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Abstract. In this paper, we analyse periodic properties of fractional nabla difference systems.
First, we prove that a system of fractional nabla difference equations with a periodic right hand
side can not possess a periodic solution. Next, we establish sufficient conditions on the existence
of a unique S -asymptotically T -periodic solution for this difference system. Finally, we provide
an example illustrating the obtained results.

1. Introduction

Fractional nabla calculus is a new branch of mathematics that deals with the gen-
eralization of backward (nabla) sums and differences to arbitrary order. The combined
efforts of a number of researchers during the past two decades produced a fairly strong
basic theory of fractional nabla difference equations [1]. But a very little progress has
been reported for fractional nabla difference systems. Atici and Eloe [4] studied linear
systems of fractional nabla difference equations with constant coefficients and con-
structed the fundamental matrix for the homogeneous system and the causal Green’s
function for the nonhomogeneous system. Čermák et al. [13] derived stability regions
for linear fractional nabla difference systems including a precise description of their
asymptotics. Recently, the author [8, 9] established sufficient conditions on existence,
uniqueness and stability of solutions of nonlinear fractional nabla difference systems.

Study of periodic solutions is one of the most interesting and important research
directions in qualitative theory of fractional differential / difference equations, with ap-
plications ranging from celestial mechanics to biology and finance. Tavazoei et. al.
[18, 19] have shown analytically that a time invariant Caputo type fractional order sys-
tem contrary to its integer order counterpart cannot generate exactly periodic signals.
Kaslik et. al. [3] have also shown the nonexistence of exact periodic solutions in a
wide class of fractional order dynamical systems using the Mellin transform approach.
Using the final value theorem of Laplace transform, Wang et. al. [14] have shown that
nonhomogeneous fractional Cauchy problem does not have nonzero periodic solution
and obtained two basic existence and uniqueness results for asymptotically periodic so-
lution of semi linear fractional Cauchy problem in an asymptotically periodic functions
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space. Diblik et. al. [2] have shown that a fractional forward (delta) difference equa-
tion with a periodic right hand side cannot possess a periodic solution but it can have
an S -asymptotically periodic solution and proved sufficient conditions for the existence
of a unique S -asymptotically periodic solution. Recently, the author [10] has proved
that any given fractional nabla difference system doesn’t possess a nonconstant peri-
odic solution and established sufficient conditions on the existence and uniqueness of
S -asymptotically periodic solution for this difference system. Motivated by [2, 14], we
present here the analogous results on quasi-periodic solutions in the field of fractional
nabla calculus.

The present paper is organized as follows. Sections 2 contains preliminaries on
fractional nabla calculus. In section 3, we obtain a few properties of N -transform. We
discuss quasi-periodic properties of fractional nabla sums and differences in section
4. In section 5, we establish sufficient conditions on the existence and uniqueness of
S -asymptotically periodic solutions of nonlinear fractional nabla difference systems.

2. Preliminaries

Throughout, we shall use the following notations, definitions and known results
of fractional nabla calculus [1]. We denote the set of all integers, real numbers and
complex numbers by Z , R and C , respectively. For a ∈ R , define Na = {a,a+1,a+
2, · · ·} . Assume that empty sums and products are taken to be 0 and 1, respectively.

DEFINITION 2.1. (Gamma Function) For any t ∈R\{· · · ,−2,−1,0} , the gamma
function is defined by

Γ(t) =
∫ ∞

0
e−sst−1ds, t > 0,

Γ(t +1) = tΓ(t).

DEFINITION 2.2. (Rising Factorial Function) For any t ∈R\{· · · ,−2,−1,0} and
α ∈ R such that (t + α) ∈ R\ {· · · ,−2,−1,0} , the rising factorial function is defined
by

tα =
Γ(t + α)

Γ(t)
, 0α = 0.

We observe the following properties of rising factorial functions.

THEOREM 2.1. Assume that the following factorial functions are well defined.

1. tα(t + α)β = tα+β .

2. If t � r then tα � rα .

3. If α < t � r then r−α � t−α .

4. (t +1)α−1 � (t +1)α−1 � tα−1, 0 � α � 1 .
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5. (t +b)a−b = ta−b
[
1+O

(
1
t

)]
, |t| → ∞ .

DEFINITION 2.3. Let u : Na → R and α ∈ R
+ . The α th -order nabla sum of u is

given by (
∇−α

a u
)
(t) =

1
Γ(α)

t

∑
s=a

(t− s+1)α−1u(s), t ∈ Na.

DEFINITION 2.4. Let u : Na → R , α ∈ R and choose N ∈ N1 such that N−1 <
α < N .

1. (Nabla Difference) The first order backward (nabla) difference of u is defined by
(
∇au

)
(t) = u(t)−u(t−1), t ∈ Na+1,

and the Nth -order nabla difference of u is defined recursively by

(
∇N

a u
)
(t) =

(
∇a

(
∇N−1

a u
))

(t), t ∈ Na+N .

2. (R-L Fractional Nabla Difference) The Riemann-Liouville type α th -order nabla
difference of u is given by

(
∇α

a u
)
(t) =

(
∇N

a

(
∇−(N−α)

a u
))

(t)

=
1

Γ(−α)

t

∑
s=a

(t − s+1)−α−1u(s), t ∈ Na+N .

3. (Caputo Fractional Nabla Difference) The Caputo type α th -order nabla differ-
ence of u is given by

(
∇α

a∗u
)
(t) =

(
∇−(N−α)

a
(
∇N

a u
))

(t)

=
(
∇α

a u
)
(t)−

N−1

∑
k=0

(t −a+1)k−α

Γ(k−α +1)
(
∇k

au
)
(a−1), t ∈ Na+N .

THEOREM 2.2. (Power Rule) Let α , μ ∈ R and choose N ∈ N1 such that
N−1 < α < N . Assume that the following factorial functions are well defined.

1. ∇N
a (t−a+1)μ = Γ(μ+1)

Γ(μ−N+1) (t−a+1)μ−N, t ∈ Na+N .

2. ∇−α
a (t−a+1)μ = Γ(μ+1)

Γ(μ+α+1) (t−a+1)μ+α, t ∈ Na .

3. ∇α
a (t−a+1)μ = Γ(μ+1)

Γ(μ−α+1)(t −a+1)μ−α, t ∈ Na+N .

4. ∇α
a∗(t −a+1)μ = Γ(μ+1)

Γ(μ−α+1) (t−a+1)μ−α, t ∈ Na+N .
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DEFINITION 2.5. Let u : Na → R . u is said to be T -periodic if there exists a
least T ∈ N1 such that

u(t +T ) = u(t), t ∈ Na.

DEFINITION 2.6. Let u : Na → R . u is said to be S -asymptotically T -periodic
if it is bounded and there exists T ∈ N1 such that

lim
t→∞

[
u(t +T )−u(t)

]
= 0.

3. N -transform

In this section we recall the definition of nabla Laplace transform (N -transform)
[4, 11] and obtain a few of its properties.

DEFINITION 3.1. [4] Let u : Na → R . The N -transform of u is defined by

Na
[
u(t)

]
=

∞

∑
j=a

u( j)(1− z) j−1 = U(z),

for each z ∈ C for which the series converges.

DEFINITION 3.2. [11] Let u : Na → R . u is said to be of exponential order r ,
r > 0, if there exists a constant A > 0 such that

∣∣u(t)
∣∣ � Ar−t , (3.1)

for sufficiently large t ∈ Na .

THEOREM 3.1. [11] Suppose u is of exponential order r , r > 0 . Then, U(z)
exists for each z lies inside the open ball B1(r) = {z ∈ C : |1− z|< r} .

REMARK 1. We note that every periodic sequence of real numbers is bounded
and every bounded sequence of real numbers is of exponential order 1. Consequently,
if u : Na → R is T -periodic then U(z) exists.

THEOREM 3.2. [11] We observe the following properties of N -transform.

1. Let α ∈ R\{· · · ,−3,−2,−1} and t ∈ Na . The rising factorial function (t−a+
1)α is of exponential order 1 and

Na
[
(t −a+1)α]

= (1− z)a−1 Γ(α +1)
zα+1

for each z ∈ B1(1) .
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2. Let u be of exponential order r , 0 < r � 1 and α ∈ R+ . Then,
(
∇−α

a u
)

is also
of exponential order r , 0 < r � 1 and

Na

[(
∇−α

a u
)
(t)

]
= z−αU(z)

for each z ∈ B1(r) .

THEOREM 3.3. Let u be of exponential order r , r > 0 and T ∈ N1 . Then,

1. Na
[
u(t−T )

]
= ∑a+T−1

j=a u( j−T)(1− z) j−1 +(1− z)TNa
[
u(t)

]
.

2. Na
[
u(t +T )

]
= (1− z)−T

[
Na

[
u(t)

]−∑a+T−1
j=a u( j)(1− z) j−1

]
.

Proof. (1) Consider

Na
[
u(t−T)

]
=

∞

∑
j=a

u( j−T )(1− z) j−1

=
∞

∑
j=a−T

u( j)(1− z) j+T−1

=
a−1

∑
j=a−T

u( j)(1− z) j+T−1 +
∞

∑
j=a

u( j)(1− z) j+T−1

=
a+T−1

∑
j=a

u( j−T)(1− z) j−1 +(1− z)TNa
[
u(t)

]
.

(2) Consider

Na
[
u(t +T )

]
=

∞

∑
j=a

u( j +T)(1− z) j−1

=
∞

∑
j=a+T

u( j)(1− z) j−T−1

=
∞

∑
j=a

u( j)(1− z) j−T−1−
a+T−1

∑
j=a

u( j)(1− z) j−T−1

= (1− z)−T
[
Na

[
u(t)

]− a+T−1

∑
j=a

u( j)(1− z) j−1
]
. �

THEOREM 3.4. Let u be of exponential order r , r > 0 and T -periodic. Then,

Na
[
u(t)

]
=

1[
1− (1− z)T

] a+T−1

∑
j=a

u( j)(1− z) j−1, |1− z|< 1.
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Proof. Using Theorem 3.3 (2), we have

Na
[
u(t)

]
= (1− z)−T

[
Na

[
u(t)

]− a+T−1

∑
j=a

u( j)(1− z) j−1
]

implies [
(1− z)−T −1

]
Na

[
u(t)

]
= (1− z)−T

a+T−1

∑
j=a

u( j)(1− z) j−1.

Consequently, we get

Na
[
u(t)

]
=

1[
1− (1− z)T

] a+T−1

∑
j=a

u( j)(1− z) j−1.

Hence the proof. �

THEOREM 3.5. Let u be of exponential order r , r > 0 and u(∞) exists. Then,

lim
z→0+

zU(z) = lim
t→∞

u(t).

Proof. Consider

Na
[(

∇au
)
(t)

]
=

∞

∑
j=a

[(
∇au

)
( j)

]
(1− z) j−1

=
∞

∑
j=a

[
u( j)−u( j−1)

]
(1− z) j−1

= lim
t→∞

t

∑
j=a

[
u( j)−u( j−1)

]
(1− z) j−1. (3.2)

On the other hand, using Theorem 3.3, we have

Na
[(

∇au
)
(t)

]
= Na

[
u(t)−u(t−1)

]
= zU(z)−u(a−1)(1− z)a−1. (3.3)

Letting z → 0+ in (3.2), we get

lim
z→0+

Na
[(

∇au
)
(t)

]
= lim

t→∞

t

∑
j=a

[
u( j)−u( j−1)

]
= lim

t→∞

[
u(t)−u(a−1)

]
. (3.4)

Using (3.3) in (3.4), the proof is complete. �

THEOREM 3.6. Let u be of exponential order r , r > 0 and T -periodic. Then,

lim
t→∞

u(t) =
1
T

a+T−1

∑
j=a

u( j).



QUASI-PERIODIC SOLUTIONS OF FRACTIONAL NABLA DIFFERENCE SYSTEMS 345

Proof. Clearly, from Remark 1, u(∞) exists. Using Theorems 3.4, 3.5 and L’Hôs-
pital’s rule, we have

lim
t→∞

u(t) = lim
z→0+

zU(z) = lim
z→0+

z[
1− (1− z)T

] a+T−1

∑
j=a

u( j)(1− z) j−1

= lim
z→0+

z[
1− (1− z)T

] lim
z→0+

a+T−1

∑
j=a

u( j)(1− z) j−1

=
1
T

a+T−1

∑
j=a

u( j). �

THEOREM 3.7. Let u be of exponential order r , r > 0 and T -periodic. If
(
∇−α

a u
)

is bounded for 0 < α < 1 then

a+T−1

∑
j=a

u( j) = 0. (3.5)

Proof. Using Theorem 3.4 and L’Hôspital’s rule, we have

lim
z→0+

U(z) = lim
z→0+

a+T−1

∑
j=a

u( j)
(1− z) j−1

[
1− (1− z)T

] = − 1
T

a+T−1

∑
j=a

( j−1)u( j) < ∞.

Using Theorems 3.2, 3.5, 3.6 and L’Hôspital’s rule, we have

lim
t→∞

(
∇−α

a u
)
(t) = lim

z→0+
zNa

[(
∇−α

a u
)
(t)

]
= lim

z→0+
z1−αU(z)

= lim
z→0+

zU(z)
zα

= lim
z→0+

1
T ∑a+T−1

j=a u( j)

zα . (3.6)

Hence it is clear from (3.6) that if
(
∇−α

a u
)

is bounded, then (3.5) holds. �

4. Periodic properties of fractional nabla differences

In [10], the author has proved that the fractional sum of a nonconstant periodic
function is not periodic. However, since in this section we study quasi-periodic proper-
ties of fractional nabla sums and differences, we prove this fact in a similar way as in
the cited case.

THEOREM 4.1. Let u be of exponential order r , 0 < r � 1 and nonconstant
T -periodic. Let α ∈ R and choose N ∈ N1 such that N−1 < α < N . Then,

1.
(
∇N

a u
)

is also nonconstant T -periodic.
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2.
(
∇−α

a u
)

cannot be T -periodic.

3.
(
∇α

a u
)

cannot be T -periodic.

4.
(
∇α

a∗u
)

cannot be T -periodic.

Proof. The proof of (1) is trivial. Now, we prove (2). Take 0 < α < 1. Suppose
there exists a nonconstant T -periodic function u such that

(
∇−α

a u
)

is also T -periodic.
Let (

∇−α
a u

)
(t) = v(t), t ∈ Na.

Applying N -transform on both sides, we get

z−αNa
[
u(t)

]
= Na

[
v(t)

]
.

Using Theorem 3.2, v is also of exponential order r , 0 < r � 1. Since u and v are
T -periodic, using Theorem 3.4, we have

1[
1− (1− z)T

] a+T−1

∑
j=a

u( j)(1− z) j−1 =
zα[

1− (1− z)T
] a+T−1

∑
j=a

v( j)(1− z) j−1.

So,
a+T−1

∑
j=a

u( j)(1− z) j−1 = zα
a+T−1

∑
j=a

v( j)(1− z) j−1.

Consequently,
T−1

∑
j=0

u( j +a)(1− z) j = zα
T−1

∑
j=0

v( j +a)(1− z) j. (4.1)

Putting

P(z) =
T−1

∑
j=0

u( j +a)(1− z) j and Q(z) =
T−1

∑
j=0

v( j +a)(1− z) j

in (4.1), we have
P(z) = zαQ(z). (4.2)

Since P(z) and Q(z) are polynomials of degree T −1 over C , we write

P(z) =
T−1

∑
k=0

pkz
k and Q(z) =

T−1

∑
k=0

qkz
k.

Then, (4.2) gives
T−1

∑
k=0

pkz
k = zα

T−1

∑
k=0

qkz
k, |1− z|< 1. (4.3)

Letting z → 0+ , we get p0 = 0. Then, (4.3) implies

T−1

∑
k=1

pkz
k−α =

T−1

∑
k=0

qkz
k, |1− z|< 1. (4.4)
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Letting z → 0+ , we get q0 = 0. Following this argument step by step, we derive

pk = qk = 0, k = 0,1,2, · · · ,(T −1).

Hence
P(z) = Q(z) = 0, |1− z|< 1,

or equivalently,

T−1

∑
j=0

u( j +a)(1− z) j =
T−1

∑
j=0

v( j +a)(1− z) j = 0.

Then, we have

u( j +a) = v( j +a) = 0, j = 0,1,2, · · · ,(T −1).

This is a contradiction. Hence, our assumption is false, and therefore,
(
∇−α

a u
)

cannot
be T -periodic. The proof for an arbitrary α > 0 follows easily.

Replacing α by −α in (2), we get (3).
From Definition 2.4, the Caputo type α th -order nabla difference of u is given by

(
∇α

a∗u
)
(t) =

(
∇−(N−α)

a
(
∇N

a u
))

(t), t ∈ Na+N .

Given that u is a nonconstant T -periodic function. Then, from (1),
(
∇N

a u
)

is also

a nonconstant T -periodic function and hence from (2),
(

∇−(N−α)
a

(
∇N

a u
))

cannot be

T -periodic. Thus, we have (4). �

THEOREM 4.2. Let 0 < α < 1 , u be of exponential order r , 0 < r � 1 and
T -periodic. Assume that

(
∇−α

a u
)

is bounded. Then,

1.
(
∇au

)
is S -asymptotically T -periodic.

2.
(
∇−α

a u
)

is S -asymptotically T -periodic.

3.
(
∇α

a u
)

is S -asymptotically T -periodic.

4.
(
∇α

a∗u
)

is S -asymptotically T -periodic.

Proof. The proof of (1) is trivial. Now, we prove (2). Consider

lim
t→∞

[(
∇−α

a u
)
(t +T)− (

∇−α
a u

)
(t)

]
=

1
Γ(α)

lim
t→∞

[ a+T−1

∑
s=a

(t +T − s+1)α−1u(s)
]

=
1

Γ(α)

a+T−1

∑
s=a

lim
t→∞

[
(t +T − s+1)α−1

]
u(s)

=
1

Γ(α)

a+T−1

∑
s=a

lim
t→∞

[
tα−1 +O

(1
t

)]
u(s)

= 0,

implies
(
∇−α

a u
)

is S -asymptotically T -periodic. Thus, we have (2). Proofs of (3) and
(4) are similar to the proofs of (3) and (4) of Theorem 4.1. So, we omit it. �
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THEOREM 4.3. Let 0 < α < 1 , u be of exponential order r , 0 < r � 1 and
S-asymptotically T -periodic. Assume that

(
∇−α

a u
)

is bounded. Then,

1.
(
∇au

)
is S -asymptotically T -periodic.

2.
(
∇−α

a u
)

is S -asymptotically T -periodic.

3.
(
∇α

a u
)

is S -asymptotically T -periodic.

4.
(
∇α

a∗u
)

is S -asymptotically T -periodic.

Proof. Let v(t) = u(t +T )−u(t) . Since u is S -asymptotically T -periodic,

lim
t→∞

[
u(t +T )−u(t)

]
= 0 ⇒ lim

t→∞
v(t) = 0.

Consequently, from Theorem 3.5, we have

lim
z→0+

zV (z) = 0,

where Na
[
v(t)

]
= V (z) . We know that

(
∇au

)
is bounded and

lim
t→∞

[(
∇au

)
(t +T)− (

∇au
)
(t)

]
= lim

t→∞

(
∇av

)
(t) = lim

t→∞

[
v(t)− v(t−1)

]
= 0,

implies
(
∇au

)
is S -asymptotically T -periodic. Thus, we have (1). Next, we prove (2).

Consider

V (z) = Na
[
v(t)

]
=

∞

∑
j=a

v( j)(1− z) j−1

=
∞

∑
j=a

u( j +T )(1− z) j−1−
∞

∑
j=a

u( j)(1− z) j−1

= (1− z)−T
∞

∑
j=a+T

u( j)(1− z) j−1−
∞

∑
j=a

u( j)(1− z) j−1

=
[
(1− z)−T −1

]
U(z)− (1− z)−T

a+T−1

∑
j=a

u( j)(1− z) j−1.

Clearly, u(∞) exists. From Theorems 3.5–3.7 and L’Hôspital’s rule, we have

lim
z→0+

V (z) = lim
z→0+

[
1− (1− z)T

]
z(1− z)T lim

z→0+
zU(z)− lim

z→0+
(1− z)−T

a+T−1

∑
j=a

u( j)(1− z) j−1

= lim
z→0+

T (1− z)T−1

Tz(1− z)T−1 +(1− z)T lim
t→∞

u(t)−
a+T−1

∑
j=a

u( j) = 0. (4.5)
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Using (4.5) and Theorems 2.1, 3.2 and 3.5, we have

lim
t→∞

[(
∇−α

a u
)
(t +T )− (

∇−α
a u

)
(t)

]

=
1

Γ(α)
lim
t→∞

[ t+T

∑
s=a

(t +T − s+1)α−1u(s)−
t

∑
s=a

(t− s+1)α−1u(s)
]

=
1

Γ(α)
lim
t→∞

[ t

∑
s=a

(t− s+1)α−1v(s)+
a+T−1

∑
s=a

(t +T − s+1)α−1u(s)
]

= lim
t→∞

(
∇−α

a v
)
(t)+

1
Γ(α)

a+T−1

∑
s=a

[
lim
t→∞

(t +T − s+1)α−1
]
u(s)

= lim
z→0+

zNa
[(

∇−α
a v

)
(t)

]
+

1
Γ(α)

a+T−1

∑
s=a

lim
t→∞

[
tα−1 +O

(1
t

)]
u(s)

= lim
z→0+

z1−αV (z)

= lim
z→0+

z1−α lim
z→0+

V (z) = 0,

implies
(
∇−α

a u
)

is S -asymptotically T -periodic. Thus, we have (2). Proofs of (3) and
(4) are similar to the proofs of (3) and (4) of Theorem 4.1. So, we omit it. �

5. Periodic solutions of fractional nabla difference systems

In this section, we establish sufficient conditions on the existence and uniqueness
of S -asymptotically T -periodic solutions of the following initial value problems using
fixed point theory.

(
∇α

0 u
)
(t) = f(t,u(t)), t ∈ N1, (5.1)

u(0) = c,

and
(
∇α

0∗u
)
(t) = f(t,u(t)), t ∈ N1, (5.2)

u(0) = c,

where α ∈ R such that 0 < α < 1, u : N0 → Rn and f : N0 ×Rn → Rn .
The main result (Theorem 4.1) presented in the previous section leads us to the

following consequence.

THEOREM 5.1. Assume that the function f is T -periodic with respect to its first
argument. Then there are no nonconstant T -periodic solutions of (5.1) and (5.2).

Proof. Assume that there exists a nonconstant T -periodic solution u of (5.1) (or
(5.2)). From the T -periodicity of the function f with respect to its first argument, it
follows that

(
∇α

0 u
)

is also T -periodic, which contradicts Theorem 4.1. �
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We know that, u is a solution of (5.1) if and only if

u(t) =
(t +1)α−1

Γ(α)
c+

1
Γ(α)

t

∑
s=1

(t − s+1)α−1f(s,u(s)), t ∈ N0. (5.3)

Similarly, u is a solution of (5.2) if and only if

u(t) = c+
1

Γ(α)

t

∑
s=1

(t − s+1)α−1f(s,u(s)), t ∈ N0. (5.4)

Define the operators

(
Fu

)
(t) =

(t +1)α−1

Γ(α)
c+

1
Γ(α)

t

∑
s=1

(t− s+1)α−1f(s,u(s)), t ∈ N0, (5.5)

(
F ′u

)
(t) = c+

1
Γ(α)

t

∑
s=1

(t− s+1)α−1f(s,u(s)), t ∈ N0. (5.6)

It is evident from (5.3)–(5.6) that u is a fixed point of F if and only if u is a solution
of (5.1) and u is a fixed point of F ′ if and only if u is a solution of (5.2).

DEFINITION 5.1. Let X be a locally convex space of functions u : N0 → Rn with
the topology of pointwise convergence on finite subsets. Let p ∈ [0,∞) and φ : N0 →
[0,∞) such that

lim
t→∞

φ(t) = 0.

Define

Bp,φ =
{
u ∈ X : ‖u(t)‖ � p, ‖u(t +T )−u(t)‖ � φ(t), t ∈ N0

}
.

Clearly, Bp,φ is a nonempty convex subset of X . Since Bp,φ is a countable product of
compact sets, by Tychonoff product theorem [17], it is also compact.

Now we make the following assumptions to establish main results of this section:
(H1) f is continuous on N0×Rn .
(H2) There exists a function a : N0 → [0,∞) such that, for all (t,u(t)) , (t,v(t)) ∈

N0×R
n ,

‖f(t,u(t))− f(t,v(t))‖� a(t)‖u(t)−v(t)‖, t ∈ N0,

and
sup
t∈N0

(
∇−α

1 a
)
(t) = L < 1.

(H3) Assume that
sup
t∈N0

∥∥∇−α
1 f(s,0)

∥∥ = M < ∞.

(H4) There exists a function b : N0 → [0,∞) such that, for all (t,u(t)) ∈ N0×Rn ,

‖f(t +T,u(t))− f(t,u(t))‖� b(t)‖u(t)‖, t ∈ N0,
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and
lim
t→∞

(
∇−α

1 b
)
(t) = 0.

(H5) Let
max

t∈{1,2,···,T}
‖f(t,0)‖ = q and max

t∈{1,2,···,T}
a(t) = r.

THEOREM 5.2. Let (H1)–(H5) hold. Then there exists a unique S-asymptotically
T -periodic solution of (5.1) (or (5.2)) in Bp,φ where

p =

(‖c‖+M
)

(1−L)
(5.7)

and

φ(t) =
1

(1−L)

[
p
(
∇−α

1 b
)
(t)+

T (t +1)α−1

Γ(α)
(pr+q)

]
, t ∈ N0. (5.8)

Proof. We use Tychonoff fixed point theorem [17] to establish the existence of
S -asymptotically T -periodic solutions of (5.1) and (5.2) in Bp,φ . Since f is continuous,
F and F ′ are also continuous. Next we show that F ′ maps Bp,φ into Bp,φ . Let u ∈
Bp,φ . Consider

∥∥(
F ′u

)
(t)

∥∥ � ‖c‖+
1

Γ(α)

∥∥∥ t

∑
s=1

(t− s+1)α−1f(s,u(s))
∥∥∥

� ‖c‖+
∥∥∥∇−α

1 f(t,0)
∥∥∥+

1
Γ(α)

∥∥∥ t

∑
s=1

(t− s+1)α−1[f(s,u(s))− f(s,0)
]∥∥∥

� ‖c‖+M+
1

Γ(α)

t

∑
s=1

(t− s+1)α−1
∥∥f(s,u(s))− f(s,0)

∥∥

� ‖c‖+M+
1

Γ(α)

t

∑
s=1

(t− s+1)α−1a(s)‖u(s)‖

� ‖c‖+M+ p
(
∇−α

a a
)
(t)

� ‖c‖+M+Lp

= p.

Now, consider
∥∥(

F ′u
)
(t +T )− (

F ′u
)
(t)

∥∥
=

1
Γ(α)

∥∥∥ t+T

∑
s=1

(t +T − s+1)α−1f(s,u(s))−
t

∑
s=1

(t − s+1)α−1f(s,u(s))
∥∥∥

=
1

Γ(α)

∥∥∥ t

∑
s=1−T

(t− s+1)α−1f(s+T,u(s+T))−
t

∑
s=1

(t− s+1)α−1f(s,u(s))
∥∥∥

� 1
Γ(α)

∥∥∥ t

∑
s=1

(t− s+1)α−1[f(s+T,u(s+T))− f(s,u(s+T ))
]∥∥∥
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+
1

Γ(α)

∥∥∥ t

∑
s=1

(t− s+1)α−1[f(s,u(s+T ))− f(s,u(s))
]∥∥∥

+
1

Γ(α)

∥∥∥ T

∑
s=1

(t +T − s+1)α−1f(s,u(s))
∥∥∥

= S1 +S2 +S3. (5.9)

We have

S1 � 1
Γ(α)

t

∑
s=1

(t− s+1)α−1b(s)‖u(s+T )‖ � p
(
∇−α

1 b
)
(t), (5.10)

S2 � 1
Γ(α)

t

∑
s=1

(t− s+1)α−1a(s)‖u(s+T )−u(s)‖

� 1
Γ(α)

t

∑
s=1

(t− s+1)α−1a(s)φ(s)

� 1
(1−L)

[
p
(
∇−α

1 b
)
(t)+

T (t +1)α−1

Γ(α)
(pr+q)

](
∇−α

1 a
)
(t)

� L
(1−L)

[
p
(
∇−α

1 b
)
(t)+

T (t +1)α−1

Γ(α)
(pr+q)

]
(5.11)

and

S3 � 1
Γ(α)

T

∑
s=1

(t +T − s+1)α−1‖f(s,u(s))‖

� (t +1)α−1

Γ(α)

T

∑
s=1

‖f(s,u(s))‖

� (t +1)α−1

Γ(α)

T

∑
s=1

∥∥f(s,u(s))− f(s,0)
∥∥+

(t +1)α−1

Γ(α)

T

∑
s=1

∥∥f(s,0)
∥∥

� (t +1)α−1

Γ(α)

T

∑
s=1

a(s)‖u(s)‖+
Tq(t +1)α−1

Γ(α)

� T (t +1)α−1

Γ(α)
(pr+q). (5.12)

Using (5.10)–(5.12) in (5.9), we get

∥∥(
F ′u

)
(t +T )− (

F ′u
)
(t)

∥∥ � 1
(1−L)

[
p
(
∇−α

1 b
)
(t)+

T (t +1)α−1

Γ(α)
(pr+q)

]
. (5.13)

Thus, F ′u∈Bp,φ and hence F ′ : Bp,φ →Bp,φ . Similarly, we prove that F : Bp,φ →Bp,φ .
Clearly, φ(t)→ 0 as t →∞ . The existence follows from Tychonofffixed point theorem.

We use mathematical induction to prove uniqueness. Let u , v ∈ Bp,φ be two
solutions of (5.2). Consider w(t) = ‖u(t)− v(t)‖ . Clearly, w(0) = 0. Assume that
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w(s) = 0 for s = 1,2, · · · ,(t−1) . Then,

w(t) � 1
Γ(α)

t

∑
s=1

(t− s+1)α−1
∥∥f(s,u(s))− f(s,v(s))

∥∥

� 1
Γ(α)

t

∑
s=1

(t− s+1)α−1a(s)‖u(s)−v(s)‖

=
1

Γ(α)

t

∑
s=1

(t− s+1)α−1a(s)w(s) = a(t)w(t),

implies w(t) = 0. Hence, by principle of mathematical induction, w(t) = 0 for all
t ∈ N0 . This completes the proof. �

The following example demonstrates the applicability of Theorem 5.2.

EXAMPLE 1. Consider the scalar initial value problem

(
∇0.5

0 u
)
(t) =

1
(t +1)0.6

[
(0.1)sinu+(0.2)usin

(πt
2

)]
, t ∈ N1, (5.14)

u(0) = 1.

SOLUTION. We have

(H1) f (t,u) = (t +1)−0.6
[
(0.1)sinu+(0.2)usin

(πt
2

)]
is continuous on N0×R .

(H2) For any (t,u) , (t,v) ∈ N0×R , using Theorem 2.1,

| f (t,u)− f (t,v)| = (t +1)−0.6
[
(0.1)|sinu− sinv|+(0.2)|u− v|

∣∣∣sin
(πt

2

)∣∣∣
]

� (0.3)(t +1)−0.6|u− v|.

Here a(t) = (0.3)(t +1)−0.6 and

L = sup
t∈N0

[
(0.3)∇−0.5

1 (t +1)−0.6
]

= sup
t∈N0

[ (0.3)Γ(0.4)
Γ(0.9)

(t +1)−0.1
]

=
(0.3)Γ(0.4)

Γ(0.9)
= 0.6227 < 1.

(H3) Here f (t,0) = 0. So, M = ∇−0.5
1 f (t,0) = 0.
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(H4) Take T = 4. For any (t,u) ∈ N0×R , using Theorem 2.1,

| f (t +T,u)− f (t,u)|
� (0.1)|sinu|∣∣(t +5)−0.6− (t +1)−0.6

∣∣
+(0.2)|u|

∣∣∣(t +5)−0.6 sin
(π(t +4)

2

)
− (t +1)−0.6 sin

(πt
2

)∣∣∣
�

[
(0.1)|u|+(0.2)|u|

∣∣∣sin
(πt

2

)∣∣∣
]∣∣(t +5)−0.6− (t +1)−0.6

∣∣
� (0.3)(t +1)−0.6

∣∣∣
( t +1

t +5

)0.6 −1
∣∣∣|u|

� (0.6)(t +1)−0.6|u|.

Here b(t) = (0.6)(t +1)−0.6 � 0 and

(
∇−0.5

0 b
)
(t) = (0.6)∇−0.5

0 (t +1)−0.6

=
(0.6)Γ(0.4)

Γ(0.9)
(t +1)−0.1

=
(0.3)Γ(0.4)

Γ(0.9)
(t +1)−0.1 = (1.2454)(t +1)−0.1.

Consequently,
lim
t→∞

(
∇−0.5

1 b
)
(t) = 0.

(H5) We have

max
t∈{1,2,3,4}

| f (t,0)| = q = 0 and max
t∈{1,2,3,4}

a(t) = r = 0.2662.

Thus, all the assumptions of Theorem 5.2 hold and hence the initial value problem
(5.14) has a unique S -asymptotically 4-periodic solution in Bp,φ , where p = 2.6504
and

φ(t) = (8.7485)(t +1)−0.1− (1.0527)(t +1)−0.5, t ∈ N0.
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[12] JAN ČERMÁK, TOMÁŠ KISELA AND LUDĚK NECHVÁTAL, Stability and asymptotic properties of a
linear fractional difference equation, Advances in Difference Equations 2012 (2012), 122.
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