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ON A STURM–LIOUVILLE TYPE DIFFERENTIAL

INCLUSION OF FRACTIONAL ORDER

AURELIAN CERNEA

Abstract. The existence of solutions for a Sturm-Liouville type differential inclusion of frac-
tional order is investigated. New results are obtained by using suitable fixed point theorems
when the right hand side has convex or non convex values.
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[16] J. WANG, A. G. IBRAHIMAND AND M. FEČKAN, Differential inclusions of arbitrary fractional order

with anti-periodic conditions in Banach spaces, Electronic J. Qual. Theory Differ. Equations 2016, no.
34, (2016), 1–22.

Fractional Differential Calculus
www.ele-math.com
fdc@ele-math.com

c© � � , Zagreb
Paper FDC-07-19

http://dx.doi.org/10.7153/fdc-2017-07-19

