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QUALITATIVE RESULTS FOR SOLUTIONS TO NONLINEAR CAPUTO

DIFFERENTIAL EQUATIONS SATISFYING THE OSGOOD CONDITION

M. PALANI, C. C. TISDELL AND A. USACHEV

Abstract. We consider an initial value problem involving a single-term Caputo fractional differ-
ential equation. For those with right-hand sides that satisfy the Osgood condition, we establish
novel uniqueness and comparison theorems.

In addition, we discuss a reduction of the fractional order problem to an integer ordered
one. We identify inconsistencies in recent work by Demirci and Ozalp regarding this via the
use of several counterexamples. Nevertheless, we take a constructive approach by proving that a
priori estimates for the solution of a fractional order problem can be obtained from that for the
corresponding integer order problem. All results are illustrated with examples.
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