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Abstract. We consider an initial value problem involving a single-term Caputo fractional differ-
ential equation. For those with right-hand sides that satisfy the Osgood condition, we establish
novel uniqueness and comparison theorems.

In addition, we discuss a reduction of the fractional order problem to an integer ordered
one. We identify inconsistencies in recent work by Demirci and Ozalp regarding this via the
use of several counterexamples. Nevertheless, we take a constructive approach by proving that a
priori estimates for the solution of a fractional order problem can be obtained from that for the
corresponding integer order problem. All results are illustrated with examples.

1. Introduction

In this paper we consider nonlinear initial value problems of fractional order. The
problem under consideration consists of the following single-term Caputo fractional
differential equation:

CDq[x](t) = f (t,x(t)) (1)

(with CDq precisely defined in the next section); coupled with the following initial
conditions:

x(i)(0) = ai, i = 0,1, . . . ,�q�−1. (2)

Above, f is a real-valued function defined on [0,a]×I (I is an interval in R) and
the ai are constants. For a general function f , classical questions are concerned with
the existence and uniqueness of solutions to (1), (2) as well as obtaining qualitative
information about solutions.

It is well known (see e.g. [6], [14]) that for every q > 0 the continuity of f im-
plies that the initial value problem (1)–(2) has at least one continuous solution on a
sufficiently small interval [0,h] . The uniqueness of a continuous solution to (1)–(2)
was classically established under the assumption that f is Lipschitz [13] in the second
variable (see e.g. the paper by Diethelm and Ford [6]).

Since then, there have been a large number of results in the literature extending and
complementing the Diethelm-Ford Uniqueness Theorem. In particular, in [7] the result
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was extended to the case of a unique continuously differentiable solution. In [4] the
result was generalised to the case when f depends on a lower order derivative. For the
case 0 < q < 1 it was proved for the function f satisfying the Nagumo condition [5].
In [9] the uniqueness theorem was proved for 0 < q < 1 and the function f satisfying
the Osgood condition, which is a far reaching generalisation of Lipschitz condition (see
Example 8 and discussion after it).

One of the main results of this paper is the Osgood uniqueness theorem for q > 1.
On one hand, this result extends that of [9]. On the other hand, this result generalises
the classical Lipschitz uniqueness theorem. Of course, it is an extension of the Osgood
uniqueness theorem for ODEs to the case of fractional order.

The second main result of this paper is a comparison theorem. Results of this
type are powerful tools that provide qualitative information about solutions to two frac-
tional order IVPs without needing to solve them. The result given in Theorem 5 is a
generalisation of [14, Theorem 3.1], where it was established for 0 < q < 1 and Lip-
schitz right-hand side. We illustrate our results with examples. We also discuss the
significance of conditions in theorems.

In Section 5 we discuss a relationship between fractional order problems and inte-
ger ordered ones. We identify inconsistencies in recent work by Demirci and Ozalp [3]
regarding this via the use of several counterexamples. Although this relation cannot be
used to solve fractional order problems, it is useful in obtaining qualitative information
about solutions. In particular, we show that a priori estimates for the solution of an
integer order problem provide that for the original fractional order problem.

The authors would like to thank the referee for detailed reading of the text and a
number of comments that improved the exposition.

2. Preliminaries

Let N := {1,2,3, . . .} be the set of all natural numbers. Let Lp[0,a] , p � 1, be the
space of all Lebesgue integrable functions on [0,a] and for n ∈ N , let An[0,a] be the
space of functions on [0,a] with an absolutely continuous (n−1)-st derivative.

The Riemann–Liouville fractional integral of order q > 0 of f ∈ L1[0,a] is defined
by the formula

Iq[ f ](t) =
1

Γ(q)

∫ t

0
(t− s)q−1 f (s) ds, t ∈ [0,a], (3)

where Γ is the Gamma function. For q = 0, we set I0 to be an identity operator.
Throughout the paper we denote m := �q�.

The Caputo fractional derivative of order q > 0 of f ∈ Am[0,a] is defined by

CDq[ f ](t) = Im−q
[
dm f
dtm

]
(t). (4)

One well-known advantage of the Caputo derivative over the Riemann–Liouville
one is that the former applied to a constant function gives zero.
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We define the two parameter Mittag–Leffler Function Eα ,β : C → C by

Eα ,β (z) =
∞

∑
k=0

zk

Γ(αk+ β )
, (5)

where ℜ(α),ℜ(β ) > 0. When β = 1 we obtain the classical Mittag–Leffler Function
Eα := Eα ,1 [12]. By ψ we denote the digamma function given by the following formula
(see e.g. [1]):

ψ(x) =
d
dx

ln(Γ(x)).

3. Main results

We begin with a simple variant of Osgood’s result [11] (see also [2, Lemma 1.4.1]).

LEMMA 1. Let g : [0,∞) → [0,∞) be a continuous, non-decreasing function such
that: g(0) = 0 ; g(z) > 0 if z > 0 ; and

∫ 1

0

dz
g(z)

= ∞. (6)

Let a > 0 and let (t,s) �→ k(t,s) be a real-valued function bounded on a triangular
region 0 � t � a, 0 � s � t . Let φ : [0,a] → [0,∞) be a continuous function. If

φ(t) �
∫ t

0
k(t,s)g(φ(s)) ds, 0 � t � a, (7)

then φ ≡ 0 on [0,a] .

Proof. Since the function k is bounded, it follows that |k(t,s)|� K for all 0 � t �
a , 0 � s � t and some K > 0. Hence

φ(t) � K
∫ t

0
g(φ(s)) ds, 0 � t � a,

and the result follows from the classical Osgood theorem (see e.g. [2, Lemma 1.4.1]). �
In the following definition we introduce the class of functions that we will be

dealing with.

DEFINITION 2. Let I be an interval in R and a > 0. We say that f : [0,a]×
I → R satisfies the Osgood condition if it is continuous and such that for every t ∈
[0,a] , u,v ∈ I one has

| f (t,u)− f (t,v)| � ψ(t) ·g(|u− v|), (8)

where g is any function satisfying conditions of Lemma 1 and ψ is a continuous, non-
negative function on [0,a] .
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REMARK 3. The Osgood condition introduced above extends the classical Lip-
schitz condition [13]. It is less general than the Montel-Tonelli condition (where the
function ψ is merely integrable).

The following theorem is an extension of Osgood’s Uniqueness Theorem [2, The-
orem 1.4.2] to fractional differential equations. It is also a partial extension of the more
general Montel-Tonelli Uniqueness Theorem [2, Theorem 1.5.1].

THEOREM 4. Let I be an interval in R with a0 ∈ I and a > 0 . Let f : [0,a]×
I → R be a function satisfying the Osgood condition (8) for some g and ψ . If q � 1 ,
then the initial value problem (1), (2) has, at most, one solution.

Proof. Denote m := �q� . Suppose that x and y are solutions to the IVP (1), (2).
Then both x and y solve the integral equation

z(t) =
m−1

∑
i=0

ai

i!
ti +

1
Γ(q)

∫ t

0
(t− s)q−1 f (s,z(s)) ds, t ∈ [0,a]. (9)

Hence

|x(t)− y(t)|� 1
Γ(q)

∫ t

0
(t− s)q−1| f (s,x(s))− f (s,y(s))| ds

� 1
Γ(q)

∫ t

0
(t− s)q−1ψ(s)g(|x(s)− y(s)|) ds

by (8). Since q � 1 and ψ is continuous on [0,a] , the function k(t,s) := (t−s)q−1ψ(s)
is bounded on the region 0 � t � a , 0 � s � t . Consequently, the non-negative function
φ(t) := |x(t)−y(t)| satisfies all conditions of Lemma 1, with application of the Lemma
yielding φ(t) = 0 on [0,a] . Thus x(t) = y(t) on [0,a] ; that is the IVP has at most one
solution. �

THEOREM 5. Let I be an interval in R with a0,b0 ∈ I and a > 0 . Let f ,h :
[0,a]×I → R be such that at least one of them satisfies condition (8) and at least one
of them is non-decreasing in the second variable. Let q > 1 and m := �q� .

Suppose that x = x(t) satisfies

CDq[x](t) = h(t,x(t)), x(i)(0) = ai, i = 0,1, . . . ,m−1

and y = y(t) satisfies

CDq[y](t) = f (t,y(t)), y(i)(0) = bi, i = 0,1, . . . ,m−1.

Further, if h(t,u) � f (t,u) for all (t,u)∈ [0,a]×I and ai � bi for i = 0,1, . . . ,m−1 ,
then x � y on [0,a] .
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Proof. Suppose, to the contrary, that there exists t0 ∈ [0,a] such that x(t0) > y(t0) .
Define r(t) := x(t)− y(t) . Since r(0) � 0, without loss of generality we can assume
that r(t) � 0 on some interval [0,c] and r(t) > 0 on (c,t0] .

Since x and y are solutions to the IVPs, they satisfy integral equations of the
form (9). Thus, for every t ∈ (c,t0] we obtain

r(t) =
m−1

∑
i=0

(ai −bi)
i!

ti +
1

Γ(q)

∫ t

0
(t − s)q−1 [h(s,x(s))− f (s,y(s))]ds

� 1
Γ(q)

∫ t

0
(t− s)q−1 [h(s,x(s))− f (s,y(s))] ds,

since ai � bi for i = 0,1, . . . ,m−1.
Since r(t) � 0 on [0,c] , x(s) � y(s) for t ∈ [0,c] . If h is non-decreasing in the

second variable, then we use the fact that h(t,u) � f (t,u) for all t ∈ [0,a] to obtain

h(s,x(s))− f (s,y(s)) � h(s,x(s))−h(s,y(s)) � 0.

If f is non-decreasing in the second variable, then similarly we obtain

h(s,x(s))− f (s,y(s)) � f (s,x(s))− f (s,y(s)) � 0.

Therefore, in any case∫ c

0
(t− s)q−1 [h(s,x(s))− f (s,y(s))] ds � 0

and so

r(t) � 1
Γ(q)

∫ t

c
(t− s)q−1 [h(s,x(s))− f (s,y(s))] ds, t ∈ (c, t0].

Next, if h satisfies (8), then for s ∈ (c,t0] we obtain

h(s,x(s))− f (s,y(s)) � h(s,x(s))−h(s,y(s)) � |h(s,x(s))−h(s,y(s))|
� ψ(s)g(|x(s)− y(s)|).

Similarly if f satisfies (8), then for s ∈ (c,t0] we obtain

h(s,x(s))− f (s,y(s)) � f (s,x(s))− f (s,y(s)) � | f (s,x(s))− f (s,y(s))|
� ψ(s)g(|x(s)− y(s)|).

Therefore, in any case

h(s,x(s))− f (s,y(s)) � ψ(s)g(|r(s)|) � ψ(s)g(r(s)),

since r(t) > 0 on (c,t0] . Thus

r(t) � 1
Γ(q)

∫ t

c
(t− s)q−1ψ(s)g(r(s))ds, t ∈ (c,t0].
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Equivalently,

r(z+ c) � 1
Γ(q)

∫ z+c

c
(z+ c− s)q−1ψ(s)g(r(s)) ds

� 1
Γ(q)

∫ z

0
(z− v)q−1ψ(v+ c)g(r(v+ c)) dv, z ∈ (0,t0− c].

Note that the function k(z,v) := (z− v)q−1ψ(v + c) satisfies the conditions of
Lemma 1. Since r(t) � 0 on [c,t0] , it follows that the function φ(z) = r(z + c) is
non-negative on [0, t0 − c] . By Lemma 1, we conclude that φ(z) = 0 on [0,t0 − c] ,
that is r(t) = 0 on [c,t0] . This contradicts the assumption. Hence, x(t) � y(t) for all
t ∈ [0,a] . �

REMARK 6. Theorem 5 above can be proved with a less restrictive condition on
h and f . This condition is that

u � v =⇒ h(t,u) � f (t,v), for all (t,u),(t,v) ∈ [0,a]×I . (10)

The proof of Theorem 5 with this condition is identical to the one given above and
therefore omitted.

It is clear that if either h or f is non-decreasing and h(t,u)� f (t,u) for all (t,u)∈
[0,a]×I then (10) is satisfied. The following example shows that using condition (10)
we can extend the class of IVPs compared to that in Theorem 5.

EXAMPLE 7. Consider h, f : [0,a]×R→ R where

h(t,u) = 1− (u−1)2 and f (t,u) = 1+(u−4)2.

Then for u � v, h(t,u)− f (t,v) = −(u−1)2− (v−4)2 � 0 and thus we have that
the condition

h(t,u) � f (t,v) for u � v is satisfied. However, neither h nor f is non-decreasing
in the second variable.

Thus taking Theorem 5 at face value one could not make a conclusion on the
relative behaviour of the solutions x(t) and y(t) to (say)

CDq[x](t) = 1− (u−1)2

x(0) = 0, x′(0) = 1

and
CDq[y](t) = (u−2)2 +1

y(0) = 0, y′(0) = 1.

However with Remark 6 in mind we can conclude that the solutions satisfy x(t) �
y(t) on t ∈ [0,a] .
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4. Examples and counterexamples

The theorems proved in the previous section provide qualitative information on
IVPs with the right-hand side satisfying a condition much more general than Lipschitz’s
condition.

EXAMPLE 8. Let g : [0,∞) → [0,∞) be defined by the following formula:

g(u) =

⎧⎪⎨
⎪⎩

0, u = 0

−u lnu, 0 < u � 1/e

1/e, u > 1/e.

Let I be an interval in R with a0 ∈ I and a > 0 . Let f : [0,a]×I → R

be defined by the formula f (t,u) = |sin t | · g(u) . The function ψ(t) = |sin t | is non-
negative and continuous. The function g is positive, continuous and non-decreasing
with: g(0) = 0 ; g(u) > 0 if u > 0 ; and

∫ 1

0

dz
g(z)

= ∞;

that is, g satisfies all of the conditions of Lemma 1. Hence f satisfies the Osgood
condition. We note that f is not Lipschitz in the second variable.

Therefore, it follows from Theorem 4 that the IVP

CDq[x](t) = f (t,x(t)), x(i)(0) = ai, i = 0,1, . . . ,�q�−1

has at most one solution.

Note that the functions f (t,u)= u , u| lnu| , u| lnu| · | ln | lnu|| . . . satisfy the Osgood
condition. In particular, the Osgood condition extends that of Lipschitz.

Next we shall discuss the conditions of Theorem 5. Recall that in the classical case
of the comparison theorem for first order IVPs, the right-hand sides are not necessarily
non-decreasing. The next example illustrates that, in general, Theorem 5 fails for the
second order problem if f and h are not non-decreasing even when they are Lipschitz.

EXAMPLE 9. Let R = [0,2π ]×R . Define h, f : R → R by

h(t,u) = −u = f (t,u).

Then h, f satisfy
h(t,u) � f (t,u)

and are Lipschitz, but both h and f are decreasing in the second variable.
Consider the second order initial value problems

x′′(t) = −x(t)
x(0) = 1, x′(0) = 0
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and

y′′(t) = −y(t)
y(0) = 1, y′(0) = 1,

for which the solutions are x(t) = cost and y(t) = cost + sint .
Thus we see that all of the conditions of Theorem 5 apart from the nondecreasing-

ness of either h or f are satisfied. But x( 3π
2 )−y( 3π

2 ) = 1 > 0 , so there exists t ∈ [0,2π ]
such that x(t) > y(t) .

Next, we extend Example 9 to the case of IVPs of order greater than or equal to
three. We shall prove an auxiliary result first.

LEMMA 10. For q � 3 there exists t0 ∈ [0,a] such that Eq,2(−tq0) < 0 , where a
depends on q and is given by (13).

Proof. It follows from the definition of Eq,2 that

Eq,2(−tq) =
∞

∑
k=0

(−1)ktqk

Γ(qk+2)
.

Using the estimation for the remainder of an alternating series we obtain

∣∣∣∣Eq,2(−tq)−
(

1− tq

Γ(q+2)

)∣∣∣∣� t2q

Γ(2q+2)
.

In particular,

Eq,2(−tq) � 1− tq

Γ(q+2)
+

t2q

Γ(2q+2)
. (11)

Hence to prove the assertion it is sufficient to show that the right-hand side of (11)
is negative for some value of t ∈ [0,a] . Consider the following quadratic equation
corresponding to the right-hand side of (11):

1− x
Γ(q+2)

+
x2

Γ(2q+2)
= 0,

or equivalently,

Γ(q+2) · x2−Γ(2q+2) · x+ Γ(2q+2) ·Γ(q+2)= 0. (12)

The determinant of this equation is

Δ = Γ(2q+2) · (Γ(2q+2)−4 ·Γ2(q+2)
)
.
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Consider the function f (q) = Γ(2q+2)
Γ2(q+2) on [3,∞) . Using the fact that d

dzΓ(z) =
Γ(z)ψ(z) , where ψ is a digamma function, we obtain

d f
dq

=
d
dq (Γ(2q+2))Γ2(q+2)−Γ(2q+2) ·2 ·Γ(q+2) · d

dq (Γ(q+2))

Γ4(q+2)

=
2 ·Γ(2q+2)ψ(2q+2)Γ2(q+2)−Γ(2q+2) ·2 ·Γ(q+2) ·Γ(q+2)ψ(q+2)

Γ4(q+2)

=
2 ·Γ(2q+2)Γ2(q+2)

Γ4(q+2)
(ψ(2q+2)−ψ(q+2))> 0,

since the digamma function ψ is increasing on the positive semi-axis.
Hence the function f is strictly increasing. Thus

Γ(2q+2)
Γ2(q+2)

� Γ(2 ·3+2)
Γ2(3+2)

=
7!

(4!)2 =
35
4

> 4.

Hence, the determinant of the equation (12) is positive. The largest root is

x∗ =
Γ(2q+2)+

√
Γ(2q+2) · (Γ(2q+2)−4 ·Γ2(q+2))

2Γ(q+2)
> 0.

Since the function y : R → R given by

y(x) = 1− x
Γ(q+2)

+
x2

Γ(2q+2)

is convex down, it follows that there exists x0 ∈ [0,x∗] such that y(x0) < 0.

Setting t0 = x
1
q
0 and

a = (x∗)
1
q =

(
Γ(2q+2)+

√
Γ(2q+2) · (Γ(2q+2)−4 ·Γ2(q+2))

2Γ(q+2)

)1/q

, (13)

we conclude that there exists t0 ∈ [0,a] such that the right-hand side of (11) is negative.
Therefore Eq,2(−tq0 ) < 0. �

EXAMPLE 11. Let q � 3 and let a be defined by the formula (13). Define f ,h :
[0,a]×R → R by f (t,u) = h(t,u) = −u. Clearly, f and h are Lipschitz and they are
decreasing. Consider the initial value problems

CDq[x](t) = h(t,x(t)), x(0) = 1, x(i)(0) = 0, i = 1, . . . ,m−1

and

CDq[y](t) = f (t,y(t)), y(0) = 1, y′(0) = 1, y(i)(0) = 0, i = 2, . . . ,m−1.
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We have that h(t,u) � f (t,u) for all (t,u) ∈ [0,a]×R and that x(i)(0) � y(i)(0)
for i = 0,1, . . . ,m−1 .

It follows from [8, Theorem 4.3], that the solutions to these IVPs are x(t) =
Eq,1(−tq) and y(t) = Eq,1(−tq)+ tEq,2(−tq) respectively.

It follows from Lemma 10 that there exists t0 ∈ [0,a] such that Eq,2(−tq0 ) < 0 . This
means that x(t0) > y(t0) , that is, the conclusion of Theorem 5 fails.

5. Relation between fractional and ordinary DEs

While working on examples in the previous section, we came across the paper
[3] which attempts to reduce a fractional problem of order q ∈ (0,1) to a first order
problem.

The main result of that paper, namely [3, Theorem 5], is incorrect. Their result
is also illustrated therein with several examples. However, [3, Example 10], [3, Exam-
ple 11], [3, Example 12] are incorrect as the “solutions” obtained do not satisfy their
respective IVPs. We provide a simple counterexample to their technique.

EXAMPLE 12. Consider the following IVP on [0,1]:

CD
1
2 [x](t) = x(t), x(0) = 1.

By the Demirci-Ozalp “method” the solution to this IVP is

x(t) = e
t
1
2

Γ( 3
2 ) .

However, straightforward substitution of this function into the IVP shows that it
does not satisfy the differential equation. We know in fact from [8, Theorem 4.3] that
the correct solution to this IVP is x(t) = E 1

2
(t

1
2 ) .

The statement of the main result [3, Theorem 5] in the Demirci-Ozalp paper is
given in a somewhat vague manner and may be misinterpreted. We provide one more
counterexample confirming that their result is incorrect regardless of the interpretation.

EXAMPLE 13. By the Demirci-Ozalp “method” the IVPs

CD
1
2 [x](t) = x(t), x(0) = 1, t ∈ [0,1]

and
CD

1
4 [x](t) = x(t), x(0) = 1 t ∈ [0,1]

both correspond to the same integer order problem x′∗(v) = g(v,x∗(v)) , x∗(0) = 1 .
If x∗ is a solution to this problem, then solutions to the fractional IVPs are

x(t) = x∗

(
t

1
2

Γ
( 3

2

)
)

and x(t) = x∗

(
t

1
4

Γ
( 5

4

)
)

,
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respectively. However, we know that the correct solutions are E 1
2
(t

1
2 ) and x(t) =

E 1
4
(t

1
4 ) respectively. Hence if the Demirci-Ozalp method is correct, it must be that

E 1
2
(t

1
2 ) = x∗

(
t

1
2

Γ
( 3

2

)
)

and E 1
4
(t

1
4 ) = x∗

(
t

1
4

Γ
( 5

4

)
)

,

or equivalently, that

E 1
2

(
sΓ
(

3
2

))
= x∗(s) and E 1

4

(
sΓ
(

5
4

))
= x∗(s).

Thus

E 1
2

(
sΓ
(

3
2

))
= E 1

4

(
sΓ
(

5
4

))
,

which is clearly not the case for s �= 0 .

It should be pointed out that some problems involving fractional differential equa-
tions can be reduced to that of an ordinary differential equation. The results presented
below first appeared in the book [10] for the Riemann-Liouville derivative. We extend
them to the case of Caputo derivative.

Let 0 < q < 1, f : [0,a]×R→ R be a continuous function and let x be a solution
to the following IVP:

CDq[x](t) = f (t,x(t)), x(t)t1−q|t=0 = a. (14)

From the definition of the Riemann-Liouville derivative and its relation to the Ca-
puto derivative we have

CDq[x](t) = Dq [x−a](t) =
1

Γ(1−q)
d
dt

∫ t

0
(t− s)−q (x(s)−a) ds.

Let us introduce a function φ defined on a triangular region as follows:

φ(t,s) = x(t)− x(s), 0 � s � t � a.

Hence,

CDq[x](t) =
1

Γ(1−q)
d
dt

∫ t

0
(t − s)−q (x(t)−φ(t,s)−a) ds

=
d
dt

[
t �→ x(t)

Γ(1−q)
t1−q

1−q

]
−η(t),

where

η(t) = η(t,q,φ) :=
1

Γ(1−q)
d
dt

∫ t

0
(t− s)−q (φ(t,s)+a) ds.
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Define y : [0,1] → R by the formula

y(t) =
x(t)

Γ(2−q)
t1−q.

We have that y is a solution of the integer order problem

dy
dt

(t) = f (t,Γ(2−q)t−1+qy(t))+ η(t), y(0) = b :=
a

Γ(2−q)
. (15)

REMARK 14. It should be pointed out that the IVP (15) cannot be used to solve
the IVP (14), since the right-hand side of (15) depends on η , which, in turn, depends on
the solution x to the IVP (14). Thus, to solve the IVP (14) by reduction to the IVP (15)
we would need to know the solution of (14) in advance.

However, the technique outlined above can be used to obtain an a priori estimate
for x using perturbation theory for the IVP (15).

EXAMPLE 15. Let f be such that

| f (t,u)| � k(t)
t1−q

Γ(2−q)
|u|, for all (t,u) ∈ [0,a]×R.

If y is a solution of (15) then it also solves

y(t) = b+
∫ t

0
[ f (s,Γ(2−q)t−1+qy(s))+ η(s)] ds. (16)

Hence,

|y(t)| � |b|+
∫ t

0
[k(s)|y(s)|+ |η(s)|] ds. (17)

If we further assume that

|η(s)| � Mtα , t ∈ [0,a],

then

|y(t)| � |b|+
∫ t

0
[k(s)|y(s)|+Msα ] ds. (18)

Denoting the right-hand side of the above inequality by v(t) and differentiating
we obtain

v′(t) � k(t)|y(t)|+Mtα � k(t)v(t)+Mtα .

The solution to the IVP u′(t) = k(t)u(t), u(0) = b is

u(t) = bexp
{∫ t

0
k(s) ds

}
.
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Replacing b with b(t) and using the variation of parameters method we obtain
that the solution to the perturbed IVP u′(t) = k(t)u(t)+Mtα , u(0) = b is

u(t) = e
∫ t
0 k(s)ds

[
b+M

∫ t

0
sαe−

∫ s
0 k(z)dzds

]
.

Using the classical comparison theorem we obtain

|y(t)| � v(t) � e
∫ t
0 k(s)ds

[
b+M

∫ t

0
sαe−

∫ s
0 k(z)dzds

]
.

Therefore, we obtain the following estimate for the solution of the fractional IVP:

|x(t)| � tq−1e
∫ t
0 k(s)ds

[
a+MΓ(2−q)

∫ t

0
sαe−

∫ s
0 k(z)dzds

]
.

6. Conclusions

In this paper we established uniqueness and comparison theorems for the initial
value problem involving the single-term Caputo fractional differential equation with
right-hand sides satisfying the Osgood condition. These results generalise and extend
known results in the literature. They allow the treatment of FDEs with “very” non-
linear right-hand sides. The further question in this direction is whether the analogous
theorems hold for the right-hand sides satisfying more general Montel-Tonelli condi-
tion.

In the second part of the paper we established a relationship between fractional
differential equations and ODEs. This relation provides a powerful tool in analysis of
fractional differential equations. In general, one can use much more advanced tech-
niques to extract qualitative information about solutions to the ODE first, and then
apply the result of Section 5 (that is, the relation between (14) and (15)) to obtain such
information for solutions to the corresponding fractional differential equation. Doing
this without a mediation of ODE can be problematic, since the theory of fractional
differential equations is less developed.
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