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Abstract. This paper studies a fractional differential equation of Sobolev type with nonlocal ini-
tial conditions in an arbitrary separable Hilbert space. We study the associated integral equation
and then, consider a sequence of approximate integral equations obtained by projection of con-
sidered associated integral equation onto finite dimensional space. The sufficient condition for
providing the existence and uniqueness of mild solution to every approximate integral equation
is obtained via the techniques of Banach fixed point theorem and analytic semigroup theory. By
utilizing the Faedo-Galerkin approximations, we establish some convergence results for approx-
imate solutions. Finally, an example is given to explain the applicability of the discussed abstract
results.

1. Introduction

Recently, the theory of fractional calculus which provides the integration and dif-
ferentiation of any order, not necessarily an integer, has proved to be an important tool
in the modeling of dynamical systems associated with phenomena such as fractals and
chaos. Differential equation of fractional order has been applied in different fields such
as physics, chemistry, electronics, mechanics, medicine, nonlinear oscillation of earth-
quake, models of population growth, electrodynamics of complex medium and many
other branches of sciences and technology. For further applications of differential equa-
tions with fractional order in other domains and useful backgrounds, we refer to the
references [1]–[5], [11], [20]–[22]. The existence of a solution for abstract Cauchy dif-
ferential equation with nonlocal conditions in a Banach space has been considered first
by Byszewski [6]. Many authors have considered and studied the existence of the mild
solution to the nonlocal conditions, see [7], [9], [11], [12], [13], [18], [19], [22], [28],
[32]. In physical science, the nonlocal condition may be connected with better effect in
applications than the classical initial condition since nonlocal conditions are normally
more exact for physical estimations than the classical initial condition.

On the other hand, Sobolev type differential equations with fractional order arise in
control theory of dynamical systems, when the controller is characterized by a Sobolev
type differential equation with fractional order. Moreover, the mathematical modeling
and simulations of systems and phenomena are focused around the description of their
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properties in terms of Sobolev type differential equations with fractional order. These
new models are more satisfactory than previously utilized integer order models. Differ-
ential equations of Sobolev type have not been considered by the authors, extensively.
In [10], authors have studied the existence of solutions to Sobolev-type partial neutral
differential equations by utilizing fixed point theorem. In [11], authors have considered
the Sobolev type fractional differential equation and established the existence of the
mild solution for the considered system by virtue of the theory of propagation family
via the techniques of the condensing maps and the measure of noncompactness. In [13],
Fe čkan et al. have discussed the controllability of Sobolev type fractional differential
equation via the techniques of a fixed point theorem and characteristic solution opera-
tors. Very recently, Debbouche et al. [18] have considered a new kind of Sobolev type
nonlinear fractional differential equations in terms of two linear operators. To describe
the solution of the problem, authors have introduced two new characteristic solution op-
erators and obtained the existence results by using Leray-Schauder fixed point theorem.
For more study of Sobolev type differential equations, we refer to papers [10]–[19] and
references cited therein.

To the solvability of evolution problems in the time domain, we have various ap-
proaches, namely, the evolution family approach and an approach using finite-dimen-
sional approximations known as Faedo-Galerkin approximations. The Faedo-Galerkin
approach may be used for the study of more regular solutions, imposing higher regu-
larity on the data. In [25], author has extended the results of the [24] and considered
the Faedo-Galerkin approximations of the solutions for functional Cauchy problem in
a separable Hilbert space with the help of analytic semigroup theory and Banach fixed
point theorem. In [26], authors have studied the Faedo-Galerkin approximations of the
solutions to a class of functional integro-differential equation extended the results of
[25]. Muslim et al. [29] have studied the fractional order differential equation and
proved some convergence results for Faedo-Galerkin approximations. For more study
on Faedo-Galerkin approximations of solutions, we refer to papers [24]–[32] and refer-
ences cited therein.

Motivated by above mentioned work, our main purpose of this paper is to study
the following nonlocal functional differential equation of Sobolev type illustrated by

cDβ
t [By(t)] = Ly(t)+F(t,y(t),y(h(t))), t ∈ J = [0,T ], (1)

g(y) = φ ∈ X. (2)

where β ∈ (0,1) , 0 < T < ∞ and cDβ
t denotes the fractional derivative in Caputo

sense. In (1), we assume that the operator B : D(B) ⊂ X → Y and L : D(L) ⊂ X → Y

are closed, positive and self-adjoint operators, where X and Y are the Hilbert spaces
such that Y is continuously and densely embedded in X , the state y(·) takes its values
in X and functions F : [0,T ]×X → X , h : [0,T ] → [0,T ] and g : C([0,T ],X) → X are
appropriate functions.

The article is organized as follows: Section 2 presents some basic definitions,
lemmas and theorems which will be required to prove the result. Section 3 studies the
existence and uniqueness of solution for every approximate integral equation by virtue
of the theory of analytic semigroup via Banach fixed point theorem. Section 4 proves
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the convergence of the solution to each of the approximate integral equations with the
limiting function which satisfies the associated integral equation and Section 5 focuses
on the convergence of the approximate Faedo-Galerkin solutions. Section 6 provides
an application for illustrating the discussed abstract results.

2. Preliminaries

In this section, we provide some essential facts about fractional calculus, semi-
group theory, theorems and lemmas which will be required to obtain our results.

Throughout the paper, we assume that (X,‖ ·‖,〈·, ·〉) and (Y,‖ ·‖,〈·, ·〉) are sepa-
rable Hilbert spaces. The space C([0,T ],X) represents the Banach space of continuous
functions from [0,T ] into X with the norm ‖y‖[0,T ] = sup{‖y(t)‖ : t ∈ [0,T ]} . Let
L(X) be the Banach space of bounded linear operators from X into X endowed with
the norm ‖ f‖L(X) = sup{‖ f (y)‖ : ‖y‖ = 1} .

Now, we state some basic definitions and properties of fractional calculus.

DEFINITION 2.1. The Riemann-Liouville fractional integral operator J
β
t is given

by

J
β
t F(t) =

1
Γ(β )

∫ t

0
(t− s)β−1F(s)ds, (3)

where F ∈ L1((0,T ),X) and β > 0 is the order of the fractional integration.

DEFINITION 2.2. The Riemann-Liouville fractional derivative is given by

RLDβ
t F(t) = Dδ

t J δ−β
t F(t), δ −1 < β < δ , δ ∈ N, (4)

where Dδ
t = dδ

dtδ , F ∈ L1((0,T ),X), J
δ−β
t F ∈ W δ ,1((0,T ),X) . Here, the notation

W δ ,1((0,T ),X) stands for the Sobolev space defined by

W δ ,1((0,T ),X) =
{

y ∈ X : ∃ z ∈ L1((0,T ),X) :

y(t) =
δ−1

∑
k=0

dk
tk

k!
+

tδ−1

(δ −1)!
∗ z(t), t ∈ (0,T )

}
.

Note that z(t) = yδ (t) , dk = yk(0) .

DEFINITION 2.3. The Caputo fractional derivative is given by

cDβ
t F(t) =

1
Γ(δ −β )

∫ t

0
(t− s)δ−β−1Fδ (s)ds, δ −1 < β < δ , (5)

where F ∈Cδ−1((0,T ),X)∩L1((0,T ),X) and the following holds

J q
t (cDq

t F(t)) = F(t)−
δ−1

∑
k=0

tk

k!
Fk(0). (6)
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Next, we impose following additional data on operators L and B :

(C1) L : D(L) ⊂ X → Y is a linear, closed operator and B : D(B) ⊂ X → Y is a linear
operator.

(C2) D(B) ⊂ D(L) and B is bijective operator.

(C3) The operators B−1 : Y → D(B)⊂ X is assumed to be linear, continuous operator
with Im(B−1) ⊂ D(L) and Im(L) ⊂ D(B−1)such that LB−1 = B−1L .

By the hypothesis (C3), it follows that B−1 is closed and injective. Thus, its inverse is
also closed i.e., B is closed. By the hypotheses (C1)–(C3) and closed graph theorem,
we conclude that the boundedness of the linear operator LB−1 : Y → Y . Since B is
invertible positive operator, therefore, the operator B−1 is positive operator. Thus, it
follows that LB−1 is bounded, positive and self-adjoint operator. Therefore, LB−1

is the infinitesimal generator of a semigroup {S (t),t � 0} , S (t) := eLB−1
. Thus,

without loss of generality, we may assume that N0 := supt�0 ‖S (t)‖ < ∞ and W1 =
‖B−1‖ .

According to previous definitions, we have that if the following integral

By(t) = By(0)+
∫ t

0

(t− s)β−1

Γ(β )
[Ly(s)+F(s,y(s))]ds, (7)

exists a.e. for t ∈ [0,T ] . Then, the system (1)–(2) is equivalent to the integral equation
(7).

In this work, A = LB−1 : D(A) ⊂ Y → Y is the infinitesimal generator of an ana-
lytic semigroup of uniformly bounded linear operators S (·) . Thus, it follows that there
exists a positive constant N0 � 1 such that ‖S (t)‖ � N0 for each t � 0. We assume
that 0 ∈ ρ(A) , ρ(A) means resolvent set of A . Therefore, we may define the fractional
power Aα for α ∈ (0,1] as closed linear operator with domain D(Aα) with inverse
A−α . Moreover, the subspace D(Aα) is dense in X with the norm ‖y‖α = ‖Aαy‖ for
y ∈ D(Aα) . Thus, it is not difficult to show that D(Aα) is a Banach space with supre-
mum norm. Hence, we signify the space D(Aα) by Xα endowed with the α -norm
(‖ ·‖α) . We also have that for Xη ↪→ Xα for 0 < α < η and therefore, the embedding
is continuous. Then, we may define X−α = (Xα)∗ for each α > 0, dual space of Xα ,
is a Banach space endowed with the norm ‖y‖−α = ‖A−αy‖ for y ∈ X−α . For more
details on the fractional powers of closed linear operators, we refer to book by Pazy
[23].

Now, we present the following lemma follows from the results [20], [21] which
will be used to establish the required result.

LEMMA 2.1. Let us assume that A is the infinitesimal generator of an analytic
semigroup S (t), t � 0 and 0 ∈ ρ(A) . Then,

(i) S (t) : X → D(Aα) for every t > 0 and α � 0 .
(ii) S (t)Aαy = AαS (t)y for each y ∈ D(Aα) .
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(iii) For each t > 0 ,

∥∥∥ d j

dt j S (t)
∥∥∥ � Nj, j = 1,2, (8)

where Nj, j = 1,2 are some positive constants.
(iv) The operator AαS (t) is bounded and ‖AαS (t)‖ � Nα t−αe−δ t for each

t > 0 .
(v) For each α ∈ (0,1] and y ∈ D(Aα) , then ‖S (t)y− y‖ � Cα tα‖Aαy‖ .

REMARK 2.1. [18] The operator A−α is a bounded linear operator in X such
that D(Aα) = Im(A−α) .

We denote by Xα(T ) = C([0,T ],Xα) Banach space of all Xα -valued continuous
functions on [0,T ] endowed with the supremum norm ‖y‖Xα (T) = supt∈[0,T ] ‖y(t)‖α
for each y ∈ Xα(T ) .

3. Existence of approximate solutions

In this section, the sufficient condition for the existence and uniqueness of α -
mild solution for system (1)–(2) is derived. To prove the result, we impose following
assumptions on the data of the system (1)–(2).

(O1) A is a closed, positive definite and self-adjoint linear operator from D(A) ⊂ Y

into Y . We assume that operator A has the pure point spectrum

0 < λ0 � λ1 � λ2 � · · · � λm � · · · , (9)

with λm → ∞ as m → ∞ and a corresponding complete orthonormal system of
eigenfunctions {φ j} , i.e.,

Aφ j = λ jφ j, and 〈φl ,φ j〉 = δl j, (10)

where

δl j =

{
1, j = l,

0, otherwise.

(O2) The mapping F : [0,∞)×Xα ×Xα → Y is continuous and there exists a increas-
ing function mR : [0,∞) → (0,∞) that depends R > 0 such that

‖F(t,z,w)‖ � mR(t), (11)

‖F(t1,z1,w1)−F(t2,z2,w2)‖ � mR(t)[|t1 − t2|θ1 +‖z1− z2‖α ], (12)

for all (t,z,w) , (t1,z1,w1) , (t2,z2,w2) ∈ [0,∞)×BR(Xα)×BR(Xα ) , where
BR(X) = {z ∈ X : ‖z‖X � R} and θ1 ∈ (0,1) .
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(O3) h : [0,T ] → [0,T ] is a nonlinear function such that

(i) h satisfies the following condition h(t) � t, ∀ t ∈ [0,T ] .

(ii) There exists a constant Lh > 0 such that

|h(t1)−h(t2)| � Lh|t1 − t2|, t1,t2 ∈ [0,T ]. (13)

(O4) (i) There exists a function χ ∈C([0,T ],Xα) such that g(χ) = φ .

(ii) There function χ(t) ∈ Xα is locally Lipschitz continuous on [0,T ] .

Motivated by the paper [18], we present the following definition of mild solution of
system (1)–(2).

DEFINITION 3.1. A continuous function y : [0,T ] → Xα is said to be a mild so-
lution of system (1)–(2) if y(0) = y0 and y(·) satisfies the following integral equation

y(t) = Sβ (t)[B]χ(0)+
∫ t

0
(t− s)β−1Tβ (t− s)F(s,y(s),y(h(s)))ds, t ∈ [0,T ], (14)

where

Sβ (t) =
∫ ∞

0
B−1ξβ (ζ )S (tβ ζ )dζ ,

Tβ (t) =
∫ ∞

0
βB−1ζξβ (ζ )S (tβ ζ )dζ ,

ξβ (ζ ) =
1
β

ζ−1− 1
β ψβ (ζ

−1
β ) � 0,

ψβ (ζ ) =
1
π

∞

∑
n=1

(−1)n−1ζ−βn−1 Γ(nβ +1)
n!

sin(nπβ ), ζ ∈ (0,∞),

and ξβ (ζ ) the probability density function defined on (0,∞) , i.e., ξβ (ζ ) � 0, ζ ∈
(0,∞) with

∫ ∞
0 ξβ (ζ )dζ = 1.

REMARK 3.1. [21] For each ν ∈ [0,1]
∫ ∞

0
ζ ν ξβ (ζ )dζ =

∫ ∞

0
ζ−β νψβ (ζ )dζ =

Γ(1+ ν)
Γ(1+ β ν)

. (15)

LEMMA 3.1. [18] Let A be the infinitesimal generator of a semigroup of uni-
formly bounded linear operators S (t) , t � 0 . Then, the operator Sβ (t) and Tβ (t) ,
t � 0 are bounded linear operator such that

(1) We have ‖Sβ (t)y‖ � W1N0‖y‖ and ‖Tβ (t)y‖ � W1N0
Γ(β ) ‖y‖ for each y ∈ X .

(2) The families {Sβ (t), t � 0} and {Tβ (t), t � 0} are strongly continuous i.e.,
for 0 � τ1 < τ2 � T and y ∈ X , we have ‖Sβ (τ2)y−Sβ (τ1)y‖→ 0 and ‖Tβ (τ2)y−
Tβ (τ1)y‖→ 0 as τ2 → τ1 .

(3) If S (t) , t � 0 is compact, then Sβ (t) and Tβ (t) , t � 0 are compact oper-
ator.
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(4) For each y ∈ X , η ∈ (0,1) and α ∈ (0,1) , we have ATβ (t)y = A1−ηTβ Aηy

for t ∈ [0,T ] . We also have ‖AαTβ (t)‖ � βW1Nα Γ(2−α)
Γ(1+β (1−α)) t−αβ for each t ∈ (0,T ] .

(5) For any y ∈ Xα and fixed t � 0 , we have ‖Sβ (t)y‖α � W1N0‖y‖α and

‖Tβ (t)y‖α � W1N0
Γ(β ) ‖y‖α .

Let T0 > 0 be arbitrarily fixed such that 0 < T < T0 < ∞ and

Ψ =
W1Nα Γ(2−α)

Γ(1+ β (1−α))
mR(T0)

T β (1−α)

(1−α)
< 1. (16)

Next, we consider that Hn , spanned by {φ0,φ1, · · · ,φn} , is the finite dimensional sub-
space of Hilbert space X and for each n , let Pn : X → Hn be the corresponding pro-
jection operator, where n = 0,1, · · · , . Now, consider the function Fn : [0,T ]×Xα → X

defined by
Fn(t,y(t),y(h(t))) = F(t,Pny(t),Pny(h(t))), (17)

and the operator Qn : BR(Xα(T )) → BR(Xα(T )) given by

(Qny)(t) = Sβ (t)Bχ(0)+
∫ t

0
(t−s)β−1Tβ (t−s)Fn(s,y(s),y(h(s)))ds, t ∈ [0,T ]. (18)

THEOREM 3.2. If the assumptions (O1)–(O2) are fulfilled, then there exists a
unique fixed point yn ∈ BR(Xα(T )) of the operator Qn i.e. Qnyn = yn for each
n = 0,1,2, · · · and yn fulfills the approximate integral equation

yn(t) = Sβ (t)Bχ(0)+
∫ t

0
(t− s)β−1Tβ (t− s)Fn(s,yn(s),y(h(s)))ds, t ∈ [0,T ]. (19)

Proof. Firstly, we consider the operator Qn : BR(Xα(T )) → BR(Xα(T )) defined
by

(Qny)(t) = Sβ (t)Bχ(0)+
∫ t

0
(t−s)β−1Tβ (t−s)Fn(s,y(s),y(h(s)))ds, t ∈ [0,T ]. (20)

We firstly show that Qn is well-defined map. To this end, it is sufficient to show that
t �→ (Qny)(t) is continuous from [0,T ] into Xα with respect to α -norm(‖ · ‖α) . For
t1,t2 ∈ [0,T ] with t2 > t1 , we get

‖(Qny)(t2)− (Qny)(t1)‖α

� ‖[Sβ (t2)−Sβ (t1)]Bχ(0)‖α +
∥∥∥∫ t2

t1
(t2 − s)β−1Tβ (t2− s)Fn(s,y(s),y(h(s)))ds

∥∥∥
α

+
∥∥∥∫ t1

0
(t2− s)β−1Tβ (t2 − s)Fn(s,y(s),y(h(s)))ds

−
∫ t1

0
(t1− s)β−1Tβ (t1 − s)Fn(s,y(s),y(h(s)))ds

∥∥∥
α
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� ‖[Sβ (t2)−Sβ (t1)]Bχ(0)‖α

+
∫ t2

t1
(t2− s)β−1‖AαTβ (t2 − s)‖ · ‖Fn(s,y(s),y(h(s)))‖ds

+
∫ t1

0
(t1− s)β−1‖Aα [Tβ (t1 − s)−Tβ (t2− s)]‖ · ‖Fn(s,y(s),y(h(s)))‖ds

+
∫ t1

0
[(t1− s)β−1− (t2− s)β−1]‖AαTβ (t2 − s)‖×‖Fn(s,y(s),y(h(s)))‖ds

� ‖[Sβ (t2)−Sβ (t1)]Bχ(0)‖α +
βW1Nα Γ(2−α)
Γ(1+ β (1−α))

mR(T0)
(t2 − t1)β (1−α)

β (1−α)

+
βW1Nα Γ(2−α)
Γ(1+ β (1−α))

mR(T0)
∫ t1

0
(t1 − s)β−1[(t1 − s)−αβ − (t2− s)−αβ ]ds

+
βW1Nα Γ(2−α)
Γ(1+ β (1−α))

mR(T0)
∫ t1

0
[(t1 − s)β−1− (t1− s)β−1](t2− s)−αβ ds. (21)

For y ∈ X , we have

[S (tβ
2 ζ )−S (tβ

1 ζ )]y =
∫ t2

t1

d
dt

S (tβ ζ )ydt =
∫ t2

t1
ζβ tβ−1AS (tβ ζ )dt. (22)

Thus, we get ∫ ∞

0
B−1ξβ (ζ )‖S (tβ

2 ζ )−S (tβ
1 ζ )‖‖AαBχ(0)‖dζ

�
∫ ∞

0
B−1ξβ (ζ )[

∫ t2

t1
‖ d
dt

S (tβ ζ )‖dt]B‖Aα χ(0)‖dζ

�
∫ ∞

0
B−1ξβ (ζ )[N1(t2− t1)]‖B‖‖χ(0)‖αdζ

� R1(t2− t1), (23)

where R1 = N1W1‖B‖×‖χ(0)‖α . Also, we have

∫ t1

0
(t1− s)β−1[(t1− s)−αβ − (t2− s)−αβ ]ds

� ϑdϑ−1
1 (1−h)−p1(1−ϑ )−1(t2 − t1)p1(1−ϑ ), (24)

where h = [1− (ϑ/p1)1/(ϑ p1)] , p1 = 1−β α , ϑ = (1−β )/(1−β α) and 0 < d1 � 1.
Moreover, it follows that∫ t1

0
[(t1− s)β−1− (t1− s)β−1](t2 − s)−αβ ds

� N1+α
α

bα−1
1 (1−h1)−β (1−α)−1(t2− t1)β (1−α), (25)

where h1 = (1− (α/β )1/(αβ )) , 0 < b1 � 1 and N1+α is some positive constant with
‖Aα+1S (t)‖ � N1+α t−1−α , ∀ t > 0. Thus, from the inequalities (21)–(25) and (O2) ,
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we deduce that the mapping t �→ Fn(t,y(t)) is uniformly Hölder continuous on [0,T ] .
Now, we claim that Qn(BR(Xα (T ))) ⊆ BR(Xα(T )) . Let y ∈ BR(Xα(T )) and t ∈
[0,T ] . Then, we have

‖(Qny)(t)‖α � ‖Sβ (t)Bχ(0)‖α +‖
∫ t

0
(t− s)β−1Tβ (t − s)Fn(s,y(s),y(h(s)))ds‖α

� W1‖B‖N0‖χ(0)‖α +
βW1Nα Γ(2−α)
Γ(1+ β (1−α))

∫ t

0
(t− s)β (1−α)−1mR(T0)ds

� W1‖B‖N0‖χ(0)‖α +
W1Nα Γ(2−α)

Γ(1+ β (1−α))
×mr(T0)

T β (1−α)

(1−α)
. (26)

Now, we can choose the positive integer R such that

R = W1‖B‖N0‖χ(0)‖α +
W1Nα Γ(2−α)

Γ(1+ β (1−α))
×mr(T0)

T β (1−α)

(1−α)
. (27)

Thus, we deduce that Qn(BR(Xα (T ))) ⊆ BR(Xα(T )) . Next, we show that Qn is
a contraction mapping on BR(Xα(T )) . For y1,y2 ∈ BR(Xα (T )) and t ∈ [0,T ] , we
obtain

‖(Qny1)(t)− (Qny2)(t)‖α

� ‖
∫ t

0
(t − s)β−1Tβ (t − s)[Fn(s,y1(s),y1(h(s)))−Fn(s,y2(s),y2(h(s)))]ds‖α

� W1Nα Γ(2−α)
Γ(1+ β (1−α))

mR(T0)
T β (1−α)

(1−α)
‖y1− y2‖Xα (T )

� Λ‖y1− y2‖Xα (T ). (28)

where Λ = W1Nα Γ(2−α)
Γ(1+β (1−α))mR(T0)Tβ(1−α)

(1−α) < 1. Thus, we conclude that Qn is a contraction

on BR(Xα(T )) . Thus, there exists a unique yn ∈ BR(Xα(T )) such that Qnyn = yn

which is solution for the integral equation (19). This finishes the proof of the theo-
rem. �

PROPOSITION 3.3. Let us assume that (O1)–(O2) are fulfilled. If χ(0) ∈ D(Aα)
for some 0 < α < 1 , then yn(t) ∈D(Aυ) for each t ∈ (0,T ] and 0 � υ < 1 . Moreover,
if χ(0) ∈ D(A) , then yn(t) ∈ D(Aυ) for all t ∈ [0,T ] and 0 � υ < 1 .

Proof. From the above theorem, we have that there exists a unique yn ∈BR(Xα(T ))
which satisfies approximate integral equation (19). By the theorem 6.13(a) in [23],
we have that S (t) : X → D(Aυ) for t > 0 and 0 � υ < 1 and for 0 � υ < η < 1,
D(Bη) ⊆ D(Bυ) . We also have that S (t)y ∈ D(A) if y ∈ D(A) using Theorem 2.4 in
[23]. The result follows from these facts and the fact that D(A)⊆D(Aυ) for 0 � υ � 1.
This finishes the proof of proposition. �

LEMMA 3.4. Suppose that the hypotheses (O1)–(O2) are satisfied. If χ(0) ∈
D(Aα) for 0 < α < 1 and t0 ∈ (0,T ] , then there is a constant St0 , independent of



214 A. CHADHA, D. BAHUGUNA AND D. N. PANDEY

n such that
‖yn(t)‖υ � St0 , 0 � υ < 1, t ∈ [t0,T ].

Furthermore, if χ(0) ∈ D(A) , then there is a constant S0 > 0 such that

‖yn(t)‖υ � S0, 0 � υ < 1, t ∈ [0,T ],

and S0 is independent of n .

Proof. Let χ(0) ∈ D(Aα) . Then, for t ∈ [t0,T ] , we apply Aυ on both the sides in
(19) and get

‖yn(t)‖υ � NυW1‖B‖t−υ
0 ‖χ(0)‖+

βNυW1Γ(2−υ)
Γ(1+ β (1−υ))

mR(T0)
Tβ (1−υ)

β (1−υ)
� St0 . (29)

Moreover, let χ(0) ∈ D(A) . Then χ(0) ∈ D(Aυ) for each 0 � υ � 1 and we get

‖yn(t)‖υ � N0W1‖B‖×‖χ(0)‖υ +
βNυW1Γ(2−υ)
Γ(1+ β (1−υ))

mR(T0)
T β (1−υ)

β (1−υ)
� S0. (30)

Thus, the proof of the lemma is completed. �

4. Convergence of solutions

The convergence of the solution yn ∈Xα(T ) of the approximate integral equations
(19) to a unique solution y(·) ∈ Xα(T ) of the equation (14) on [0,T ] is discussed in
this section.

THEOREM 4.1. Suppose that the assumptions (O1) and (O2) are satisfied and
χ(0) ∈ D(Aα) for 0 < α < 1 . Then,

lim
k→∞

sup
{n�k, t∈[t0,T ]}

‖yn(t)− yk(t)‖α = 0, (31)

for each t0 ∈ (0,T ] .

Proof. For n � k , we obtain that

‖Fn(t,yn(t),yn(h(s)))−Fk(t,yk(t),yk(h(t)))‖
� ‖Fn(t,yn,yn(h(s)))−Fn(t,yk,yk(h(s)))‖+‖Fn(t,yk,yk(h(s)))−Fk(t,yk,yk(h(s)))‖
� 2mR(T0)‖yn(t)−yk(t)‖α+mR(T0)[‖(Pn−Pk)yk(t)‖α+‖(Pn−Pk)yk(h(t))‖α ]. (32)

For 0 < α < υ < 1, we get

‖Aα(Pn−Pk)yk(t)‖ � ‖Aα−υ(Pn −Pk)Aυym(t)‖ � 1

λ υ−α
k

‖yk(t)‖υ . (33)
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Thus, from (32) and (33), we obtain

‖Fn(t,yn)−Fk(t,yk)‖ � 2mR(T0)[‖yn(t)− yk(t)‖α +
1

λ υ−α
k

‖yk(t)‖υ ]. (34)

We choose t ′0 such that 0 < t ′0 < t0 < T , we have

‖yn(t)− yk(t)‖α

�
(∫ t′0

0
+

∫ t

t′0

)
(t−s)β−1‖AαTβ (t−s)[Fn(s,yn(s),yn(h(s)))−Fk(s,yk(s),yk(h(s)))]‖ds.

(35)

We estimate the first integral of the above inequality as

∫ t′0

0
(t − s)β−1‖AαTβ (t− s)‖×‖Fn(s,yn(s),yn(h(s)))−Fk(s,yk(s),yk(h(s)))‖ds

� 2βW1Nα Γ(2−α)
Γ(1+ β (1−α))

2mR(T0)(T − t ′0)
β (1−α)−1t ′0. (36)

The second integral of the inequality (35) can be estimated as

∫ t

t′0
(t − s)β−1‖AαTβ (t− s)‖×‖Fn(s,yn(s),yn(h(s)))−Fk(s,yk(s),yk(h(s)))‖ds

� βNαW1Γ(2−α)
Γ(1+ β (1−α))

2mR(T0)

[
Ut′0T

β (1−α)

β (1−α)λ υ−α
k

+
∫ t

t′0
(t− s)β (1−α)−1‖yn− yk‖Xα (s)ds

]
.

(37)

Thus, from the inequalities (35) to (37), we conclude

‖yn(t)− yk(t)‖α � 2βW1Nα Γ(2−α)
Γ(1+ β (1−α))

2mR(T0)(T − t ′0)
β (1−α)−1t ′0

+
βNαW1Γ(2−α)
Γ(1+ β (1−α))

2mR(T0)×
Ut′0T

β (1−α)

β (1−α)λ υ−α
k

+
βNαW1Γ(2−α)
Γ(1+ β (1−α))

2mR(T0)×
∫ t

t′0
(t− s)β (1−α)−1‖yn− yk‖Xα (s)ds.

(38)

From Gronwall’s inequality, we deduce that

‖yn(t)− yk(t)‖α �
[2βW1Nα Γ(2−α)

Γ(1+ β (1−α))
2mR(T0)(T − t ′0)

β (1−α)−1t ′0

+
βNαW1Γ(2−α)
Γ(1+ β (1−α))

2mR(T0)×
Ut′0T

β (1−α)

β (1−α)λ υ−α
k

]
×U . (39)
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Letting k → ∞ and taking supremum over [t0,T ] , we have the following inequality

‖yn− yk‖Xα (T ) �
[

2βW1Nα Γ(2−α)
Γ(1+ β (1−α))

2mR(T0)(T − t ′0)
β (1−α)−1t ′0

]
U . (40)

As t ′0 is arbitrary, the right hand side may be made as small as desired by taking t ′0
sufficiently small. The proof of the theorem is finished. �

COROLLARY 4.1. Let us assume that χ(0) ∈ D(A) . Then

lim
k→∞, t∈[0,T ]

sup‖yn(t)− yk(t)‖α = 0. (41)

Now, we have the following result for the convergence of the solution yn(t) ∈ Xα(T )
of the approximate integral equation (19).

THEOREM 4.2. Let us suppose that hypotheses (O1)–(O2) are satisfied and χ(0)∈
D(Aα) . Then, there exist a unique function yn(t) ∈ Xα(T ) fulfilling

yn(t) = Sβ (t)Bχ(0)+
∫ t

0
(t− s)β−1Tβ (t− s)Fn(s,yn(s),yn(h(s)))ds, t ∈ [0,T ], (42)

and y(t) ∈ Xα(T ) , satisfying

y(t) = Sβ (t)Bχ(0)+
∫ t

0
(t− s)β−1Tβ (t − s)F(s,y(s),y(h(s)))ds, t ∈ [0,T ], (43)

such that limn→ yn(t) = y(t) in Xα(T ) .

Proof. Let χ(0) ∈ D(A) . From the Corollary 4.1, it implies that there is a y ∈
Xα(T ) such that limn→∞ yn(t) = y(t) . Since yn ∈ BR(Xα(T )) for every n , then we
have y ∈ BR(Xα(T )) . Moreover, we have

‖Fn(t,yn(t),yn(h(t)))−F(t,y(t),y(h(s)))‖
= ‖F(t,Pnyn(t),yn(h(s)))−F(t,y(t),y(h(s)))‖
� 2mR(T0)[‖yn(t)− y(t)‖α +‖(Pn− I)y(t)‖α ]. (44)

we take supremum over [0,T ] and get

sup
t∈[0,T ]

‖Fn(t,yn(t))−F(t,y(t))‖ � 2mR(T0)[‖yn− y‖Xα (T) +‖(Pn− I)y‖Xα(T )]

→ 0, as n → ∞. (45)

Thus, from (19), (45), we get

y(t) = Sβ (t)By0 +
∫ t

0
(t− s)β−1Tβ (t− s)F(s,y(s),y(h(s)))ds, t ∈ [0,T ]. (46)
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Now, let χ(0) ∈ D(Aα) . Since, Aαyn(t) converges to Aαy(t) for each t ∈ (0,T ] and
yn(0) = y(0) = χ(0) . Then, Aαyn(t) converges to Aαy(t) in X . Furthermore, we have
that yn ∈ BR(Xα(T )) for each n and also y ∈ BR(Xα (T )) . For t ∈ [t0,T ] , from the
Theorem 4.1, we obtain

lim
n→∞

sup
t∈[t0,T ]

‖yn(t)− y(t)‖α = 0. (47)

Also, we have

sup
t∈[0,T ]

‖Fn(t,yn(t),yn(h(s)))−F(t,y(t),y(h(s)))‖

� 2mR(T0)[‖yn− y‖Xα (T ) +‖(Pn− I)y‖Xα (T)] → 0, as n → ∞. (48)

Thus, for 0 < t0 < t , the integral equation (19) can be rewritten as

yn(t) = Sβ (t)Bχ(0)+
(∫ t0

0
+

∫ t

t0

)
(t − s)β−1Tβ (t− s)Fn(s,yn(s),yn(h(s)))ds (49)

we estimate first integral as

∥∥∥∫ t0

0
(t− s)β−1Tβ (t − s)Fn(s,yn(s),yn(h(s)))ds

∥∥∥ � N0W1

Γ(β )
2mR(T0)

t0β

β
. (50)

Therefore, we get

∥∥∥yn(t)−Sβ (t)Bχ(0)−
∫ t

t0
(t−s)β−1Tβ (t−s)Fn(s,yn(s),yn(h(s)))ds

∥∥∥ � N0W1

Γ(β )
2mR(T0)

t0β

β
.

(51)
Taking n → ∞ and getting

∥∥∥y(t)−Sβ (t)Bχ(0)−
∫ t

t0
(t−s)β−1Tβ (t−s)F(s,y(s),y(h(s)))ds

∥∥∥ � N0W1

Γ(β )
2mR(T0)

t0β

β
.

(52)
As t0 is arbitrary, we deduce that y(t) fulfills the integral equation (14).

Now, we show the uniqueness. Let y1 and y2 be the solution of the integral equa-
tion (14). Thus, we have

‖y1(τ)− y2(τ)‖α

�
∫ τ

0
(τ − s)β−1‖AαTβ (τ − s)‖×‖F(s,y1(s),y1(h(s)))−F(s,y2(s),y2(h(s)))‖ds

� βNαW1Γ(2−α)
Γ(1+ β (1−α))

∫ τ

0
(τ − s)β (1−α)−12mR(T0)‖y1− y2‖Xα (s)ds.

Taking supremum on [0,t] and obtaining

‖y1−y2‖Xα (T ) � βNαW1Γ(2−α)
Γ(1+β (1−α))

∫ τ

0
(τ−s)β (1−α)−12mR(T0)‖y1−y2‖Xα (s)ds. (53)
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From Gronwall’s inequality and the fact that

‖y1(t)− y2(t)‖ � 1
λ α

0
‖y1− y2‖Xα (T ), (54)

we deduce that y1 = y2 on [0,T ] . This finishes the proof of the theorem. �

5. Faedo-Galerkin approximations

In this section, we study the Faedo-GalerkinApproximation of a solution and show
the convergence results for such an approximation.

We know that for any 0 < T < T0 , we have a unique y ∈ Xα(T ) satisfying the
following integral equation

y(t) = Sβ (t)[B]χ(0)+
∫ t

0
(t− s)β−1Tβ (t− s)F(s,y(s),y(h(s)))ds, t ∈ [0,T ]. (55)

We also have a unique solution yn ∈ Xα(T ) for the approximate integral equation

yn(t) = Sβ (t)[B]χ(0)+
∫ t

0
(t−s)β−1Tβ (t−s)Fn(s,yn(s),yn(h(s)))ds, t ∈ [0,T ]. (56)

Applying the projection on above equation, then Faedo-Galerkin approximation is given
by vn(t) = Pnyn(t) satisfying

Pnyn(t) = vn(t) = Sβ (t)BPnχ(0)+
∫ t

0
(t−s)β−1Tβ (t−s)PnF(s,Pnyn(s),Pnyn(s))ds

= Sβ (t)BPnχ(0)+
∫ t

0
(t− s)β−1Tβ (t− s)PnF(s,vn(s),vn(h(s)))ds. (57)

Let solution y(·) of (55) and vn(·) of (57), have the following representation

y(t) =
∞

∑
i=0

αi(t)φi, αi(t) = (y(t),φi), i = 0,1,2 · · · , (58)

vn(t) =
n

∑
i=0

αn
i (t)φi, αn

i (t) = (vn(t),φi), i = 0,1,2 · · · , (59)

respectively.
From (57) and (59), we obtain the following system of fractional differential equa-

tions

dβ

dtβ αn
i (t)+ λiαn

i (t) = Fn
i (t,αn

0 (t),αn
1 (t), · · · ,αn

n (t)), (60)

αn
i (0) = zi, (61)

where

Fn
i (t,αn

0 (t),αn
1 (t), · · · ,αn

n (t)) = (B−1F(t,
n

∑
i=0

αn
i (t)φi,

n

∑
i=0

αn
i (t)φi),φi), (62)

and zi = (χ(0),φi) for each n = 1,2, · · · ,n .
We also have the following convergence theorem.
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THEOREM 5.1. Suppose that the hypotheses (O1)–(O2) are fulfilled. Then, we
have

(1). If y0 ∈ D(Aα) , then for any t0 ∈ (0,T ] ,

lim
k→∞

sup
{n�k, t∈[t0,T ]}

‖Aα [vn(t)− vk(t)]‖ = 0. (63)

(2). If y0 ∈ D(A) , then

lim
k→∞

sup
{n�k, t∈[0,T ]}

‖Aα [vn(t)− vk(t)]‖ = 0 (64)

Proof. Let n � k and 0 � α < υ . Then, we get

‖vn(t)− vk(t)‖α = ‖Pnyn(t)−Pkyk(t)‖α

� ‖Pn[yn(t)− yk(t)]‖α +‖(Pn−Pk)yk‖α

� ‖yn(t)− yk(t)‖α +
1

λ υ−α
k

‖yk(t)‖υ . (65)

By the Theorem 4.1 and Corollary 4.1, we have that yn → yk and λk → ∞ as k → ∞ .
Thus, this completes the proof of theorem. �

THEOREM 5.2. Suppose that the hypotheses (O1)–(O2) are fulfilled and y0 ∈
D(Aα) . Then, there exists a unique function vn ∈ Xα(T ) fulfilling following equation

vn(t) = Sβ (t)BPny0 +
∫ t

0
(t− s)β−1Tβ (t− s)PnF(s,vn(s))ds, t ∈ [0,T ], (66)

and y ∈ Xα(T ) that satisfies equation (55) such that vn → y as n → ∞ .

Proof. For y0 ∈ D(Aα) and t ∈ [0,T ] , we have

‖vn(t)− y(t)‖α = ‖Pnyn(t)−Pny(t)+Pny(t)− y(t)‖α

� ‖Pn(yn(t)− y(t))‖α +‖(Pn− I)y(t)‖α . (67)

By the Theorem 4.2, we have yn → y as n → ∞ . Thus, the results follow from the
Theorem 4.2. �

To prove the convergence of αn
i to αi , we have the following theorem.

THEOREM 5.3. Assume that the conditions (O1)–(O2) are satisfied. Then,
(1). If y0 ∈ D(Aα) , then for any 0 < t0 � T ,

lim
n→∞

sup
t∈[t0,T ]

[
n

∑
i=0

λ 2α
i (αi(t)−αn

i (t))2] = 0. (68)

(2). If y0 ∈ D(A) , then

lim
n→∞

sup
t∈[0,T ]

[
n

∑
i=0

λ 2α
i (αi(t)−αn

i (t))2] = 0. (69)
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Proof. We have that

Aα [y(t)− vn(t)] = Aα [
∞

∑
i=0

(αi(t)−αn
i (t))φi] =

∞

∑
i=0

λ α
i (αi(t)−αn

i (t))φi. (70)

Thus,

‖Aα [y(t)− vn(t)]‖2 �
n

∑
i=0

λ 2α
i [αi(t)−αn

i (t)]2. (71)

Thus, the results follows from the Theorem 5.1 and 5.2. �

6. Application

Let us consider the following fractional differential system of Sobolev type illus-
trated as

cDβ
t [w(t,x)−wxx(t,x)]+

∂ 2w(t,x)
∂x2 = f (t,w(t,x)), x ∈ S, t ∈ [0,1], (72)

w(0,x) = w0(x), x ∈ [0,π ], (73)

w(t,0) = w(t,π) = 0, 0 < t � 1, (74)

where cDβ
t is the fractional derivative in Caputo sense, 0 < β < 1. Let w(t)(x) =

w(t,x) and f (t, ·) = F(t, ·) .
Now, we take X = Y = L2[0,π ] and consider the operators L,B on domains and

ranges contained in L2[0,π ] defined by

By = y− y′′, Ly = −y′′ (75)

with domain

D(B) = D(L) = {y ∈ X : y,y′ are absolutely continuous y′′ ∈ X , y(0) = y(π) = 0}.
(76)

Thus, B and L can be written, respectively, as

By =
∞

∑
n=1

(1+n2)(y,un)un, and Ly =
∞

∑
n=1

−n2(y,un)un, (77)

where un(t) =
√

2
π sin(nt) , n = 1,2, · · · , are eigenfunctions of B corresponding to

eigenvalue λn = −n2 . Moreover, we have that for any y ∈ X ,

B−1y =
∞

∑
n=1

1
1+n2 (y,un)un, and LB−1y =

∞

∑
n=1

−n2

1+n2 (y,un)un, (78)

with

S (t)y =
∞

∑
n=1

exp
( −n2t

1+n2

)
(y,un)un. (79)
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Clearly, B−1 is continuous, bounded with ‖B−1‖ � 1 and LB−1 generates the above
strongly continuous semigroup S (t) on L2[0,π ] with ‖S (t)‖ � e−t � 1.

Therefore, the system (72)–(74) can be reformulated as

Dq
t [Bu(t)] = Lu(t)+F(t,u(t)), t > 0, (80)

u(0) = w0. (81)

Thus, the results of the earlier sections to guarantee the existence of Faedo– Galerkin
approximations and their convergence to the unique solution of (72)–(74) may be ap-
plied with appropriate function F satisfying suitable conditions.
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