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(Communicated by A. Viana)

Abstract. The aim of this paper is to deal with the elliptic pdes involving a nonlinear integro-
differential operator which are possibly degenerate and covers the case of fractional p -Laplacian
operator. We prove the existence of a solution in the weak sense to the problem

−LΦu = λ |u|q−2u in Ω,

u = 0 in R
N \Ω,

if and only if a weak solution to

−LΦu = λ |u|q−2u+ f , f ( �= 0) ∈ Lp′ (Ω),

u = 0 in R
N \Ω,

( p′ being the conjugate of p ), exists for q ∈ (p, p∗s ) under certain condition on λ , where −LΦ
is a general nonlocal integro-differential operator of order s ∈ (0,1) and p∗s is the fractional
Sobolev conjugate of p . We further prove a necessary condition for the existence of a weak
solution to the problem

−LΦu = λ |u|q−2u+ μ in Ω,

u = 0 in R
N \Ω,

where μ is a measure.

1. Introduction

In the recent years, a great amount of attention has been given to the study of
fractional and nonlocal operators of elliptic type, both, for research in pure Mathematics
and for concrete real world applications. From a physical point of view, the nonlocal
operators play a crucial role in describing several phenomena such as, the thin obstacle
problem, optimization, phase transitions, material science, water waves, geophysical
fluid dynamics and mathematical finance. For further details on these applications, the
reader may refer to [6], [8], [9] and the references therein. For a general reference to
this topic, one may refer to the recent article of Vázquez [33].
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Of late there has been a rapid growth in the literature on problems involving non-
local operators and hence without being exhaustive we now give a literature survey all
of which might not be related to our results but is worth mentioning. A testimony to this
can be found in [4], [5], [22], [23], [31], [34] in the form of existence and multiplicity
results for nonlocal operators like fractional Laplacian, fractional p -Laplacian in com-
bination with a convex or a concave type nonlinearity. An eigenvalue problem for the
fractional p -Laplacian and properties like finding the smallest eigenvalue are studied
in [13], [18] and [21]. The Brezis-Nirenberg results for the fractional Laplacian and for
the fractional p -Laplacian operator has been considered in [30] and [24] respectively.
A Dirichlet boundary value problem in the case of fractional Laplacian with polynomial
type nonlinearity using variational methods has been studied in [7], [10], [28] and [29].
In [1], the authors proved the existence of weak solution of the fractional p -Laplacian
equations with weight for any datum in L1 .

Recently, Piersanti and Pucci [26] have proved existence results of nontrivial so-
lutions of a perturbed, nonlinear eigenvalue problem involving the integro-differential
nonlocal operator that includes the fractional p -Laplacian case. Kussi et al. [20],
has established an existence, regularity and potential theory for a nonlocal integro-
differential equations involving measure data. The nonlocal elliptic operators consid-
ered here are possibly degenerate and also cover the case of the fractional p -Laplacian
operator. Based on some generalization of the Wolff potential theory, the authors ob-
tained the existence of a weak solution belonging to a suitable fractional Sobolev space.

Motivated by the interest shared by the mathematical community in this topic, we
study here the equivalence of the following two problems involving a nonlocal operator,

P1 : −LΦu = λ |u|q−2u in Ω,

u = 0 in R
N \Ω,

(1)

and

P2 : −LΦu = λ |u|q−2u+ f , f (�= 0) ∈ Lp′(Ω),

u = 0 in R
N \Ω,

(2)

in the sense that if one problem has a nontrivial weak solution then the other one also
has a nontrivial weak solution. We emphasize that the λ appearing in the problem P1

is different from the λ in the problem P2 . Here Ω is a bounded open subset of R
N for

N � 2 and −LΦ is a nonlocal operator (refer, [20]) which is defined as

〈−LΦu,ϕ〉 =
∫

RN

∫
RN

Φ(u(x)−u(y))(ϕ(x)−ϕ(y))K(x,y)dxdy, (3)

for every smooth function ϕ with compact support, i.e., ϕ ∈ C∞
c (RN) . The function

Φ is a real valued continuous function over R , satisfying Φ(0) = 0 together with the
following monotonicity property

Λ−1|t|p � Φ(t)t � Λ|t|p, ∀t ∈ R. (4)
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The kernel K : R
N ×R

N → R is a measurable function satisfying the following ellip-
ticity property

1
Λ|x− y|N+sp � K(x,y) � Λ

|x− y|N+sp , ∀x,y ∈ R
N , x �= y, (5)

where Λ � 1, s ∈ (0,1), p > 2− s
N with q ∈ (p, Np

N−sp = p∗s ) and p′ = p
p−1 , the con-

jugate of p . Assumptions made in (4) and (5) makes the nonlocal operator −LΦ
to be an elliptic operator. Note that, upon taking the special case Φ(t) = |t|p−2t with
K(x,y) = |x− y|−(N+sp) in (3) , we recall the fractional p -Laplacian [27] which is de-
fined as

(−Δp)su =
∫

RN

|u(x)−u(y)|p−2[u(x)−u(y)]
|x− y|N+ps dy. (6)

In other words, the nonlocal operator −LΦ , is a generalization of the fractional p -
Laplacian for 1 � p < ∞ and s ∈ (0,1) .

A similar type of equivalence result for problems P1 and P2 , but involving the local
operator −Δp , defined as ∇ ·(|∇(·)|p−2∇(·)) , in place of nonlocal operator −LΦ , are
obtained in the work of Giri and Choudhuri [16]. Few other classical and noteworthy
existence and multiplicity results has been studied for the case of local operators like
Laplacian and p -Laplacian operators by several mathematicians. For instance, Azorero
and Alonso [15] have found the conditions on p , q and λ for the existence of infinitely
many nontrivial solutions to the problem

−Δpu = λ |u|q−2u in Ω ⊂ R
N ,

u = 0 on ∂Ω.

Bahri [2] considered nonlinear elliptic equations of the type

−Δu = |u|p−1u+h(x) in Ω ⊂ R
N ,

u = 0 on ∂Ω,

where the function h ∈ L2(Ω) and has proved the existence and multiplicity of the

solutions. Bahri and Lions [3] have found a range of p , 1 < p < N+2(1−α)
N−2 , 0 � α < 2,

for which the elliptic equation

−Δu = |u|p−1u− f (x,u) in Ω ⊂ R
N ,

u = 0 on ∂Ω,

where f (x, t) is Caratheodory function on Ω×R with some growth conditions, has
infinitely many solutions. Further, Tarantello [32] studied the Dirichlet problem

−Δu = |u|p−2u+ f in Ω ⊂ R
N ,

u = 0 on ∂Ω,
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with p = 2N
N−2 ,N � 3, f ∈ H−1(Ω) and has proved the existence of two solutions in

H1
0 (Ω) .

In this paper, we use the variational approach to the nonlocal framework. Inspired
by the fractional Sobolev spaces, we will work in a functional analytic set up in order
to correctly encode the Dirichlet boundary datum in the variational formulation. The
paper has been organized as follows. In section 2, we will present some useful tools
and preliminaries that we will use throughout this paper like fractional Sobolev space
Ws,p(RN) and embedding results of Ws,p(RN) into the Lebesgue space. We will also
define the weak sense in which the solutions to the problems P1 and P2 are defined. In
section 3, we will discuss a few preliminary and main results. In section 4, we will
prove a necessary condition for the existence of a weak solution to the problem

−LΦu = λ |u|q−2u+ μ in Ω,

u = 0 in R
N \Ω,

where μ ∈ M (Ω) .

2. Functional analytic setup and Main tools

In this section, we discuss the functional analytic setting that will be used below.
Due to the nonlocal character of LΦ defined in (3) , it is natural to work with Sobolev
space Ws,p(RN) and express the Dirichlet condition in R

N \Ω rather than ∂Ω . Though
fractional Sobolev spaces are well known since the beginning of the last century espe-
cially in the field of harmonic analysis, they have become increasingly popular in the
last few years under the impulse of the work of Caffarelli & Silvestre [9] and the refer-
ences therein. We now turn to our problem for which we provide the variational setting
on a suitable function space for (1) and (2) , jointly with some preliminary results. For
all measurable functions u : R

N → R , we set

‖u‖Lp(RN) =
(∫

RN
|u(x)|pdx

) 1
p

,

[u]s,p =
(∫

R2N

|u(x)−u(y)|p
|x− y|N+sp dxdy

) 1
p

,

where p ∈ (1,∞) and s ∈ (0,1) . The fractional Sobolev space Ws,p(RN) is defined
as the space of all function u ∈ Lp(RN) such that [u]s,p is finite and endowed with the
norm

‖u‖Ws,p(RN ) =
(
‖u‖p

Lp(RN ) + [u]ps,p
) 1

p
.

More on fractional Sobolev space can be found in Nezza et al. [11] and the references
therein. We now define a closed linear subspace of Ws,p(RN) :

Ws,p
0 (Ω) = {u ∈Ws,p(RN) : u = 0 a.e. in R

N \Ω}.
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It is trivial to see that the norms ‖ · ‖Lp(RN) and ‖ · ‖Lp(Ω) agree on Ws,p
0 (Ω) . We also

have a Poincaré type inequality which is as follows:

‖u‖Lp(Ω) � C[u]s,p, for all u ∈Ws,p
0 (Ω).

Thus, we define the norm on the space Ws,p
0 (Ω) by setting ‖u‖Ws,p

0 (Ω) = [u]s,p . Let p∗s =
Np

N−sp , with the agreement that p∗s = ∞ if N � sp . It is well known that (Ws,p
0 (Ω),‖ ·

‖Ws,p
0 (Ω)) is a uniformly convex reflexive Banach space, continuously embedded into

Lr(Ω) , for all r ∈ [1, p∗s ] if sp < N , for all 1 � r < ∞ if N = sp and into L∞(Ω) if
N < sp . It is also compactly embedded in Lr(Ω) for any r ∈ [1, p∗s ) if N � sp and in
L∞(Ω) for N < sp . Furthermore, C∞

c (Ω) is a dense subspace of Ws,p
0 (Ω) with respect

to ‖ · ‖Ws,p(Ω) . For further detail on the embedding results, we refer the reader to [17],
[25] and the references therein.

We define an associated energy functional to the problem P1 as

IP1(u) =
∫

RN

∫
RN

PΦ(u(x)−u(y))K(x,y)dxdy− λ
q

∫
Ω
|u|qdx,

where PΦ(t) :=
∫ |t|
0 Φ(τ)dτ being the primitive of Φ . Thus by (4) we have

Λ−1 |t|p
p

� PΦ(t) � Λ
|t|p
p

, (7)

for t �= 0 and PΦ(0) = 0. The Fréchet derivative of IP1 , which is in W−s,p′
0 (Ω) , the

dual space of Ws,p
0 (Ω) where p′ = p

p−1 is defined as

〈I′P1
(u),v〉 =

∫
RN

∫
RN

Φ(u(x)−u(y))(v(x)− v(y))K(x,y)dxdy−λ
∫

Ω
|u|q−2uvdx, (8)

for every v ∈Ws,p
0 (Ω) .

DEFINITION 1. We say that u ∈Ws,p
0 (Ω) is a weak (energy) solution to the prob-

lem P1 if∫
RN

∫
RN

Φ(u(x)−u(y))(ϕ(x)−ϕ(y))K(x,y)dxdy = λ
∫

Ω
|u|q−2uϕdx,

holds for every ϕ ∈C∞
c (Ω) .

The weak solutions of the problem P1 are the critical points of the energy func-
tional IP1 . Similarly, let the corresponding associated energy functional to the problem
P2 be denoted by IP2 which is defined as follows:

IP2(u) =
∫

RN

∫
RN

PΦ(u(x)−u(y))K(x,y)dxdy− λ
q

∫
Ω
|u|qdx−

∫
Ω

f udx (9)

whose Fréchet derivative is defined as

〈I′P2
(u),v〉=

∫
RN

∫
RN

Φ(u(x)−u(y))(v(x)−v(y))K(x,y)dxdy−λ
∫

Ω
|u|q−2uvdx−

∫
Ω

f vdx,

(10)
for every v ∈Ws,p

0 (Ω) .
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DEFINITION 2. We say that u ∈Ws,p
0 (Ω) is a weak (energy) solution of the prob-

lem P2 if

∫
RN

∫
RN

Φ(u(x)−u(y))(ϕ(x)−ϕ(y))K(x,y)dxdy−λ
∫

Ω
|u|q−2uϕdx−

∫
Ω

fϕdx = 0,

for all ϕ ∈C∞
c (Ω) .

The main results in this paper, when stated heuristically, are as follows. The prob-
lem P1 has a nontrivial weak solution if and only if the problem P2 has a non trivial
weak solution. In the implication from P1 to P2 , the main tool we will use is the Moun-
tain Pass Theorem [12, 19]. For the converse part, we guarantee the existence of a
weak solution to the problem P1 by considering a sequence of P2 type problems whose
nonhomogeneous part will be denoted by ( fn) . In addition to this we will assume that
fn → 0 in Lp′(Ω) . The corresponding sequence of weak solutions (un) to the problem
P2 , will be shown to have a strongly convergent subsequence. The subsequence will
still be denoted by (un) whose limit is, say u . We complete the proof of the converse
part by showing that this limit u is a weak solution to P1 . One common result, which
will be used in proving both the implications is as follows:

THEOREM 1. If the sequence un ⇀ u in Ws,p
0 (Ω) , then

∫
RN

∫
RN

(Φ(un(x)−un(y))−Φ(u(x)−u(y)))(ϕ(x)−ϕ(y))K(x,y)dxdy→ 0

for all ϕ ∈C∞
c (Ω) .

The proof of this theorem, can be found in the work of Kussi et al. [20], Theorem
1.1.

3. Existence results

We begin the section by assuming that the problem P1 has a nontrivial weak so-
lution in Ws,p

0 (Ω) . In order to show the existence of a non trivial weak solution to
the problem P2 , we will use the Mountain pass theorem. To apply the Mountain pass
theorem, we need the following technical lemmas.

LEMMA 1. The function I defined in (9) is a C1 functional over Ws,p
0 (Ω) .

Proof. It is trivial to see that the functional I is differentiable over Ws,p
0 (Ω) . Thus

it is enough to show that I′(u) is continuous. Thus from (10), for each u ∈Ws,p
0 (Ω)

we have
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|〈I′(u),v〉| �
∫

RN

∫
RN

|Φ(u(x)−u(y))||(v(x)− v(y))|K(x,y)dxdy+ λ
∫

Ω
|u|q−1|v|dx

+
∫

Ω
| f ||v|dx

� Λ2
∫

RN

∫
RN

|u(x)−u(y)|p−1|v(x)− v(y)|
|x− y|N+sp dxdy + λ‖u‖ q

q−1
‖v‖q

+ ‖ f‖p′‖v‖p

�

⎡
⎣
∥∥∥∥∥∥
|u(x)−u(y)|p−1

|x− y|
N+sp

p′

∥∥∥∥∥∥
p′

+ C1λ‖u‖ q
q−1

+ C2‖ f‖p′

⎤
⎦‖v‖Ws,p

0 (Ω),

where C1,C2 are constants obtained from the embedding of Ws,p
0 (Ω) into Lq(Ω) for

q ∈ (p, p∗s ) and into Lp(Ω) respectively. Thus I is a C1 functional over Ws,p
0 (Ω) . �

LEMMA 2. For the functional I given in the lemma 1 , there exist u0,u1 ∈Ws,p
0 (Ω)

and a positive real number C3 such that I(u0), I(u1) < C3 and I(v) � C3 , for every v
satisfying ‖v−u0‖Ws,p

0 (Ω) = r for some r > 0 .

Proof. Let us consider u0 = 0 and let w ∈ B(0,1) = {u ∈Ws,p
0 (Ω) : ‖u‖Ws,p

0 (Ω) =
1} . Consider v = u0 + rw for r > 0 so that ‖v− u0‖Ws,p

0 (Ω) = r . We first show that

there exists a r > 0 such that for each v satisfying ‖v−u0‖Ws,p
0 (Ω) = r we have I(v) �

C3 , where C3 > 0. From the monotonicity and ellipticity conditions in (4) and (5)
respectively,

I(u) =
∫

RN

∫
RN

PΦ(u(x)−u(y))K(x,y)dxdy− λ
q

∫
Ω
|u|qdx−

∫
Ω

f udx

� Λ−2

p
‖u‖p

Ws,p
0 (Ω)

− λ
q

∫
Ω
|u|qdx−

∫
Ω

f udx

Thus we have,

I(u0 + rw)− I(u0) � λ−2rp

p
‖w‖p

Ws,p
0 (Ω)

− λ rq

q
‖w‖q

q− r
∫

Ω
f wdx.

Note that ‖w‖Ws,p
0 (Ω) = 1 and Ws,p

0 (Ω) ↪→ Lp(Ω) , hence ‖w‖p
p � C4‖w‖Ws,p

0 (Ω) =C4 .

Similarly, since Ws,p
0 (Ω) ↪→ Lq(Ω) for q ∈ (p, p∗s ) , we have ‖w‖q

q � C5 . This
leads to

I(u0 + rw)− I(u0) � r

[
Λ−2rp−1

p
− rq−1λ

q
C5−C

1
p
4 ‖ f‖p′

]
.

Let F(r) = Λ−2rp−1

p − rq−1λ
q C5 −C

1
p
4 ‖ f‖p′ . Then F(0) < 0 and for r0 = q(p−1)

p(q−1) · Λ−2

λC5
,

we see that F ′(r0) = 0. Further, a bit of calculus guarantees that F ′′(r0) < 0 and hence
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r0 is a maximizer of F . Note that, if 0 < λ < λ1 = Λ−2q(p−1)
C5 p(q−1)

(
q−p

p(q−1) · 1

C1/p
4 ‖ f‖p′

) q−p
p−1

,

then F(r0) > 0. Hence there exist r1,r2 > 0 and r1 < r0 < r2 such that F(r) > 0 for
each r ∈ (r1,r2) . Thus, we choose r = r0 such that ‖v−u0‖Ws,p

0 (Ω) = r0 and for which

I(v) � C3 > 0 for each v such that ‖v−u0‖Ws,p
0 (Ω) = r0 .

Choice of u1 : Let wq be a nontrivial weak solution of the problem P1 . Then
consider g = kwq , k ∈ R , where we have normalized wq with respect to the norm of
Ws,p

0 (Ω) without changing its notation. Now we have,

I(u) � Λ2

p
‖u‖p

Ws,p
0 (Ω)

− λ
q

∫
Ω
|u|qdx−

∫
Ω

f udx.

From this it can be seen that

I(g) � Λ2kp

p
− λkq

q

∫
Ω
|wq|qdx− kC,

where C =
∫

Ω f wqdx . Since p < q < p∗s , we observe that k can be chosen so large, say

k0 such that
Λ2kp

0
p − λ kq

0
q

∫
Ω |wq|qdx− k0C < 0. Then I(k0wq) < 0. Thus we can choose

u1 = k0wq , where k0 > r0 , due to which ‖u1 − u0‖Ws,p
0 (Ω) > r0 . Hence the lemma

follows. �

LEMMA 3. The functional I given in the lemma 1 satisfies the Palais-Smale con-
dition when Λ ∈ [1,( q

p)1/4) .

Proof. Let (um) be a sequence in Ws,p
0 (Ω) such that |I(um)| � M and I′(um)→ 0

in W−s,p′(Ω) . Now,

〈I′(um),v〉 =
∫

RN

∫
RN

Φ(um(x)−um(y))(v(x)− v(y))K(x,y)dxdy

−λ
∫

Ω
|um|q−2umvdx−

∫
Ω

f vdx,

for every v ∈Ws,p
0 (Ω) . From the definition of the functional and its derivative we have

〈I′(um),um〉 =
∫

RN

∫
RN

Φ(um(x)−um(y))(um(x)−um(y))K(x,y)dxdy

−λ
∫

Ω
|um|qdx−

∫
Ω

f umdx

I(um) =
∫

RN

∫
RN

PΦ(um(x)−um(y))K(x,y)dxdy− λ
q

∫
Ω
|um|qdx−

∫
Ω

f umdx.
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From the above two equations, it follows that

q
∫

RN

∫
RN

PΦ(um(x)−um(y))K(x,y)dxdy

−
∫

RN

∫
RN

Φ(um(x)−um(y))(um(x)−um(y))K(x,y)dxdy

= qI(um)−〈I′(um),um〉+(q−1)
∫

Ω
f umdx (11)

From (4) and (5), we have

1
Λ2 ‖um‖p

Ws,p
0 (Ω)

�
∫

RN

∫
RN

Φ(um(x)−um(y))(um(x)−um(y))K(x,y)dxdy

� Λ2‖um‖p
Ws,p

0 (Ω)

and hence

1
Λ2p

‖um‖p
Ws,p

0 (Ω)
�
∫

RN

∫
RN

PΦ(um(x)−um(y))K(x,y)dxdy � Λ2

p
‖um‖p

Ws,p
0 (Ω)

.

From (11), we get

(q− pΛ4)
Λ2p

‖um‖p
Ws,p

0 (Ω)
� qI(um)−〈I′(um),um〉+(q−1)

∫
Ω

f umdx

� qM +‖I′(um)‖−s,p′‖um‖Ws,p
0 (Ω) + (q−1)c‖ f‖p′‖um‖Ws,p

0 (Ω)

From this, it follows that the sequence (‖um‖Ws,p
0 (Ω)) is bounded. If not, then divide

by ‖um‖p
Ws,p

0 (Ω)
in the above and let m → ∞ . On using ‖I′(um)‖−s,p′ → 0, we get a

contradiction viz. (q−pΛ4)
Λ2 p

� 0, by the assumption q− pΛ4 > 0. Thus there exists

a subsequence of (um) , which will still be denoted by (um) , converge weakly to u
in Ws,p

0 (Ω) . We will now show that this subsequence (um) is strongly convergent in
Ws,p

0 (Ω) .
We know that Ws,p

0 (Ω) is compactly embedded in Lr(Ω) , r ∈ [1, p∗s ) and hence
um → u in Lr(Ω) , for 1 � r < p∗s . Consider ũm = um −u . Then ũm ⇀ 0 in Ws,p

0 (Ω) .
Consider,

〈I′(ũm), ũm〉 =
∫

RN

∫
RN

Φ(ũm(x)− ũm(y))(ũm(x)− ũm(y))K(x,y)dxdy

−λ
∫

Ω
|ũm|qdx−

∫
Ω

f ũmdx (12)

The second and the third term of the functional approach to 0 as m → ∞ . This is
because ũm ⇀ 0 in Ws,p

0 (Ω) implies
∫

Ω f ũmdx → 0 and um → u in Lr(Ω) for r ∈
[1, p∗s ) implies

∫
Ω |ũm|qdx → 0. By the definition of weak convergence, for all u ∈

Ws,p
0 (Ω) we have 〈I′(u), ũm〉 → 0, as m → ∞ , i.e. lim

m→∞
〈I′(u), ũm〉 = 0, for all u ∈

Ws,p
0 (Ω) . Upon taking u = ũn ,

lim
n→∞

lim
m→∞

〈I′(ũn), ũm〉 = 0.
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We now consider,

〈I′(ũn), ũm〉 =
∫

RN

∫
RN

Φ(ũn(x)− ũn(y))(ũm(x)− ũm(y))K(x,y)dxdy

−λ
∫

Ω
|ũn|q−2ũnũmdx−

∫
Ω

f ũmdx (13)

Since ũn ⇀ 0, hence by the work of Kussi et al. [20], we have

lim
n→∞

∫
RN

∫
RN

Φ(ũn(x)− ũn(y))(ũm(x)− ũm(y))K(x,y)dxdy = 0.

In addition to this we have, lim
n→∞

∫
Ω
|ũn|q−2ũnũmdx = 0. Passing to the limit n → ∞ in

(13) , we have,

lim
n→∞

〈I′(ũn), ũm〉 =
∫

Ω
f ũmdx. (14)

On further passing to the limit m → ∞ in (14) we get,

lim
m→∞

lim
n→∞

〈I′(ũn), ũm〉 = 0.

Therefore, we have

lim
m→∞

lim
n→∞

〈I′(ũn), ũm〉 = lim
n→∞

lim
m→∞

〈I′(ũn), ũm〉 = 0.

Hence it follows that lim
m→∞

〈I′(ũm), ũm〉 = 0. Passing to the limit m→ ∞ in (12), we get

lim
m→∞

∫
RN

∫
RN

Φ(ũm(x)− ũm(y))(ũm(x)− ũm(y))K(x,y)dxdy = 0.

But,

0 � 1
Λ2 ‖ũm‖p

Ws,p
0 (Ω)

�
∫

RN

∫
RN

Φ(ũm(x)− ũm(y))(ũm(x)− ũm(y))K(x,y)dxdy.

From this it is clear that lim
m→∞

‖ũm‖Ws,p
0 (Ω) = 0, that is ũm → 0 in Ws,p

0 (Ω) . Hence

um → u in Ws,p
0 (Ω) . �

THEOREM 2. Suppose that the problem

P1 : −LΦu = λ |u|q−2u in Ω,

u = 0 in R
N \Ω,

has a nontrivial weak solution for some λ > 0 , where q ∈ (p, p∗s ) . Then there exists
λ1 > 0 such that for all λ ∈ (0,λ1) , the problem

P2 : −LΦu = λ |u|q−2u+ f , f (�= 0) ∈ Lp′(Ω),

u = 0 in R
N \Ω,

has a nontrivial weak solution whenever Λ ∈ [1,( q
p)1/4) , where Λ is as in equation

(4) .
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Proof. By the results proved in Lemmas 1, 2 and 3, it follows that the functional
I associated with the problem P2 satisfies all the condition of Mountain Pass theorem.
So by the Mountain Pass theorem, an extreme point for I exists in Ws,p

0 (Ω) , which is a
weak solution to the problem P2 . �

The Theorem 2 shows that if the problem P1 has a nontrivial weak solution then
the problem P2 also has a nontrivial weak solution under certain restrictions on λ and
Λ respectively. We now show the existence of nontrivial weak solution to the problem
P1 with the assumption that the problem P2 has a nontrivial weak solution for each
f (�= 0) ∈ Lp′(Ω) in the set M = {u∈Ws,p

0 (Ω) : ‖u‖q = 1} for some λ > 0, where q ∈
(p, ps∗) . Existence of such a solution in the subset M of Ws,p

0 (Ω) can be guaranteed
from the weak lower semicontinuity and coercivity of the associated functional IP2 .

In order to show the existence of nontrivial weak solution of the problem P1 for
q∈ (p, p∗s ) , let us consider a sequence ( fn)⊂ Lp′(Ω) such that fn → 0 in Lp′(Ω) . Then
for each such fn , there exists a weak solution to the problem P2 , say un . Thus each un

is a critical point of the functional IP2 , i.e., 〈I′P2
(un),ϕ〉 = 0 for every ϕ ∈Ws,p

0 (Ω) . In
particular, 〈I′P2

(un),un〉 = 0. This implies that
∫

RN

∫
RN

Φ(un(x)−un(y))(un(x)−un(y))K(x,y)dxdy−λ
∫

Ω
|un|qdx =

∫
Ω

fnundx.

(15)
Further, since ‖un‖q = 1 and using (4) and (5) in (15) , we have

Λ−2‖un‖p
Ws,p

0 (Ω)
−λ �

∫
Ω

fnundx � C‖ fn‖p′‖un‖Ws,p
0 (Ω) � CM‖un‖Ws,p

0 (Ω),

where M is such that ‖ fn‖p′ � M . It follows that (‖un‖Ws,p
0 (Ω)) is bounded, for if

not, then divide by ‖un‖p
Ws,p

0 (Ω)
and let n → ∞ to get a contradiction viz. Λ−2 � 0.

Hence there exists a subsequence (un) which converge weakly to u in Ws,p
0 (Ω) . Since

Ws,p
0 (Ω) is compactly embedded in Lq(Ω) for q ∈ (p, p∗s ) , hence un → u in Lq(Ω) .

Therefore, ∫
Ω
|un|q−2unvdx →

∫
Ω
|u|q−2uvdx

and
∫

Ω fnvdx → 0 for each v ∈Ws,p
0 (Ω) . By Kussi et al. [20] we have,∫

RN

∫
RN

Φ(un(x)−un(y))(v(x)− v(y))K(x,y)dxdy

→
∫

RN

∫
RN

Φ(u(x)−u(y))(v(x)− v(y))K(x,y)dxdy.

Passing to the limit n → ∞ in the following equation∫
RN

∫
RN

Φ(un(x)−un(y))(v(x)− v(y))K(x,y)dxdy−λ
∫

Ω
|un|q−2unvdx =

∫
Ω

fnvdx,

we get,∫
RN

∫
RN

Φ(u(x)−u(y))(v(x)− v(y))K(x,y)dxdy−λ
∫

Ω
|u|q−2uvdx = 0,



188 R. KR. GIRI, D. CHOUDHURI AND A. SONI

for each v ∈Ws,p
0 (Ω) . This shows that u is weak solution of the problem P1 .

Assume that λ ∈
(

0, inf
u �=0∈Ws,p

0 (Ω)

‖u‖Ws,p
0 (Ω)

‖u‖q

]
. As in the proof of Lemma 3, it is

easy to see that
‖un‖Ws,p

0 (Ω) → ‖u‖Ws,p
0 (Ω).

Since ‖un‖q = 1 and un → u in Ws,p
0 (Ω) , we have

0 < λ � liminf
‖un‖Ws,p

0 (Ω)

‖un‖q
= liminf‖un‖Ws,p

0 (Ω) = ‖u‖Ws,p
0 (Ω)

This implies that u is a nontrivial weak solution to the problem P1 . We thus have
proved the following theorem.

THEOREM 3. Suppose that to each f ∈ Lp′(Ω) , the problem

P2 : −LΦu = λ |u|q−2u+ f , f (�= 0) ∈ Lp′(Ω),

u = 0 in R
N \Ω,

has a nontrivial weak solution in M ⊂ Ws,p
0 (Ω) for some λ > 0 , where q ∈ (p, p∗s ) .

Then the problem

P1 : −LΦu = λ |u|q−2u,

u = 0 in R
N \Ω

has a nontrivial solution in Ws,p
0 (Ω) , whenever λ ∈

(
0, inf

u �=0∈Ws,p
0 (Ω)

‖u‖Ws,p
0 (Ω)

‖u‖q

]
.

4. A necessary condition for the existence of a weak solution

We now prove a necessary condition for the existence of a weak solution to the
problem

−LΦu = λ |u|q−2u+ μ ,

u = 0 in R
N \Ω, (16)

where μ is a measure.

DEFINITION 3. Suppose K ⊂ Ω is a compact set, then we define the capacity as

Caps,q(K) = inf{‖ϕ‖q
Ws,q(Ω) : ϕ ∈C∞

c (Ω),0 � ϕ � 1,ϕ ≡ 1 in K}.

THEOREM 4. Suppose 2 < p < q and u is a weak solution to the problem (16)
then μ ∈ L1(Ω)+W−s,p′(Ω) .
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Proof. Suppose u is a weak solution to (16) . Choose a test function ϕ ∈C∞
0 (Ω)

such that ϕ(x)≡ 1 over a compact subset of Ω say K and 0 � ϕ � 1 in Ω from which
one has ϕ � χK . Thus

μ(K) �
∣∣∣∣
∫

Ω
−LΦuϕdx−λ

∫
Ω
|u|q−2uϕdx

∣∣∣∣
� (C6‖−LΦu‖W−s,p′ (Ω) +C7‖u‖q−1

q )‖ϕ‖s,q. (17)

We refer to a result from Gallouët et al [14] that μ ∈ L1(Ω)+W−s,p(Ω) iff μ(K) = 0
whenever Caps,q(K) = 0 for K compact subset of Ω . Coming back to our theorem, if
we suppose Caps,q(K) = 0 then there exists (ϕn) such that ‖ϕn‖q

Ws,q(Ω) → 0. Hence

if this sequence (ϕn) is used in (17) , one has μ(K) = 0. Thus we have μ ∈ L1(Ω)+
W−s,p′(Ω) . �
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