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Abstract. Gronwall’s inequality plays an important role in producing new research and in the
learning and teaching of differential and integral equations. The purpose of this work is to ad-
vance and simplify the current state of knowledge and pedagogical approaches regarding Gron-
wall’s inequality. In particular: we extend known versions of Gronwall’s inequality for fractional
calculus; and we provide simpler and more accessible proofs that can be easily transferred to the
classroom. Our work is also timely in the sense that it may be considered as a celebration of
the upcoming centenary of the publication of Gronwall’s original results. Thus, we believe this
paper is important from mathematical research, pedagogical and historical viewpoints.

1. Introduction

For nearly 100 years, Gronwall’s inequality [10] has played an important role in
the research and pedagogy of differential and integral equations. For example, Gron-
wall’s inequality is a central tool in the quantitative and qualitative analysis of solutions
to initial value problems involving ordinary differential equations. It enables critical in-
sight into error estimates, uniqueness of solutions, and a priori estimates in the Galerkin
method [19], [2], [28, Ch. 3].

Gronwall’s inequality is also found in undergraduate and postgraduate university
courses, with the pedagogy supported by a range of textbooks and monographs in the
literature, including: [16, Ch. 7, Sec. 3]; [18, Ch. 2, Sec. 3]; [4, Ch. 8, Sec. 2]; [5, Ch.
1, Sec 5]; [8, Sec. 12]; [6, Appendix 3]; [26, pp. 5–6]; [3, Appendix A3]; [20, Ch. 2,
Sec. 9]; [11, Ch. 8, Sec. 10]; and [1, Lecture 7].

This work presents improved versions of Gronwall’s inequality for fractional cal-
culus. Fractional calculus involves generalisations of derivatives and integrals from
integer order values to non–integer order values. Thus, for example, we can speak of
“a derivative of the half–order” of a function. These ideas have a rich history dating
back to L’Hôpital and the tautochrone problem. More recently, important applications
have been identified and modelled through the analysis and use of fractional differential
equations [17, 12].

The purpose of this work is to:
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• extend and advance the current state of knowledge and pedagogical approaches
concerning Gronwall’s inequality for fractional calculus and fractional integral
inequalities;

• provide simpler and more accessible proofs than are currently available in the
literature that have the potential to be easily transferred to the classroom.

Our work is also timely in the sense that it may be considered as a celebration of the
upcoming centenary of Gronwall’s original results. Thus, we believe this paper is im-
portant from research, pedagogical and historical viewpoints.

We organise this work as follows. In Section 2 we provide the necessary notation
and definitions to keep the paper self–contained, while in Section 3 we present the main
results.

For more recent developments in fractional calculus and nonlinear problems we
refer the reader to [21, 22, 23, 24, 25, 13].

2. Preliminary notation

To keep this article self–contained, this section contains some preliminary def-
initions from fractional calculus and the associated notation. Define the Riemann–
Liouville fractional derivative and integral of order q > 0 of a function y : [0,a] → R

at a point t , respectively, by:

Dqy(t) :=
d�q�

dt�q�
1

Γ(�q�−q)

∫ t

0
(t− s)�q�−1−qy(s) ds; (1)

Iqy(t) :=
1

Γ(q)

∫ t

0
(t − s)q−1y(s) ds

where �q� being the integer that is the “ceiling value” of q and Γ is the gamma func-
tion. The Caputo derivative of y : [0,a] → R at a point t is defined via

CDqy(t) := Dq (
y−T�q�−1[y]

)
(t).

with T�q�−1[y] denoting the Maclaurin polynomial of order (or degree) �q�−1 of y =
y(t) . Above, we make the assumption that y is a function such that all expressions are
well defined.

In fractional calculus the Mittag-Leffler function plays a similar role to that of
the exponential function in classical calculus [17, Ch.1, Podlubny], [14, 15, Mittag-
Leffler], [9, Ch.16, Erdélyi et al], [27, Wiman]. The Mittag-Leffler function of order
q > 0 is defined and denoted by

Eq(z) :=
∞

∑
k=0

zk

Γ(qk+1)
, z ∈ C.

In particular, we shall be interested in the function

Eq(β tq) =
∞

∑
k=0

(β tq)k

Γ(qk+1)
, t ∈ R (2)
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where q > 0 and β > 0 is a constant. An important property within the context of this
work is that Eq(β tq) is the unique solution to the fractional initial value problem

CDqx := βx

x(0) = 1, x′(0) = 0, . . . , x(�q�−1)(0) = 0

for t � 0.

3. Main results

In this section, the main results and new, simplified proofs are presented.
The following result generalises [7, Lemma 4.3] and presents a significantly sim-

pler proof.

THEOREM 1. Let A and B be non–negative constants and let ρ : [0,a] → [0,∞)
be uniformly bounded on [0,a] . If

ρ(t) � A+
1

Γ(q)

∫ t

0
(t − s)q−1Bρ(s) ds, for all t ∈ [0,a] (3)

with the right hand side of inequality (3) well defined, then

ρ(t) � AEq(Btq), for all t ∈ [0,a]. (4)

Proof. Our style of proof is similar to that of [28, p82–83] and adapted to the
fractional setting.

Since ρ is non–negative and uniformly bounded above on [0,a] , there is a constant
M > 0 such that

0 � ρ(t) � M, for all t ∈ [0,a]. (5)

Inserting (5) into the right–hand side of (3) we obtain, for all t ∈ [0,a] :

ρ(t) � A+
1

Γ(q)

∫ t

0
(t− s)q−1BM ds

= A+
MBtq

Γ(q+1)
. (6)

Now, in a similar fashion, inserting (6) into (3) we obtain, for all t ∈ [0,a] :

ρ(t) � A+
1

Γ(q)

∫ t

0
(t − s)q−1B

[
A+

MBsq

Γ(q+1)

]
ds

= A+
ABtq

Γ(q+1)
+

MB2t2q

Γ(2q+1)
.

Continuing with this process, we see that the n -th interation is

ρ(t) � A
n−1

∑
k=0

(Btq)k

Γ(qk+1)
+

M(Btq)n

Γ(qn+1)
, for all t ∈ [0,a]. (7)

Taking limits as n → ∞ in (7) and in light of (2) we obtain (4). �
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REMARK 1. The right hand side of (3) will be well defined, for example, when:
ρ is continuous; or when ρ is an integrable, discontinuous function, for example, when
ρ is piecewise continuous.

REMARK 2. If q = 1 in Theorem 1 then (3) becomes

ρ(t) � A+
∫ t

0
Bρ(s) ds, for all t ∈ [0,a]

and (4) becomes
ρ(t) � AeBt , for all t ∈ [0,a]

which is the classical version of Gronwall’s inequality.

REMARK 3. In the notation of fractional calculus, (3) is

ρ � A+BIqρ , on [0,a].

REMARK 4. Theorem 1 generalizes [7, Lemma 4.3] but we note that (4) appears
in both results. There are two significant differences to communicate. Firstly, [7] make
the assumption that ρ is continuous and furthermore, their assumption is necessary due
to the style of their proof, which invokes the intermediate value theorem. We make no
such assumption of continuity. Secondly, our proof is very simple and straightforward
and does not require a knowledge of fractional inequalities or fractional calculus, rather
it involves simple integration and a particular convergent series.

THEOREM 2. Let A, B and C be non–negative constants and let ρ : [0,a] →
[0,∞) be continuous. If

ρ(t) � A+
1

Γ(q)

∫ t

0
(t − s)q−1[Bρ(s)+C] ds, for all t ∈ [0,a] (8)

then

ρ(t) �
[
A+

Ctq

Γ(q+1)

]
Eq(Btq), for all t ∈ [0,a]. (9)

Proof. Case B = 0: Inequality (8) may be integrated directly to obtain (9).
Case B > 0: In the interest of diversity, we present a different style of proof from

that used in Theorem 1. Once again, it is a very simple approach and only requires a
basic understanding of functions and fractional calculus.

For 0 � t � t2 � a , define

g(t) :=
ρ(t)

Eq(Btq)
. (10)

Since g is continuous on a compact interval, it must attain its maximum value at some
point t1 ∈ [0, t2] . Let

m := max
t∈[0,t2]

g(t) = g(t1).
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Thus, from (10) we see that
ρ(t1) = mEq(Btq1). (11)

Using (11) and (9) we have

mEq(Btq1) = ρ(t1)

� A+
1

Γ(q)

∫ t1

0
(t1− s)q−1[Bρ(s)+C] ds

= A+
1

Γ(q)

∫ t1

0
(t1− s)q−1[BEq(Bsq)g(s)+C] ds

� A+
1

Γ(q)

∫ t1

0
(t1− s)q−1[BEq(Bsq)m+C] ds

= A+
Ctq1

Γ(q+1)
+m[Eq(Btq1 )−1]

where, in the previous line we applied a fundamental identity from [12, (2.4.42), p. 96],
namely

Iq[CDqy(t)] = y(t)−
�q�−1

∑
i=0

y(i)(0)ti/i!. (12)

Thus, we have

mEq(Btq1) � A+
Ctq1

Γ(q+1)
+m[Eq(Btq1 )−1]

from which we can eliminate the Mittag-Leffler functions and simplify to

m � A+
Ctq1

Γ(q+1)

� A+
Ctq2

Γ(q+1)
. (13)

Thus, from (10) and (13), for each t2 ∈ [0,a] we have

ρ(t2) = g(t2)Eq(Btq2 )
� mEq(Btq2 )

�
[
A+

Ctq2
Γ(q+1)

]
Eq(Btq2 ). (14)

Thus, (9) holds by replacing t2 with t in both sides of (14). �
The following generalisation of Theorem 2 is now presented.

THEOREM 3. Let B and C be non–negative constants; let A : [0,a] → [0,∞) be
continuous and nondecreasing; and let ρ : [0,a] → [0,∞) be continuous. If

ρ(t) � A(t)+
1

Γ(q)

∫ t

0
(t− s)q−1[Bρ(s)+C] ds, for all t ∈ [0,a] (15)
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then

ρ(t) �
[
A(t)+

Ctq

Γ(q+1)

]
Eq(Btq), for all t ∈ [0,a]. (16)

Proof. Case B = 0: Inequality (15) may be integrated directly to obtain (16).
Case B > 0: If (15) holds then, for 0 � t � t3 � a we have

ρ(t) � A(t3)+
1

Γ(q)

∫ t

0
(t− s)q−1[Bρ(s)+C] ds (17)

where t3 is now regarded as a constant. The conditions of Theorem 2 hold and the
conclusion (9) can then be applied, so that we have

ρ(t) �
[
A(t3)+

Ctq

Γ(q+1)

]
Eq(Btq). (18)

Thus replacing t with t3 in (18) we obtain

ρ(t3) �
[
A(t3)+

Ctq3
Γ(q+1)

]
Eq(Btq3), for all t3 ∈ [0,a]. (19)

so that (16) holds. �

We now present our final result.

THEOREM 4. Let A, B and C be non–negative constants and let ρ : [0,a] →
[0,∞) satisfy

sup
t∈[0,a]

ρ(t)
Eq(Btq)

< ∞. (20)

If

ρ(t) � A+
1

Γ(q)

∫ t

0
(t − s)q−1[Bρ(s)+C] ds, for all t ∈ [0,a] (21)

with the right–hand side of inequality (21) well defined, then

ρ(t) � Eq(Baq)
[
A+

Caq

Γ(q+1)

]
Eq(Btq), for all t ∈ [0,a]. (22)

Proof. Case B = 0: Inequality (21) may be integrated directly to obtain (22).
Case B > 0: Once again, we present a new proof that is distinct from those in the

preceeding results in this paper.



FRACTIONAL GRONWALL INEQUALITY 39

From (21) we have, for all t ∈ [0,a] ,

ρ(t) � A+
1

Γ(q)

∫ t

0
(t − s)q−1Bρ(s) ds+

Ctq

Γ(q+1)

= A+
1

Γ(q)

∫ t

0
(t − s)q−1 ρ(s)

Eq(Bsq)
BEq(Bsq) ds+

Ctq

Γ(q+1)

� A+

[
sup

t∈[0,a]

ρ(t)
Eq(Btq)

]
1

Γ(q)

∫ t

0
(t− s)q−1BEq(Bsq) ds+

Ctq

Γ(q+1)

= A+

[
sup

t∈[0,a]

ρ(t)
Eq(Btq)

]
Iq [CDq (Eq(Btq))

]
+

Ctq

Γ(q+1)

= A+

[
sup

t∈[0,a]

ρ(t)
Eq(Btq)

]
[Eq(Btq)−1]+

Ctq

Γ(q+1)

where we have applied (12).
Thus, for all t ∈ [0,a] we obtain

ρ(t)
Eq(Btq)

� A
Eq(Btq)

+

[
sup

t∈[0,a]

ρ(t)
Eq(Btq)

][
1− 1

Eq(Btq)

]
+

Ctq

Γ(q+1)Eq(Btq)

� A+

[
sup

t∈[0,a]

ρ(t)
Eq(Btq)

][
1− 1

Eq(Btq)

]
+

Ctq

Γ(q+1)
.

Taking suprema we obtain

sup
t∈[0,a]

ρ(t)
Eq(Btq)

� A+

[
sup

t∈[0,a]

ρ(t)
Eq(Btq)

][
1− 1

Eq(Baq)

]
+

Caq

Γ(q+1)
. (23)

Equation (23) can be rearranged to obtain

1
Eq(Baq)

sup
t∈[0,a]

ρ(t)
Eq(Btq)

� A+
Caq

Γ(q+1)

with a further rearrangement giving

sup
t∈[0,a]

ρ(t)
Eq(Btq)

� Eq(Baq)
[
A+

Caq

Γ(q+1)

]

and so
ρ(t)

Eq(Btq)
� Eq(Baq)

[
A+

Caq

Γ(q+1)

]
, for all t ∈ [0,a]

leads to (22). �
Gronwall’s inequality has had an enormous positive impact in mathematics since

it originally appeared in 1919. We look forward to more important generalisation, ex-
citing new developments and critical insights that this amazing inequality will produce
over the next 100 years.
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