‖. (4.20)

5. Conclusion

We have proved that Kallman-Rota inequality holds for a discrete evolution family
using the space K00(Z+,X ) and we have also proved the same inequality for (r,q)-
resolvent operators which arises in the solution of fractional difference equation of
order β +1. Finally, some applications of the obtained inequality is given.

Acknowledgement. The authors would like to thank the referees for their sugges-
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