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EXISTENCE THEORY FOR FRACTIONAL–ORDER

NEUTRAL BOUNDARY VALUE PROBLEMS

BASHIR AHMAD, SOTIRIS K. NTOUYAS, AHMED ALSAEDI

AND MANAL ALNAHDI

(Communicated by J. Pečarić)

Abstract. A new class of Dirichlet boundary value problems of Caputo-Hadamard type frac-
tional neutral differential equations and inclusions is studied. Expressions for Green’s functions
are derived to obtain the integral equation equivalent to the associated single-valued problem.
Existence and uniqueness results are proved for single-valued and multivalued problems at hand.
Examples demonstrating the application of the main results are presented. Finally we extend our
discussion to the case of three-point nonlocal boundary conditions.

1. Introduction

Neutral functional differential equations appear in many mathematical models for
several kinds of biological and physical phenomena [1].

Riemann-Liouville, Caputo and Hadamard type fractional differential equations
and inclusions have been studied by many researchers and a variety of results ranging
from theoretical development to analytic/numericalmethods for solving these equations
can be found in the recent related works. This investigation has been motivated by
extensive applications of fractional-order equations in the mathematical modelling of
numerous social and scientific problems. For applications details, we refer the reader to
the works [2]–[3], while the results on functional fractional differential equations and
inclusions can be found in [4]–[10]. However, the study on functional fractional neutral
differential equations equipped with boundary conditions is yet to be initiated.

The main theme of the present work is to develop the existence criteria for the
solutions of Caputo-Hadamard type fractional neutral differential equations and inclu-
sions supplemented with Dirichlet and nonlocal boundary conditions. We begin our
investigation with the following problem:{

Dω [Dκy(t)−h(t,y(t))] = f (t,y(t)), t ∈ J := [1,T], T > 1,

y(1) = 0, y(T) = 0,
(1)
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where Dρ denotes the Caputo-Hadamard fractional derivatives of order ρ ∈ (0,1) ,
ρ = ω ,κ and f ,h : J×R → R are single-valued appropriate functions. In Section 2,
we discuss the existence and uniqueness of solutions for the problem (1).

In the second problem, we study the inclusions analog of (1) given by{
Dω [Dκy(t)−h(t,y(t))] ∈ F(t,y(t)), t ∈ J := [1,T],

y(1) = 0, y(T) = 0,
(2)

where F : J ×R → X (R) is a multivalued map, X (R) denotes the family of all
nonempty subsets of R. The existence results for the problem (2) are presented in
Section 3.

In Section 4, we demonstrate the application of the results obtained for problems
(1) and (2). Section 5 is concerned with the study of fractional neutral differential
equation considered in (1) with nonlocal three-point boundary conditions. We empha-
size that the work presented in this article is a useful contribution towards theoretical
development of fractional neutral differential equations and inclusions with Dirichlet
and nonlocal three-point boundary conditions.

2. Main results for the problem (1)

We begin this section with some necessary definitions.

DEFINITION 1. [4] The Hadamard derivative of fractional order p for a function
σ : [1,∞) → R is defined as

Dpσ(x) =
1

Γ(n− p)

(
x

d
dx

)n ∫ x

1

(
log

x
r

)n−p−1 σ(r)
r

dr, n−1 < p < n,n = [p]+1,

where [p] denotes the integer part of the real number p and log(·) = loge(·).

DEFINITION 2. [4] The Hadamard fractional integral of order p for a function σ
is defined as

I pσ(x) =
1

Γ(p)

∫ x

1

(
log

x
r

)p−1 σ(r)
r

dr, p > 0,

provided the integral exists.

In the following lemma, we obtain an integral equation equivalent to the problem
(1).

LEMMA 1. The problem (1) is equivalent to the following integral equation:

y(t) =
∫ T

1
Gh(t,u)h(u,y(u))du+

∫ T

1
Gf (t,u) f (u,y(u))du, (3)
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where

Gh(t,u) =

⎧⎪⎪⎨⎪⎪⎩
A
u

[(
log

t
u

)κ−1
(logT)κ − (logt)κ

(
log

T

u

)κ−1]
, u � t,

−
A(logt)κ

(
log T

u

)κ−1

u
, t � u,

(4)

Gf (t,u) =

⎧⎪⎪⎨⎪⎪⎩
B
u

[(
log

t
u

)ω+κ−1
(logT)κ − (logt)κ

(
log

T

u

)ω+κ−1]
, u � t,

−
B(logt)κ

(
log T

u

)ω+κ−1

u
, t � u,

(5)

A =
1

(logT)κ Γ(κ)
, B =

1
(logT)κ Γ(ω + κ)

. (6)

Proof. We know that the solution of Hadamard differential equation in (1) can be
written as [4]

y(t) =
1

Γ(κ)

∫ t

1

(
log

t
u

)κ−1 h(u,y(u))
u

du

+
1

Γ(ω + κ)

∫ t

1

(
log

t
u

)ω+κ−1 f (u,y(u))
u

du+
(log t)κ

Γ(κ +1)
b1 +b2, (7)

where b1,b2 ∈ R are arbitrary constants. In view of the conditions y(1) = 0,y(T) = 0,
it follows from (7) that b2 = 0 and

b1 = −Γ(κ +1)
(logT)κ

{
1

Γ(κ)

∫ T

1

(
log

T

u

)κ−1 h(u,y(u))
u

du

+
1

Γ(ω + κ)

∫ T

1

(
log

T

u

)ω+κ−1 f (u,y(u))
u

du

}
.

Inserting the values of b1 and b2 in (7), and using (4) and (5), we get the solution (3).
By direct computation, one can show that y(t) given by (3) satisfies the problem (1).
This completes the proof. �

Relative to the problem (1), we introduce a fixed point operator N : C(J,R) →
C(J,R) by using Lemma 1 as follows

N (y)(t) =
∫ T

1
Gh(t,u)h(u,y(u))du+

∫ T

1
Gf (t,u) f (u,y(u))du, (8)

where Gg(t,u) and Gf (t,u) are respectively given by (4) and (5).
We need the following estimates in the sequel.

max
t∈[1,T]

{∫ T

1
|Gh(t,u)|du

}
=

2(logT)κ

Γ(κ +1)
= ϑ1,

max
t∈[1,T]

{∫ T

1
|Gf (t,u)|du

}
=

2(logT)ω+κ

Γ(ω + κ +1)
= ϑ2.

(9)
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THEOREM 1. (Uniqueness result) Let f ,h : J×R → R be continuous functions
satisfying the following conditions:

(A1) | f (t,y)− f (t,x)| � �‖y− x‖, � > 0, for t ∈ J and every y,x ∈ R;

(A2) |h(t,y)−h(t,x)|� k‖y− x‖,k � 0, for t ∈ J and every y,x ∈ R.

Then the problem (1) has a unique solution on the interval J if

kϑ1 + �ϑ2 < 1, (10)

where ϑi(i = 1,2) are given by (9).

Proof. In order to apply contraction mapping principle, we need to establish that
the operator N given by (8) is a contraction. To do so, we take y,x ∈C(J,R) . Then

|N (y)(t)−N (x)(t)|
�
∫ T

1
|Gh(t,u)[h(u,y(u))−h(u,x(u))]|du+

∫ T

1
|Gf (t,u)[ f (u,y(u))− f (u,x(u))]|du

�
{

k
∫ T

1
|Gh(t,u)|du+ �

∫ T

1
|Gf (t,u)|du

}
‖y− x‖.

Taking the norm of the above inequality for t ∈ [1,T] and using (9), we get

‖N (y)−N (x)‖ � (kϑ1 + �ϑ2)‖y− x‖,
which shows that the operator N is a contraction in view of (10). In consequence, N
has a unique fixed point by the conclusion of Banach’s contraction mapping principle,
which corresponds to a unique solution of the problem (1). �

Next we show the existence of solutions for the problem (1) by means of Kras-
noselskii’s fixed point theorem [11].

THEOREM 2. Let f ,g : J×R → R be continuous functions and that (A2) holds.
In addition it is assumed that | f (t,y)| � μ1(t), |h(t,y)| � μ2(t),∀(t,y) ∈ J×R, and
μ1,μ2 ∈ C(J,R+). Then there exists at least one solution for the problem (1) on J
provided that

2k(logT)κ

Γ(κ +1)
< 1. (11)

Proof. Let us define a set Eρ = {y ∈C(J,R) : ‖y‖ � ρ}, where

ρ � ‖μ2‖ϑ1 +‖μ1‖ϑ2, ‖μi‖ = sup
t∈[1,T]

|μi(t)|,

and ϑi(i = 1,2) are given by (9). Introduce operators N1 and N2 on Eρ as

N1(y)(t) =
∫ T

1
Gh(t,s)h(s,y(s))ds, N2(y)(t) =

∫ T

1
Gf (t,s) f (s,y(s))ds. (12)
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For any y,z ∈ Eρ , we have

|N1y(t)+N2z(t)| �
∫ T

1
|Gh(t,s)||h(s,y(s))|ds+

∫ T

1
|Gf (t,s)|| f (s,z(s))|ds

� ‖μ2‖ϑ1 +‖μ1‖ϑ2 � ρ .

Hence ‖N1y+N2z‖ � ρ , which shows that N1y+N2z ∈ Eρ . In view of the condi-
tion (11) , one can easily verify that N1 is a contraction. Further the operator N2 is
continuous by virtue of continuity of f and is uniformly bounded on Eρ as

‖N2y‖ � 2‖μ1‖(logT)ω+κ

Γ(ω + κ +1)
.

In order to show the compactness N2 , let us set sup(t,y)∈[1,T]×Bρ | f (t,y)| = f < ∞, and
consequently, for 1 < τ1 < τ2 < T , we have

|N2y(τ2)−N2y(τ1)| � f
Γ(ω + κ +1)

[
|(logτ2)κ − (logτ1)κ |(logT )ω

+
∣∣(logτ2)ω+κ − (logτ1)ω+κ ∣∣+ | logτ2/τ1|ω+κ

]
→ 0,

independent of y when τ2 − τ1 → 0. Thus, N2 is equicontinuous. So N2 is relatively
compact on Bρ . Hence, it follows by the Arzel á -Ascoli theorem that N2 is compact
on Bρ . Thus the hypotheses of Krasnoselskii’s fixed point theorem hold true and con-
sequently there exists at least one solution for the problem (1) on J. �

3. Existence results for the problem (2)

Let C(J,R) represent the Banach space of all continuous functions from J into R

with the norm ‖x‖ = sup{|x(t)|, t ∈ J}, while the space of functions x : J → R such
that ‖x‖L1 =

∫ T
1 |x(t)|dt is denoted by L1(J,R).

For each y ∈C(J,R) , define the set of selections of F by

SF,y := {v ∈ L1(J,R) : v(t) ∈ F(t,y(t)) on J}.
Here we recall that a multivalued operator Q : M → Xcl(M ) is said to be (a) γ -
Lipschitz if and only if there exists γ > 0 such that Hd(Q(u),Q(v)) � γd(u,v) for
each u,v∈M ; (b) a contraction if and only if it is γ -Lipschitz with γ < 1, where Hd :
X (M ) × X (M ) → R ∪ {∞} is given by Hd(U,V ) = max{supu∈U d(u,V ),
supv∈V d(U,v)} with d(U,v) = infu∈U d(u;v) and d(u,V) = infv∈V d(u;v). Further-
more, note that (Xcl,b(M ),Hd) is a metric space (see [13]), where Xcl,b(M ) = {W ∈
X (M ) : W is closed and bounded}.

DEFINITION 3. A function y ∈ C2([1,T],R) is called a solution of the problem
(2) if y(1) = 0,y(T) = 0 and there exists function v ∈ L1([0,T],R) such that v(t) ∈
F(t,y(t)) a.e. on [1,T] and

y(t) =
∫ T

1
Gh(t,u)h(u,y(u))du+

∫ T

1
Gf (t,u)v(u)du,
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where Gh(t,s) and Gf (t,s) are respectively given by (4) and (5).

Our first result concerning the existence of solutions for the problem (2) relies on
the following theorem.

LEMMA 2. (Covitz and Nadler [12]) Let (M ,d) be a complete metric space and
Xcl(M ) = {W ∈X (M ) : W is closed}. If Q : M →Xcl(M ) is a contraction, then
FixQ �= /0 .

THEOREM 3. Assume that

(K0) there exists a nonnegative constant k <
Γ(κ +1)

2
(logT)−κ such that

|h(t,u)−h(t,v)|� k‖u− v‖, for t ∈ J and every u,v ∈ R;

(K1) F : [1,T]×R → Xcp(R) is such that F(·,y) : [1,T ] → Xcp(R) is measurable
for each y ∈ R, where Xcp(R) = {W ∈ X (R) : W is compact};

(K2) Hd(F(t,y),F(t, y)) � m(t)|y− y| for almost all t ∈ [1,T] and y, y ∈ R with
m ∈ L1([1,T],R+) and d(0,F(t,0)) � m(t) for almost all t ∈ [1,T] .

Then the problem (2) has at least one solution on [1,T] if

δ̂ :=
2k(logT)κ

Γ(κ +1)
+

2
Γ(ω + κ)

∫ T

1

(
log

T

s

)ω+κ−1 m(u)
u

du < 1. (13)

Proof. We transform the problem (2) into a fixed point problem by introducing an
operator N̂ : C(J,R) −→ X (C(J,R)) as follows

N̂ (y) =
{

χ ∈C(J,R) : χ(t) =
∫ T

1
Gh(t,u)h(u,y(u))du+

∫ T

1
Gf (t,u)w(u)du

}
(14)

for w ∈ SF,x, where Gh(t,u) and Gf (t,u) are respectively given by (4) and (5).
It follows by the assumption (K1) that the set SF,y is nonempty for each y ∈

C([1,T],R), so F has a measurable selection (see Theorem III.6 [14]). Now we show
that the operator N̂ satisfies the assumptions of Lemma 2. We show that N̂ (y) ∈
Xcl((C[1,T],R)) for each y ∈ C([1,T],R). Let {an}n�0 ∈ N̂ (y) be such that an →
a (n → ∞) in C([1,T],R). Then a ∈C([1,T],R) and there exists wn ∈ SF,yn such that,
for each t ∈ [1,T] ,

an(t) =
∫ T

1
Gh(t,u)h(u,y(u))du+

∫ T

1
Gf (t,u)wn(u)du, t ∈ J.

As F has compact values, we pass onto a subsequence (if necessary) to obtain that wn

converges to w in L1([1,T],R). Thus, w ∈ SF,y and for each t ∈ [1,T] , we have

an(t) → w(t) =
∫ T

1
Gh(t,u)h(u,y(u))du+

∫ T

1
Gf (t,u)w(u)du, t ∈ J.
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Hence, a ∈ N̂ (y).
Next we show that there exists δ̂ < 1 (defined by (13)), such that

Hd(N̂ (y),N̂ (y)) � δ̂‖y− y‖ for each y, y ∈C2([1,T],R).

Let y, y ∈C2([1,T],R) and χ1 ∈ N̂ (y) . Then there exists w1(t)∈ F(t,y(t)) such that,
for each t ∈ [1,T] ,

χ1(t) =
∫ T

1
Gh(t,u)h(u,y(u))du+

∫ T

1
Gf (t,u)w1(u)du, t ∈ J.

By (K2) , we have
Hd(F(t,y),F(t, y)) � m(t)|y(t)− y(t)|.

So, there exists v ∈ F(t, y(t)) such that

|w1(t)− v|� m(t)|y(t)− y(t)|, t ∈ [1,T].

Define D : [1,T] → X (R) by

D(t) = {v ∈ R : |w1(t)− v|� m(t)|y(t)− y(t)|}.
As the multivalued operator D(t)∩F(t, y(t)) is measurable (Proposition III.4 [14]),
there exists a function w2(t) which is a measurable selection for D . So w2(t) ∈
F(t, y(t)) and for each t ∈ [1,T] , we have |w1(t)−w2(t)| � m(t)|y(t)− y(t)| .

For each t ∈ [1,T] , let us define

χ2(t) =
∫ T

1
Gh(t,u)h(u,y(u))du+

∫ T

1
Gf (t,u)w2(u)du, t ∈ J.

Thus,

|χ1(t)−χ2(t)| �
∣∣∣∫ T

1
Gh(t,u)[h(u,y(u))−h(u, y(u))]du+

∫ T

1
Gf (t,u)[w1(u)−w2(u)]du

∣∣∣
�
(

2k(logT)κ

Γ(κ +1)
+

2
Γ(ω + κ)

∫ T

1

(
log

T

u

)ω+κ−1 m(u)
u

du

)
‖y− y‖.

Hence

‖χ1− χ2‖ �
(

2k(logT)κ

Γ(κ +1)
+

2
Γ(ω + κ)

∫ T

1

(
log

T

u

)ω+κ−1 m(u)
u

du

)
‖y− y‖.

By interchanging the roles of y and y in an analogous manner, we can obtain
Hd(N̂ (y),N̂ (y)) � δ̂‖y− y‖, where δ̂ is defined by (13). So N̂ is a contraction.
Therefore, the conclusion of Lemma 2 applies and N̂ has a fixed point y, which is a
solution of (2). This completes the proof. �

In relation to the forthcoming results, we quickly recall some basic concepts [15].
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DEFINITION 4. A multi-valued map Θ : M → X (M ) is said to be measurable
if the function t 	−→ d(y,Θ(t)) = inf{|y− z| : z ∈ Θ(t)} is measurable for every y ∈M
and completely continuous if Θ(B) is relatively compact for every B ∈ Xb(M ).

REMARK 1. If the multi-valued map Θ is completely continuous with nonempty
compact values, then Θ is upper semicontinuous (u.s.c.) if and only if Θ has a closed
graph, that is, xn → x∗, yn → y∗, yn ∈ Θ(xn) imply y∗ ∈ Θ(x∗) .

DEFINITION 5. A multivalued map Θ : J×R→X (R) is said to be Carathéodory
if (i) t 	−→ Θ(t,x) is measurable for each x ∈ R and (ii) x 	−→ Θ(t,x) is upper
semicontinuous for almost all t ∈ J. Further a Carathéodory function Θ is called L1 -
Carathéodory if there exists ϕρ ∈ L1(J,R+) for each ρ > 0 such that ‖Θ(t,x)‖ =
sup{|v| : v ∈ Θ(t,x)} � ϕρ(t) for all ‖x‖ � ρ and for a.e. t ∈ J.

Next we state some known results on multivalued maps that we need in the sequel.
We define the graph of Θ to be the set Gr(Θ) = {(x,y) ∈ X ×Y,y ∈ Θ(x)} and

recall a result for closed graphs and upper-semicontinuity.

LEMMA 3. ([15, Proposition 1.2]) If Θ : M→Xcl(Y )= {Y ∈P(M ) :Y is closed}
is u.s.c., then Gr(Θ) is a closed subset of X ×Y, that is, for every sequence {xn}n∈N ⊂
X and {yn}n∈N ⊂ Y , if when n → ∞ , xn → x∗ , yn → y∗ and yn ∈ Θ(xn) , then y∗ ∈
Θ(x∗) . Conversely, if Θ is completely continuous and has a closed graph, then it is
upper semi-continuous.

LEMMA 4. ([16]) Let M be a Banach space. Let Θ1 : J ×R → Xcp,c(M ) =
{Y ∈ X (M ) : Y is compact and convex } be an L1 -Carathéodory multivalued map
and let Φ1 be a linear continuous mapping from L1(J,M ) to C(J,M ) . Then the
operator Φ1 ◦ SΘ1 : C(J,M ) → Xcp,c(C(J,M )), x 	→ (Φ1 ◦ SΘ1)(x) = Θ(SΘ1,x) is a
closed graph operator in C(J,M )×C(J,M ).

LEMMA 5. (Nonlinear alternative for contractive maps (Corollary 3.8 [17])) Let
M be a Banach space, and D be a bounded neighborhood of 0 ∈ M . Let Θa : X →
Xcp,c(M ) and Θb : D→Xcp,c(M ) be two multi-valued operators such that (a) Θa is
contraction, and (b) Θb is upper semicontinuous and compact. Then, if Θ = Θa +Θb,
either (i) Θ has a fixed point in D or (ii) there is a point u ∈ ∂D and λ ∈ (0,1) with
u ∈ λ Θ(u) .

The following theorem deals with the case when F has convex values.

THEOREM 4. Assume that (K0) and the following conditions hold:

(K4) F : J×R → Xcp,c(R) is L1 -Carathéodory;

(K5) there exists a continuous nondecreasing function Φ : [0,∞) → (0,∞) and a func-
tion p ∈C(J,R+) such that

‖F(t,u)‖P := sup{|y| : y ∈ F(t,u)} � p(t)Φ(‖u‖) for each (t,u) ∈ J×R;
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(K6) there exists a constant C0 > 0 such that(
1− 2k(logT)κ

Γ(κ +1)

)
C0

2h0(logT)κ

Γ(κ +1)
+

Φ(C0)‖p‖
Γ(ω + κ +1)

(logT)ω+κ
> 1, (15)

where h0 = supt∈J |h(t,0)|.
Then the problem (2) has at least one solution on J.

Proof. Define an operator U : C(J,R) −→ C(J,R) and a multi-valued operator
V : C(J,R) −→ X (C(J,R)) by

U y(t) =
∫ T

1
Gh(t,u)h(u,y(u))du (16)

V y(t) =
{

ϕ ∈C(J,R) : ϕ(t) =
∫ T

1
Gf (t,u)w(u)du, w ∈ SF,y

}
. (17)

Notice that N̂ = U +V , where the operator N̂ is given by (14). The proof will be
complete once it is established that the operators U and V satisfy the hypothesis of
Theorem 5 on J . Firstly, we establish that the operators U ,V : Br → Xcp,c(C(J,R))
are well defined, where Br = {x ∈ C(J,R) : ‖x‖ � r} is a bounded set in C(J,R) .
Observe that the operator V is equivalent to the composition Q̂ ◦ SF , where Q̂ is the
continuous linear operator on L1(J,R) into C(J,R) , defined by

Q̂(v)(t) =
∫ T

1
Gf (t,u)w(u)du.

For an arbitrary y ∈ Br, let {wn} be a sequence in SF,y . Then, by definition of SF,y ,
we get wn(t) ∈ F(t,y(t)) for almost all t ∈ J . Since F(t,y(t)) is compact for all t ∈ J ,
there is a convergent subsequence of {wn(t)} (we denote it by {wn(t)} again) that
converges in measure to some w(t) ∈ SF,y for almost all t ∈ J . On the other hand, Q̂

is continuous, so Q̂(wn)(t) → Q̂(w)(t) pointwise on J .
To accomplish that the convergence is uniform, we need to show that {Q̂(wn)} is

an equicontinuous sequence. Let τ1,τ2 ∈ J with τ1 < τ2 . Then, we have

|Q̂(vn)(τ2)− Q̂(vn)(τ1)|
=
∣∣∣∫ T

1
[Gf (τ2,u)−Gf (τ1,u)]wn(u)du

∣∣∣
� Φ(r)‖p‖

Γ(ω + κ +1)

[∣∣(logτ2)ω+κ − (logτ1)ω+κ ∣∣+ | logτ2/τ1|ω+κ
]

+
(logτ2)κ − (logτ1)κ

Γ(ω + κ +1)
Φ(r)‖p‖(logT )ω .
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Clearly the right hand of the above inequality tends to zero as τ2 → τ1 . Thus, the
sequence {Q̂(wn)} is equicontinuous. Therefore, by the Arzelá-Ascoli theorem, there
exists a uniformly convergent subsequence. So, there is a subsequence of {wn} (we
denote it again by {wn} ) such that Q̂(wn)→ Q̂(w) . Note that Q̂(v)∈ Q̂(SF,y) . Hence,
V (y) = Q̂(SF,y) is compact for all x ∈ Br . So V (y) is compact.

In order to show that V (y) is convex for all y ∈C(J,R), let m1,m2 ∈ V (y) . We
select w1,w2 ∈ SF,y such that

mi(t) =
∫ T

1
Gf (t,u)wi(u)du, i = 1,2,

for almost all t ∈ J . Let 0 � λ � 1. Then, we have

[λm1 +(1−λ )m2](t) =
∫ T

1
Gf (t,u)[λu1(u)+ (1−λ )u2(u)]du.

Since SF,y is convex (F has convex values), λw1(u) + (1− λ )w2(u) ∈ SF,y . Thus
λm1 +(1−λ )m2 ∈ V (y), which proves that V is convex-valued.

Obviously, U is compact and convex-valued. The rest of the proof will be com-
pleted in several steps and claims.

Step 1: We show that U is a contraction on C(J,R) .
Let y,x ∈C(J,R) . Then we have

|U (y)(t)−U (x)(t)| =
∣∣∣∫ T

1
Gh(t,u)[h(u,y(u))−h(u,x(u))]du

∣∣∣� k(logT)κ

Γ(κ +1)
‖y− x‖,

which implies that

‖U (y)−U (x)‖ � k(logT)κ

Γ(κ +1)
‖y− x‖.

In view of the condition (K0), it follows that U is a contraction.
Step 2: V is compact and upper semi-continuous. This will be established in

several claims.
Claim I: V maps bounded sets into bounded sets in C(J,R) . Let Br = {x ∈

C(J,R) : ‖x‖ � r} be a bounded set in C(J,R) . Then, for each h ∈ V (y),y ∈ Br , there
exists σ ∈ SF,y such that

σ(t) =
∫ T

1
Gf (t,s)w(u)du.

Then, for t ∈ J, we have

|σ(t)| � 2Φ(‖y‖)‖p‖
Γ(ω + κ)

∫ T

1

(
log

t
u

)ω+κ−1 du
u

� 2Φ(‖y‖)‖p‖
Γ(ω + κ +1)

(logT)ω+κ .

Thus

‖σ‖ � 2Φ(r)‖p‖
Γ(ω + κ +1)

(logT)ω+κ .
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Claim II: V maps bounded sets into equi-continuous sets. Let t1,t2 ∈ J with
t1 < t2 and y ∈ Br. Then, for each σ ∈ V (y), one can easily obtain

|σ(t2)−σ(t1)| � Φ(r)‖p‖
Γ(ω + κ +1)

[∣∣(log t2)ω+κ − (logt1)ω+κ ∣∣+ | logt2/t1|ω+κ
]

+
|(logt2)κ − (logt1)κ |

Γ(ω + κ +1)
Φ(r)‖p‖(logT)ω .

Obviously the right hand side of the above inequality tends to zero independently of
y ∈ Br as t2 − t1 → 0. Therefore it follows by the Arzelá-Ascoli theorem that V :
C(J,R) → X (C(J,R)) is completely continuous.

Next we show that V is an upper semi-continuous multivalued mapping. It fol-
lows by Lemma 3 that V will be upper semicontinuous if we establish that it has a
closed graph as it is already shown to be completely continuous. We establish it in the
following claim.

Claim III: V has a closed graph. Let yn → y∗,σn ∈ V (yn) and σn → σ∗. Then
we need to show that σ∗ ∈ V (y∗). Associated with σn ∈ V (yn), there exists wn ∈ SF,yn

such that for each t ∈ J,

σn(t) =
∫ T

1
Gf (t,u)wn(u)du.

Thus it suffices to show that there exists w∗ ∈ SF,y∗ such that for each t ∈ J,

σ∗(t) =
∫ T

1
Gf (t,u)w∗(s)udu.

Let us consider the linear operator Λ : L1(J,R) →C(J,R) given by

v 	→ Λ(v)(t) =
∫ T

1
Gf (t,u)w(u)du.

Observe that

‖σn(t)−σ∗(t)‖ =
∥∥∥∫ T

1
Gf (t,u)(wn(u)−w∗(u))du

∥∥∥→ 0 as n → ∞.

Thus, it follows by Lemma 4 that Λ ◦ SF is a closed graph operator. Further, we have
σn(t) ∈ Λ(SF,yn). Since yn → y∗, we have that

σ∗(t) =
∫ T

1
Gf (t,u)v∗(u)udu,

for some w∗ ∈ SF,y∗ . Hence V has a closed graph (and therefore has closed values).
In consequence, the operator V is compact valued and upper semi-continuous. Thus
the operators U and V satisfy all the conditions of Lemma 5 and hence its conclusion
implies either condition (i) or condition (ii) holds. We show that the conclusion (ii) is
not possible. If y ∈ λU (y)+ λV (y) for λ ∈ (0,1), then there exist v ∈ SF,y such that

y(t) = λ
(∫ T

1
Gh(t,u)h(u,y(u))du+

∫ T

1
Gf (t,u)w(u)du

)
, t ∈ J.
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By our assumptions, and using the estimate: |h(t,y)| = |h(t,y)− h(t,0) + h(t,0)| �
k‖y‖+h0, we obtain

|y(t)| � 2
k‖y‖+h0

Γ(κ +1)
(logT)κ +2

Φ(‖y‖)‖p‖
Γ(ω + κ +1)

(logT)ω+κ ,

which leads to (
1− 2k(logT)κ

Γ(κ +1)

)
‖y‖

2h0(logT)κ

Γ(κ +1)
+

Φ(‖y‖)‖p‖
Γ(ω + κ +1)

(logT)ω+κ
� 1. (18)

If condition (ii) of Theorem 5 holds, then there exists λ ∈ (0,1) and y ∈ ∂BC0

with y = λN̂ (y). Then, y is a solution of (2) with ‖y‖ = C0. Now, by the inequality
(18), we get (

1− 2k(logT)κ

Γ(κ +1)

)
C0

2h0(logT)κ

Γ(κ +1)
+

Φ(C0)‖p‖
Γ(ω + κ +1)

(logT)ω+κ
� 1,

which contradicts (15). Hence, N̂ has a fixed point in J by Lemma 5, and conse-
quently the problem (2) has a solution. This completes the proof. �

LEMMA 6. (Krasnoselskii’s fixed point theorem [18]) Let M be a Banach space,
Y ∈Xb,cl,c(M ) = {Y ∈X (M ) :Y is bounded, closed and convex} and Ψ1,Ψ2 :Y →
Xcp,c(M ) be two multivalued operators. If (i) Ψ1y + Ψ2y ⊂ Y for all y ∈ Y ; (ii)
Ψ1 is contraction; and (iii) Ψ2 is u.s.c and compact, then there exists y ∈Y such that
y ∈ Ψ1y+ Ψ2y.

THEOREM 5. Let (K0) , (K4) and the following assumption hold:

(K7) there exists a function ρ ∈C([1,T],R+) such that

‖F(t,w)‖X := sup{|y| : y ∈ F(t,w)} � ρ(t), for each (t,w) ∈ [1,T]×R.

Then the problem (2) has at least one solution on J.

Proof. As in the proof of the last result, we transform the problem (2) into a fixed
point problem by using the operator N : C(J,R) −→ X (C(J,R)) defined by (14). As
before, one can show that the operators U and V defined respectively by (16) and
(17) are indeed multivalued operators U ,V : Br → Xcp,c(C(J,R)), where Br = {y ∈
C(J,R) : ‖y‖ � r} is a bounded set in C(J,R), U is a contraction on C(J,R) and V
is u.s.c. and compact.

Here, we show that U (y)+V (y) ⊂ Br for all y ∈ Br. Suppose y ∈ Br with

r >
[2h0(logT)κ

Γ(κ +1)
+

2‖q‖(logT)ω+κ

Γ(ω + κ +1)

](
1− 2k(logT)κ

Γ(κ +1)

)−1
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and an arbitrary element σ ∈ V . Choose v ∈ SF,y such that

σ(t) =
∫ T

1
Gh(t,s)h(s,y(s))ds+

∫ T

1
Gf (t,s)v(s)ds, t ∈ J.

By our assumptions, we obtain

‖σ‖ � 2
kr+h0

Γ(κ +1)
(logT)κ +

2‖q‖
Γ(ω + κ +1)

(logT)ω+κ < r.

Hence ‖σ‖ � r, which means that U (y)+V (y) ⊂ Br for all y ∈ Br.
Thus, the operators U and V satisfy all the conditions of Lemma 6 and hence

its conclusion implies that y ∈ U (y)+ V (y) in Br. Therefore the problem (2) has a
solution in Br and the proof is completed. �

4. Examples

In this section we give examples to illustrate the usefulness of our main results.
Let us consider the fractional functional differential equation{

D2/5
(
D3/4y(t)−h(t,y)

)
= f (t,y(t)), t ∈ [1,2],

y(1) = 0, y(2) = 0,
(19)

Here ω = 2/5, κ = 3/4, and h(t,y) , f (t,y) will be chosen suitably for the illustration
of the obtained results.

(a) For illustrating Theorem 1, we take

f (t,y) =
1
24

(y+ tan−1 y)et +
1√

t2 +1
, h(t,y) =

1
15+ t

( |y|
1+ |y|

)
+ sin(t). (20)

It is easy to check that f (t,y) and h(t,y) satisfy the conditions (A1) and (A2) respec-
tively with � = e2/12 and k = 1/16. Also

2k(logT)κ

Γ(κ +1)
+

2�(logT)ω+κ

Γ(ω + κ +1)
≈ 0.856309 < 1.

Thus all the conditions of Theorem 1 are satisfied. So, by the conclusion of Theorem 1,
the problem (19) with f (t,y) and h(t,y) given by (20) has a unique solution on [1,2] .

Next we consider the following multivalued fractional functional boundary value
problem: {

D2/5
(
D3/4y(t)−g(t,y)

)
∈ F(t,y(t)), t ∈ [1,2],

y(1) = 0, y(2) = 0,
(21)

where ω = 2/5, κ = 3/4, g(t,y)= |y|/[8(5+t)(4+ |y|)]+e1−t/
√

15+ t2 and F(t,y(t))
will be chosen appropriately.
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(b) In order to demonstrate the application of Theorem 3, let us choose

F(t,y(t)) =

[
0 ,

tan−1 y
(2+(t−1)2)

+
1

3+ t2

]
. (22)

Clearly

Hd(F(t,y),F(t, y)) � 1
(2+(t−1)2)

‖y− y‖.

Letting m(t) = 1/[2 + (t − 1)2)] , it is easy to check that d(0,F(t,0)) � m(t) holds
for almost all t ∈ [1,2] and that δ � 0.749196. As the hypotheses of Theorem 3 are
satisfied, we conclude that the problem (21) with F(t,y) given by (22) has at least one
solution on [1,2].

(c) For the illustration of Theorem 4, we take

F(t,y(t)) =
[ |y|
10(|y|+5)

+
1
9

sin2(πt/2)t ,
e1−t

2

( 1
π

tan−1 y+ siny(t)+
1
2

)]
. (23)

Using the given data, we find that k = 1/12 < [Γ(1.75)/2(log2)3/4] ≈ 0.604917, h0 =
1/4,‖p‖ = 1/2, Φ(‖y‖) = 1 + ‖y‖ and Condition (15) is satisfied with C0 > Ĉ0 ≈
1.291949. Thus, all the conditions of Theorem 4 are satisfied and consequently, there
exists at least one solution for the problem (21) with F(t,y) given by (23) on [1,2].

5. Three-point boundary conditions

In this section we replace the Dirichlet boundary conditions in problem (1) by
nonlocal three-point boundary conditions and consider the following problem:{

Dω [Dκy(t)−g(t,y(t))] = f (t,y(t)), t ∈ J := [1,T],

y(1) = 0, y(T) = σy(ζ ), 1 < ζ < T,
(24)

where σ ∈ R such that σ �= (logT)κ/(logζ )κ .
As in Section 2, we introduce a fixed point operator N̂1 : C(J,R) →C(J,R) asso-

ciated with the problem (24) as follows

N̂1(y)(t)

=
1

Γ(κ)

∫ t

1

(
log

t
s

)κ−1 g(s,y(s))
s

ds+
1

Γ(ω + κ)

∫ t

1

(
log

t
s

)ω+κ−1 f (s,y(s))
s

ds

+
(logt)κ

(logT )κ −σ(logζ )κ

{
σ

Γ(κ)

∫ ζ

1

(
log

ζ
s

)κ−1 g(s,y(s))
s

ds

+
σ

Γ(ω + κ)

∫ ζ

1

(
log

ζ
s

)ω+κ−1 f (s,y(s))
s

ds− 1
Γ(κ)

∫ T

1

(
log

T

s

)κ−1 g(s,y(s))
s

ds

− 1
Γ(ω + κ)

∫ T

1

(
log

T

s

)ω+κ−1 f (s,y(s))
s

ds

}
. (25)
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Furthermore we set

ϖ =
k(logT)κ

Γ(κ +1)
+

�(logT)ω+κ

Γ(ω + κ +1)
+

(logT)κ

|(logT)κ −σ(logζ )κ |
×
(k(|σ |(logζ )κ +(logT)κ)

Γ(κ +1)
+

�(|σ |(logζ )ω+κ +(logT)ω+κ)
Γ(ω + κ +1)

)
. (26)

The uniqueness result for the problem (24) can be formulated as follows.

THEOREM 6. Assume that the conditions (A1) , (A2) hold and that ϖ < 1 hold,
where ϖ is given by (26). Then the problem (24) has a unique solution [1,T].

EXAMPLE. Consider the following three-point problem{
D1/3

(
D2/3y(t)−g(t,y)

)
= f (t,y(t)), t ∈ [1,e],

y(1) = 0, y(e) = σy(ζ ),
(27)

where ω = 1/3,κ = 2/3, σ = 1/[2(log2)2/3] and

f (t,y) =
a1

2

(
siny+

|y|
1+ |y|

)
+

1
1+ logt

, g(t,y) =
a2

2

(
y+ tan−1 y

)
+(2+ logt)2,

(28)
a1 and a2 are constants to be chosen appropriately. Clearly f (t,y) and g(t,y) satisfy
the conditions (A1) and (A2) respectively with � = a1 and k = a2. Moreover, it is
found that ϖ = 4a2

Γ(5/3) + a1(3+(log2)1/3). For suitable values of a1 and a2 , one can

find that ϖ < 1. For instance, if a1 = 1/12,a2 = 1/11, then ϖ ≈ 0.726561 < 1. Thus
the conclusion of Theorem 6 applies and hence the problem (27) has a unique solution
on [1,e].

REMARK 2. The existence results for the problem (24) analog to the ones ob-
tained in Section 3 for the problem (1) can be established with the aid of (25) and (26).
We can also discuss the inclusion case of the problem (24) like the problem (2).

RE F ER EN C ES

[1] V. KOLMANOVSKII, A. MYSHKIS, Introduction to the Theory and Applications of Functional-
Differential Equations, Mathematics and its Applications, 463, Kluwer Academic Publishers, Dor-
drecht, 1999.

[2] J. KLAFTER, S. C. LIM, R. METZLER (eds.), Fractional Dynamics in Physics, World Scientific,
Singapore, 2011.

[3] R. L. MAGIN, Fractional Calculus in Bioengineering, Begell House Publishers Inc., U.S., 2006.
[4] A. A. KILBAS, H. M. SRIVASTAVA, J. J. TRUJILLO, Theory and Applications of Fractional Dif-

ferential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam,
2006.

[5] M. BENCHOHRA, J. HENDERSON, S. K. NTOUYAS, A. OUAHAB, Existence results for fractional
order functional differential equations with infinite delay, J. Math. Anal. Appl. 338 (2008), 1340–1350.

[6] R. P. AGARWAL, Y. ZHOU, Y. HE, Existence of fractional neutral functional differential equations,
Comput. Math. Appl. 59 (2010), 1095–1100.



126 B. AHMAD, S. K. NTOUYAS, A. ALSAEDI AND M. ALNAHDI

[7] Y. ZHOU, F. JIAO, J. PECARIC, Abstract Cauchy problem for fractional functional differential equa-
tions, Topol. Methods Nonlinear Anal. 42 (2013), 119–136.

[8] B. AHMAD, S. K. NTOUYAS, Initial value problems for functional and neutral functional Hadamard
type fractional differential inclusions, Miskolc Math. Notes 17 (2016), 15–27.
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