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ON A STURM–LIOUVILLE TYPE DIFFERENTIAL

INCLUSION OF FRACTIONAL ORDER
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Abstract. The existence of solutions for a Sturm-Liouville type differential inclusion of frac-
tional order is investigated. New results are obtained by using suitable fixed point theorems
when the right hand side has convex or non convex values.

1. Introduction

This note is concerned with the following problem

Dq
Cy(t) ∈ F(t,x(t)) a.e. ([0,T ]), x(0) = x0, y(0) = y0, (1.1)

where y(t)≡ p(t)x′(t) , F(., .) : [0,T ]×R→P(R) is a set-valued map, p(.) : [0,T ]→
(0,∞) is a continuous function, x0,y0 ∈ R and Dq

C denotes Caputo’s fractional deriva-
tive of order q ∈ (0,1) .

In the theory of ordinary differential equations it is wellknown that any linear real
second-order differential equation may be written in the self adjoint form

−(r(t)x′)′ +q(t)x = 0. (1.2)

Equation (1.2) together with boundary conditions of the form a1x(0)− a2x′(0) = 0,
b1x(T )−b2x′(T ) = 0 is called the Sturm-Liouville problem. For a complete disscusion
on Sturm-Liouville problems we refer, for example, to [13]]. This is the reason why
differential inclusions of the form (r(t)x′)′ ∈ F(t,x) are usually called Sturm-Liouville
type differential inclusions, even if the boundary value problems associated are not as
at the original Sturm-Liouville problem.

In the last years one may see a strong development of the theory of differential
equations and inclusions of fractional order ([6, 9, 10, 11, 15] etc.). The main reason
is that fractional differential equations are very useful tools in order to model many
physical phenomena. In the fractional calculus there are several fractional derivatives.
From them, the fractional derivative introduced by Caputo in [2], allows to use Cauchy
conditions which have physical meanings.
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The aim of our paper is to consider the extension of the Sturm-Liouville problem
to the fractional framework, given by problem (1.1), and to present several existence
results for problem (1.1). Our results are essentially based on a nonlinear alternative
of Leray-Schauder type, on Bressan-Colombo selection theorem for lower semicontin-
uous set-valued maps with decomposable values and on Covitz and Nadler set-valued
contraction principle. The methods used are known in the theory of differential inclu-
sions, however their exposition in the framework of problem (1.1) is new. We mention
also that in [8], namely Theorem 2.4, it is provided a sufficient condition under which
any nonoscilatory solution of problem (1.1), with F(., .) single-valued, is bounded.

The paper is organized as follows: in Section 2 we recall some preliminary facts
that we need in the sequel and in Section 3 we prove our main results.

2. Preliminaries

In this section we sum up some basic facts that we are going to use later.
Let (X ,d) be a metric space with the corresponding norm |.| and denote I = [0,T ] .

Denote by L (I) the σ -algebra of all Lebesgue measurable subsets of I , by P(X) the
family of all nonempty subsets of X and by B(X) the family of all Borel subsets of
X . If A ⊂ I then χA(.) : I → {0,1} denotes the characteristic function of A . For any
subset A ⊂ X we denote by A the closure of A .

Recall that the Pompeiu-Hausdorff distance of the closed subsets A,B ⊂ X is de-
fined by dH(A,B) = max{d∗(A,B),d∗(B,A)} , where d∗(A,B) = sup{d(a,B);a ∈ A}
and d(x,B) = infy∈B d(x,y) .

As usual, we denote by C(I,X) the Banach space of all continuous functions
x(.) : I → X endowed with the norm |x(.)|C = supt∈I |x(t)| , by AC(I,X) the Banach
space of all absolutely continuous functions x(.) : I → X and by Lp(I,X) the Banach
space of all (Bochner) p -integrable functions x(.) : I → X ; in particular, L1(I,X) is
the Banach space of all (Bochner) integrable functions x(.) : I → X endowed with the
norm |x(.)|1 =

∫
I |x(t)|dt .

A subset D⊂ L1(I,X) is said to be decomposable if for any u(·),v(·) ∈D and any
subset A ∈ L (I) one has uχA + vχB ∈ D , where B = I\A .

Consider T : X → P(X) a set-valued map. A point x ∈ X is called a fixed point
for T (.) if x ∈ T (x) . T (.) is said to be bounded on bounded sets if T (B) := ∪x∈BT (x)
is a bounded subset of X for all bounded sets B in X . T (.) is said to be compact if
T (B) is relatively compact for any bounded sets B in X . T (.) is said to be totally
compact if T (X) is a compact subset of X . T (.) is said to be upper semicontinuous if
for any x0 ∈ X , T (x0) is a nonempty closed subset of X and if for each open set D of
X containing T (x0) there exists an open neighborhood V0 of x0 such that T (V0) ⊂ D .
Let E a Banach space, Y ⊂ E a nonempty closed subset and T (.) : Y → P(E) a
multifunction with nonempty closed values. T (.) is said to be lower semicontinuous
if for any open subset D ⊂ E , the set {y ∈ Y ;T (y)∩D 
= /0} is open. T (.) is called
completely continuous if it is upper semicontinuous and totally compact on X .

It is well known that a compact set-valued map T (.) with nonempty compact
values is upper semicontinuous if and only if T (.) has a closed graph.
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We recall the following nonlinear alternative of Leray-Schauder type proved in
[14] and its consequences.

THEOREM 2.1. Let D and D be the open and closed subsets in a normed linear
space X such that 0∈D and let T : D→P(X) be a completely continuous set-valued
map with compact convex values. Then either

i) the inclusion x ∈ T (x) has a solution, or
ii) there exists x ∈ ∂D (the boundary of D) such that λx ∈ T (x) for some λ > 1 .

COROLLARY 2.1. Let Br(0) and Br(0) be the open and closed balls in a normed
linear space X centered at the origin and of radius r and let T : Br(0) → P(X) be a
completely continuous set-valued map with compact convex values. Then either

i) the inclusion x ∈ T (x) has a solution, or
ii) there exists x ∈ X with |x| = r and λx ∈ T (x) for some λ > 1 .

COROLLARY 2.2. Let Br(0) and Br(0) be the open and closed balls in a normed
linear space X centered at the origin and of radius r and let T : Br(0) → X be a
completely continuous single valued map with compact convex values. Then either

i) the equation x = T (x) has a solution, or
ii) there exists x ∈ X with |x| = r and x = λT (x) for some λ < 1 .

If F(., .) : I × X → P(X) is a set-valued map with compact values we define
SF : C(I,X) → P(L1(I,X)) by SF(x) := { f ∈ L1(I,X); f (t) ∈ F(t,x(t)) a.e. (I)}. We
say that F(., .) is of lower semicontinuous type if SF(.) is lower semicontinuous with
nonempty closed and decomposable values. The next result is proved in [1].

THEOREM 2.2. Let S be a separable metric space and G(.) : S → P(L1(I,X))
be a lower semicontinuous set-valued map with closed decomposable values.

Then G(.) has a continuous selection (i.e., there exists a continuous mapping g(.) :
S → L1(I,X) such that g(s) ∈ G(s) ∀s ∈ S).

A set-valued map G : I → P(X) with nonempty compact convex values is said to
be measurable if for any x ∈ X the function t → d(x,G(t)) is measurable.

A set-valued map F(., .) : I×X →P(X) is said to be Carathéodory if t → F(t,x)
is measurable for any x ∈ X and x→ F(t,x) is upper semicontinuous for almost all t ∈
I . Moreover, F(., .) is said to be L1 -Carathéodory if for any l > 0 there exists hl(.) ∈
L1(I,R) such that sup{|v|;v ∈ F(t,x)} � hl(t) a.e. (I) , ∀x ∈ Bl(0) . The following
theorem is proved in [12].

THEOREM 2.3. Let X be a Banach space, let F(., .) : I × X → P(X) be a
L1 -Carathéodory set-valued map with SF(x) 
= /0 for all x(.) ∈ C(I,X) and let Γ :
L1(I,X) →C(I,X) be a linear continuous mapping.

Then the set-valued map Γ◦ SF : C(I,X) → P(C(I,X)) defined by

(Γ◦ SF)(x) = Γ(SF(x))

has compact convex values and has a closed graph in C(I,X)×C(I,X) .
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Note that if dimX < ∞ , and F(., .) is as in Theorem 2.3, then SF(x) 
= /0 for any
x(.) ∈C(I,X) (e.g., [12]). For the next definitions we refer, for example, to [11].

DEFINITION 2.1. a) The fractional integral of order p > 0 of a Lebesgue inte-
grable function f : (0,∞) → R is defined by

I p f (t) =
∫ t

0

(t − s)p−1

Γ(p)
f (s)ds,

provided the right-hand side is pointwise defined on (0,∞) and Γ(.) is the (Euler’s)
Gamma function defined by Γ(p) =

∫ ∞
0 t p−1e−t dt .

b) The Riemann-Liouville fractional derivative of order p > 0 of a continuous
function f : (0,∞) → R is defined by

Dp f (t) =
1

Γ(n− p)
dn

dtn

∫ t

0
(t − s)−p+n−1 f (s)ds,

where n = [p]+1, provided the right-hand side is pointwise defined on (0,∞) .
c) Caputo’s fractional derivative of order p∈ (0,1) of a function f : [0,∞)→R is

defined by
Dp

C f (t) = Dp[ f (t)− f (0)].

In what follows q ∈ (0,1) and γ ∈ (0,q) .
A mapping x(.) ∈ AC(I,R) is called a solution of problem (1.1) if there exists a

function f (.) ∈ L
1
γ (I,R) such that

f (t) ∈ F(t,x(t)) a.e. (I), (2.1)

x(t) = x0 + y0

∫ t

0

1
p(s)

ds+
∫ t

0

1
p(s)

(∫ s

0

(s−u)q−1

Γ(q)
f (u)du

)
ds ∀t ∈ I. (2.2)

This definition of the solution is justified by the fact that (see Lemmas 2.8 and 2.9

in [16]) if f (.) ∈ L
1
γ (I,R) and y(.) : I → R is such that

y(t) = y0 +
∫ t

0

(t− s)q−1

Γ(q)
f (s)ds (2.3)

then Dq
Cy(t) = f (t) a. e. (I) and y(0) = y0 . Since p(t)x′(t)≡ y(t) , integrating by parts

in (2.3) we obtain (2.2).
We note that x(.) in (2.2) may be written as

x(t) = x0 + y0

∫ t

0

1
p(s)

ds+
1

Γ(q)

∫ t

0

(∫ t

u

(s−u)q−1

p(s)
ds

)
f (u)du.

Since p(.) : [0,T ]→ (0,∞) is continuous, we denote M := supt∈I
1

p(t) . We put also

a(t)= x0+y0
∫ t
0

1
p(s)ds , m1 = |x0|+ |y0|MT , K(t,u) = 1

Γ(q)
∫ t
u

(s−u)q−1

p(s) ds , M1 = Tq

MqΓ(q) .

Note, that |K(t,u)| � 1
MΓ(q)

∫ t
u(s−u)q−1ds � 1

MqΓ(q) (t−u)q � M1 ∀t,u ∈ I .
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3. The main results

We are able now to present the existence results for problem (1.1). We consider
first the case when F(., .) is convex valued.

HYPOTHESIS 1. i) F(., .) : I×R→P(R) has nonempty compact convex values
and is Carathéodory.

ii) There exist ϕ(.) ∈ L
1
γ (I,R) with ϕ(t) > 0 a.e. (I) and there exists a nonde-

creasing function ψ : [0,∞) → (0,∞) such that

sup{|v|; v ∈ F(t,x)} � ϕ(t)ψ(|x|) a.e. (I), ∀x ∈ R.

THEOREM 3.1. Assume that Hypothesis 1 is satisfied and there exists r > 0 such
that

r > m1 +M1|ϕ |1ψ(r). (3.1)

Then problem (1.1) has at least one solution x(.) such that |x(.)|C < r .

Proof. Let X = C(I,R) and consider r > 0 as in (3.1). It is obvious that the
existence of solutions to problem (1.1) reduces to the existence of the solutions of the
integral inclusion

x(t) ∈ a(t)+
∫ t

0
K(t,s)F(s,x(s))ds, t ∈ I. (3.2)

Consider the set-valued map T : Br(0) → P(C(I,R)) defined by

T (x) := {v(.) ∈C(I,R); v(t) = a(t)+
∫ t

0
K(t,s) f (s)ds, f ∈ SF(x)}. (3.3)

We show that T (.) satisfies the hypotheses of Corollary 2.1. First, we show that
T (x) ⊂C(I,R) is convex for any x ∈C(I,R) . If v1,v2 ∈ T (x) then there exist f1, f2 ∈
SF(x) such that for any t ∈ I one has vi(t) = a(t)+

∫ t
0 K(t,s) fi(s)ds , i = 1,2.

Let 0 � α � 1. Then for any t ∈ I we have (αv1 + (1 − α)v2)(t) = a(t) +∫ t
0 K(t,s)[α f1(s) + (1−α) f2(s)]ds. The values of F(., .) are convex, thus SF(x) is

a convex set and hence α f1 +(1−α) f2 ∈ T (x).
Secondly, we show that T (.) is bounded on bounded sets of C(I,R) . Let B ⊂

C(I,R) be a bounded set. Then there exist m > 0 such that |x|C � m ∀x ∈ B . If
v ∈ T (x) there exists f ∈ SF(x) such that v(t) = a(t) +

∫ t
0 K(t,s) f (s)ds . One may

write for any t ∈ I

|v(t)| � m1 +
∫ t

0
|K(t,s)|.| f (s)|ds � m1 +

∫ t

0
|K(t,s)|ϕ(s)ψ(|x(t)|)ds

and therefore |v|C � m1 +M1|ϕ |1ψ(m) ∀v ∈ T (x), i.e., T (B) is bounded.
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We show next that T (.) maps bounded sets into equi-continuous sets. Let B ⊂
C(I,R) be a bounded set as before and v∈ T (x) for some x∈B . There exists f ∈ SF(x)
such that v(t) = a(t)+

∫ t
0 K(t,s) f (s)ds . Then for any t,τ ∈ I we have

|v(t)−v(τ)| � |a(t)−a(τ)|+|
∫ t

0
K(t,s) f (s)ds−

∫ t

0
K(τ,s) f (s)ds|+|

∫ t

τ
K(τ,s) f (s)ds|

� |a(t)−a(τ)|+M1

∫ t

τ
ϕ(s)ψ(m)ds+

∫ t

0
|K(t,s)−K(τ,s)|ϕ(s)ψ(m)ds.

It follows that |v(t)− v(τ)| → 0 as τ → t . Therefore, T (B) is an equi-continuous
set in C(I,R) . We apply now Arzela-Ascoli’s theorem we deduce that T (.) is com-
pletely continuous on C(I,R) .

In the next step of the proofwe prove that T (.) has a closed graph. Let xn ∈C(I,R)
be a sequence such that xn → x∗ and vn ∈ T (xn) ∀n ∈ N such that vn → v∗ . We prove
that v∗ ∈ T (x∗) . Since vn ∈ T (xn) , there exists fn ∈ SF(xn) such that vn(t) = a(t)+∫ t
0 K(t,s) fn(s)ds . Define Γ : L1(I,R) →C(I,R) by (Γ( f ))(t) :=

∫ t
0 K(t,s) f (s)ds. One

has maxt∈I |vn(t)− a(t)− (v∗(t)− a(t))| = |vn(.)− v∗(.)|C → 0 as n → ∞ . We apply
Theorem 2.3 to find that Γ ◦ SF has closed graph and from the definition of Γ we get
vn ∈ Γ◦ SF(xn) . Since xn → x∗ , vn → v∗ it follows the existence of f ∗ ∈ SF(x∗) such
that v∗(t) = a(t)+

∫ t
0 K(t,s) f ∗(s)ds .

Therefore, T (.) is upper semicontinuous and compact on Br(0) . We apply Corol-
lary 2.1 to deduce that either i) the inclusion x ∈ T (x) has a solution in Br(0) , or ii)
there exists x ∈ X with |x|C = r and λx ∈ T (x) for some λ > 1.

Assume that ii) is true. With the same arguments as in the second step of our proof
we get r = |x(.)|C � m1 +M1|ϕ |1ψ(r) which contradicts (3.1). Hence only i) is valid
and theorem is proved. �

We consider now the case when F(., .) is not necessarily convex valued. Our first
existence result in this case is based on the Leray-Schauder alternative for single valued
maps and on Bressan Colombo selection theorem.

HYPOTHESIS 2. i) F(., .) : I×R→P(R) has compact values, F(., .) is L (I)⊗
B(R) measurable and x → F(t,x) is lower semicontinuous for almost all t ∈ I .

ii) There exist ϕ(.) ∈ L
1
γ (I,R) with ϕ(t) > 0 a.e. (I) and there exists a nonde-

creasing function ψ : [0,∞) → (0,∞) such that

sup{|v|; v ∈ F(t,x)} � ϕ(t)ψ(|x|) a.e. (I), ∀x ∈ R.

THEOREM 3.2. Assume that Hypothesis 2 is satisfied and there exists r > 0 such
that condition (3.1) is satisfied.

Then problem (1.1) has at least one solution on I .

Proof. We note first that if Hypothesis 2 is satisfied then F(., .) is of lower semi-
continuous type (e.g., [7]). Therefore, we apply Theorem 2.2 with S = C(I,R) and
G(.) = SF(.) to deduce that there exists a continuous mapping f (.) :C(I,R)→ L1(I,R)
such that f (x) ∈ SF(x) ∀x ∈C(I,R) .
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We consider the corresponding problem

x(t) = a(t)+
∫ t

0
K(t,s) f (x(s))ds, t ∈ I (3.4)

in the space X = C(I,R) . It is clear that if x(.) ∈ C(I,R) is a solution of the problem
(3.4) then x(.) is a solution to problem (1.1). Let r > 0 that satisfies condition (3.1)
and define the map T : Br(0) → C(I,R) by (T (x))(t) := a(t) +

∫ t
0 K(t,s) f (x(s))ds.

Obviously, the integral equation (3.4) is equivalent with the operator equation

x(t) = (T (x))(t), t ∈ I. (3.5)

It remains to show that T (.) satisfies the hypotheses of Corollary 2.2. We show that
T (.) is continuous on Br(0) . From Hypotheses 2 ii) we have | f (x(t))| � ϕ(t)ψ(|x(t)|)
a.e. (I) for all x(.) ∈C(I,R) . Let xn,x ∈ Br(0) such that xn → x . Then | f (xn(t))| �
ϕ(t)ψ(r) a.e. (I) . From Lebesgue’s dominated convergence theorem and the continu-
ity of f (.) we obtain, for all t ∈ I , limn→∞

∫ t
0 K(t,s) f (xn(s))ds =

∫ t
0 K(t,s) f (x(s))ds

i.e., T (.) is continuous on Br(0) .
Repeating the arguments in the proof of Theorem 3.1 with corresponding modifi-

cations it follows that T (.) is compact on Br(0) . We apply Corollary 2.2 and we find
that either i) the equation x = T (x) has a solution in Br(0) , or ii) there exists x ∈ X
with |x|C = r and x = λT (x) for some λ < 1.

As in the proof of Theorem 3.1 if the statement ii) holds true, then we obtain
a contradiction to (3.1). Thus only the statement i) is true and problem (1.1) has a
solution x(.) ∈C(I,R) with |x(.)|C < r . �

In order to obtain an existence result for problem (1.1) by using the set-valued
contraction principle we introduce the following hypothesis on F .

HYPOTHESIS 3. i) F : I ×R → P(R) has nonempty compact values is is inte-
grably bounded and for every x ∈ R , F(.,x) is measurable.

ii) There exists L ∈ L
1
γ (I,R+) such that for almost all t ∈ I ,

dH(F(t,x1),F(t,x2)) � L(t)|x1 − x2| ∀ x1,x2 ∈ R.

iii) There exists l ∈ L1(I,R+) such that for almost all t ∈ I , d(0,F(t,0)) � l(t) .

THEOREM 3.3. Assume that Hypothesis 3. is satisfied and M1|L|1 < 1 . Then
problem (1.1) has a solution.

Proof. We transform problem (1.1) into a fixed point problem. Consider the set-
valued map T : C(I,R) → P(C(I,R)) defined by T (x) := {v(.) ∈ C(I,R) ; v(t) =
a(t)+

∫ t
0 K(t,s) f (s)ds , f ∈ SF(x)} .

Since the set-valued map t → F(t,x(t)) is measurable with the measurable se-
lection theorem it admits a measurable selection f : I → R . Moreover, since F is
integrably bounded, f ∈ L1(I,R) . Therefore, SF(x) 
= /0 .
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It is clear that the fixed points of T are solutions of problem (1.1). We shall prove
that T fulfills the assumptions of Covitz Nadler contraction principle.

First, we note that since SF(x) 
= /0 , T (x) 
= /0 for any x ∈C(I,R) .
Secondly, we prove that T (x) is closed for any x ∈C(I,R) . Let {xn}n�0 ∈ T (x)

such that xn → x∗ in C(I,R) . Then x∗ ∈C(I,R) and there exists fn ∈ SF(xn) such that
xn(t) = a(t)+

∫ t
0 K(t,s) fn(s)ds , t ∈ I. Since F has compact values and Hypothesis 3

is satisfied we may pass to a subsequence (if necessary) to get that fn converges to
f ∈ L1(I,R) in L1(I,R) . In particular, f ∈ SF(x) and for any t ∈ I we have xn(t) →
x∗(t) = a(t)+

∫ t
0 K(t,s) f (s)ds, i.e., x∗ ∈ T (x) and T (x) is closed.

Finally, we show that T is a contraction on C(I,R) . Let x1,x2 ∈ C(I,R) and
v1 ∈ T (x1) . Then there exist f1 ∈ SF(x1) such that v1(t) = a(t)+

∫ t
0 K(t,s) f1(s)ds ,

t ∈ I . Consider the set-valued map

H(t) := F(t,x2(t))∩{x ∈ R; | f1(t)− x| � L(t)|x1(t)− x2(t)|}, t ∈ I.

From Hypothesis 3 one has

dH(F(t,x1(t)),F(t,x2(t))) � L(t)|x1(t)− x2(t)|, t ∈ I.

hence H has nonempty closed values. Moreover, since H is measurable, there exists
f2 a measurable selection of H . It follows that f2 ∈ SF(x2) and for any t ∈ I , | f1(t)−
f2(t)| � L(t)|x1(t)− x2(t)|. Define

v2(t) = a(t)+
∫ t

0
K(t,s) f2(s)ds, t ∈ I

We have

|v1(t)− v2(t)| �
∫ t

0
|K(t,s)|| f1(s)− f2(s)|ds

� M1

∫ t

0
L(s)|x1(s)− x2(s)|ds

� M1|L|1|x1 − x2|C.

So, |v1− v2|C � M1|L|1|x1− x2|C. From an analogous reasoning by interchanging
the roles of x1 and x2 it follows

dH(T (x1),T (x2)) � M1|L|1|x1− x2|C.

Therefore, T admits a fixed point which is a solution to problem (1.1). �
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