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DETERMINATION OF A DISTRIBUTION IN A SOURCE TERM
OF A TIME FRACTIONAL DIFFUSION-WAVE EQUATION

ANDRZEJ LOPUSHANSKY AND HALYNA LOPUSHANSKA

(Communicated by M. Andric)

Abstract. We study the inverse Cauchy problem to a time fractional diffusion-wave equation
with distributions in right-hand sides. This problem is to find a generalized solution of direct
problem and an unknown time-dependent part of a source from the space of distributions. The
unique solvability of the problem is established.

1. Introduction

The conditions of classical solvability of the Cauchy and boundary value problems
to equations with the regularized time fractional derivative were obtained in [3, 4, 10,
12, 13, 14, 19, 20] and other works. In such of these works the method of the Green
function was used.

The inverse boundary value problems to a time fractional diffusion equations with
different unknown functions or parameters were investigated, for example, in [1, 2, 5,
7,8,9, 11,16, 17, 21]. Most papers were devoted to the inverse source problems (see,
for example, [1, 5, 8, 16, 21]). Mainly such problems were studied at regular data.

In this paper we study the inverse Cauchy problem

uf) —Au=g(t)Fy(x), (x.t) €R"x (0,7]:=0, (1)
i1

WM(X,O)ZFJ‘(X), xERn7 j:17m7 (2)

(u(,l),(PO()) :F(t)7 re (OaT] (3)

with the Riemann-Liouville fractional derivative of order 3 € (m — 1,m), m,n € N,
given distributions F', Fj, j = 0,m, the unknown distribution g(¢). Here (u(-,7),o(-))
stands for the value of an unknown distribution # on given test function ¢, for every
t € [0,T] and defines the distribution

((u(x1),@0(x)). (1)) = (u(x,1), @o(x)n (1))

for every test function 17. We prove the existence and uniqueness of a solution (u,g)
of the problem in the cases m = 1,2.
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Note that elliptic and parabolic initial and boundary value problems to differen-
tial and pseudo-differential equations having distributions in right-hand sides are suf-
ficiently investigated (see, for example, [6, 15] and references therein), the inverse
Cauchy problem on determination a pair (#,g) under given distributions in right-hand
sides of the direct problem, similar over-determination condition and the unknown con-
tinuous g(z), ¢ € [0,T] was studied in [11].

2. Definitions and auxiliary results

We use the following: Z(R") is the space of indefinitely differentiable func-
tions with compact supports in R”, 2[0,T] = {v € C[0,T]: vVO)(T) =0, s€ Z,},
C>0(Q) ={veC(0): ($)|—r =0, k€ Z;}, Z(0) is the space of functions
from C=(*)(Q) having compact supports, 2'[0,T], Z'(R") and 2'(Q) are the spaces
of linear continuous functionals (distributions [18, p. 13-15]) on 2[0,T], Z(R") and
2(0), respectively, &' (R") = [C=(R")]’ is the space of distributions with compact sup-
ports, the symbol (f, @) stands for the value of the distribution f on the test function
Q.

We denote (g%¢)(x) = (g(£),@(x+&))), by fxg the convolution of the distribu-
tions f and g: (f*g,@) = (f,g%) for any test function ¢, by fxg= f-g= fg the
direct product of the distributions f and g: (fg,®) = (f(x),(g(t),@(x,7)) for any test
function @(x,7), use the function

0(1)* !
fl(t):{ /F()L) ’ A«>O7
f1+)L(t)7 A g 0

where I'(1) is the Gamma-function, 6(¢) is the Heaviside function, and the relations
fl*fu:f)tﬂu fA%fu:fA-s-w

Note that the Riemann-Liouville derivative v(f)(¢) of order B > 0 is defined by
the formula

vB(t) = £ 5 (1) % v(1),
the Djrbashian-Caputo fractional derivative (regularized fractional derivative)

t
1 m
DﬁV(t): W/(I—T)miﬁildd?\)(f)df for m—1<ﬂ <m, mEN,

0

and therefore,

m—1
DPv(t)=vP (1) = Y fi1 e (0) for B € (m—1,m).
Jj=0
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Let Cy5(Q) = {v € C(Q)|Av,DPv e C(Q)}, and for B € (m— 1,m)

(Lv)(x,1) = v,(ﬁ)(x,t) —Av(x,1),
3 DPv(x,1) — Av(x,1),

foplt )*v(x 1) —Av(x,t), (x1)€0,
{vec=(Q):Ive 2(0)}.

—~
=
o
<
~—
—~
=
~
\/ N NN
M1l

9%ty (x s
D¥v(x,1) = ﬁ

and |ot| =0y + ...+ 0.

for o= (ap,00), a=(a,...,0,), o;€Zy, j€{0,1,...,n}

REMARK 1. It follows from [11, Lemma 2.5] that the space 2°(Q) does not
empty. For any ¢ € 2(Q) the function

T
wne) = [dr [ Golx =y = Dg(n)dx. (7)€ 0
Rn

T

belongs to .2 (Q) and satisfies the equation

(ZI[/)(X,Z) = (p(xvt)7 (xvt) €g0.

ASSUMPTIONS.

(Al) Fje &'(R"), j=0,m, ¢
(A2) Fje&'(RY), j=0,m, F € 2'0,T], o € Z2(R"), (Fy, ) #0.

DEFINITION 1. Under assumption (A1) the function u € 2'(Q) is called a solu-
tion of the Cauchy problem (1), (2) if the identity

m

(u’(i‘u/)) = (g(t)FO 2( ij B ) ( ’t)) VWEX(Q) €]

=1
holds.

Note that the identity (4) is the generalization of the Green formula [11]

/ v(x, T)(Ly) (x, T)dxd T = / (L") (x, 7) w(x, T)dxdT
(9] (9]

+,21R[a,1 (w.0) (£ p(2), y(x.7))d,
Be(m—1,m), meN, veCzﬁ(Q)ﬁ@(R"), veZ(0).
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DEFINITION 2. Under assumption (A2) the pair (u,g) € 2'(Q) x 2'[0,T] is called
a solution of the inverse Cauchy problem (1)—(3) if the identity (4) and the condition
(3) hold.

DEFINITION 3. The vector-function (Go(x,?),G(x,1),...,Gu(x,1)) is called a
Green vector-function of the Cauchy problem (2) to the equation

(Lu)(x,t) = F(x,t), (x,7) €0,

and also of such problem to the equation

(Lregu)(x7t) = F(x’t)7 (x’t) €0, )

if under rather regular F', Fj, j= 1,m the function

u(x,t) /dr/Gox vt—1T)F(y,1 dy+2/G x—y0)F;(y)dy, (x,1)€Q

Rn J= an
_ (6)
is a classical (from Cz.p (Q)) solution of the Cauchy problem (5), (2).

The Green function Gy(x,#) of the Cauchy problem (1), (2) with m = 1,2 exists
[19, 11] and

Gj(x,t) = fj_p(t)xGo(x,2), (x1)€Q, j=1m m=12. (7

Let

(Go)( Gj(x—y,0)o(x,1)dx, (v,1)€Q, j=0,m, )

T
(G0) (.7 /dt/thox wi—1)d /GO(P (nt—1)dr, (y.7) € 0,

/dl/qoxt i(x—y,t)dx =

Rr

(G,0)(v,t)dt, yeR", j=T,m.

o\’*}

3. Existence and uniqueness theorems

THEOREM 1. Assume that (A1) with m = 1,2 holds. Then there exists the unique
solution u € 2(Q ) of the Cauchy problem (1), (2) (with m = 1,2). It is defined by

(0.0) = (80O)FR0), (Ge) 1)) + i( J0:0)), Yo € (D). ©)
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Proof. By [11, Lemma 2.9], the functions DY ( G;0)(y,1), j=0,m belong to
C(R") for every ¢ € (0,T], multi-index o, ¢ € Z(Q) and the following bounds hold:

D% (Gog catP 11+ |In 1)),

y1)| <
Dy (Gi)(v.1)] <

cot’™', (y1)€Q, j=T,m, m=1,2,

where ¢y = cq (@) are positive constants. From here, by the scheme of [1 1, Lemma 2.9]

PN _T _

we get the continuity of D*(%)(y,T) =D [dt [ @(x,1)Go(x—y,t —T)dx, (y,T) €O
T Re

for every multi-index &, @ € 2(Q) and that

G0:2(0) — 2(Q), 9;: 2(Q) > C(R"), j=T,m. (10)

Therefore, under the assumptions of Theorem 1 the right-hand side of (9) exists
for any @ € 2(Q) and the function u € 2'(Q) is defined by (9).
For all w € 2°(Q) we have

@f@=(%®gﬁM%@WMWD+i(&%@W) (11)
j=1

By [11, Lemma 2.4] for any y € 2 (Q) the relations

(G(Ly)(n7) = ¥(.7), (n7) €0,
(G (Ly) () = (fi-p(1). y(».7)), yER", j=T,m
hold. Using them from (11) we get (4). By Definition 2 the function (9) is the solution
of the problem (1), (2).

If uy,uy are two solutions of the problem (1), (2), u = u; — u then from (4) we
obtain

(u,Ly) =0 Yy € 2°(0). (12)
By Remark 1, from (12) we get (1, ) =0 forall ¢ € Z(Q), thatis u=0in 2'(Q). O

We pass to the inverse Cauchy problem (1)—(3) with m = 1,2.
Let u be the solution of the Cauchy problem (1), (2). It follows from the equation
(1) that

(u;m(,’,),(p(.)) = (u(-,1),A9(")) + (Fo,0)g(t) Vo € 2(R"), 1 €(0,T],

in particular,

(P (1), 00()) = (ul-,1),Aq0(-)) + (Fo, 90)g(1), 1 € (0,T].

By the over-determination condition (3) we get

FP 1) = (u(-,1),Aq0(-)) + (Fo, @0)g(t)
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and under assumption (A2) find the following expression for g(z) (through u):
g(t): [F(ﬁ)(t)_(u(7t)7A(P0())][(F07(p0)}_17 re (07T] (13)

It follows from Theorem 1 that u € 2'(Q) for every g € 2'[0,T]. Therefore,
(u(-,1), Ago(-)) belongsto 2'(0,T]. From the assumption (A2) we have F#) € 2/[0,T].
So, the right-hand side of (13) belongs to 2'[0,T]. By substituting it in (9) (instead of
g(#)) one obtains

(u,0) =

1
(Fo,(Po)

+Z( (Z0)(,7)) Vo€ 2(0),

(F<ﬁ><r> = (%), 800()); (Fo (), (%09) (7))

in particular, for every 1 € 2(0,7]

(u(x,1), Ago(x)n (1))

T
- ;(me = (0. A000)); (Ro(), [ (Godgw) (-t~ Dn(e)dr)

(Fo, o)
T
/ dt)
0

H(M,I) = (M(,t),A(p()())
We have H(u,-) € 2'(0,T] for every u € 2'(Q), and for every n € 2[0,T]

Denote

T

(H () n(0)) =~ (H(w. ), [ K, 00 (0)dr) + (w0,)

T

that is
T
(0.0 + K@) = (u.m)
where )
(Fo(-), (GoAgo) (-1 — )
K(t,7) = oo 0) , (14)
T m T
(uo,n) = (FP)(2), [ K(t 1)+ vn € 200,7).
0.n) = (FP(z T/ ,:21 0/ )dt) Vn

15)
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THEOREM 2. Assume that (A2) with m = 1,2 holds. Then there exists the unique
solution (u,g) € 2'(Q) x 2'0,T] of the problem (1)~(3) (with m = 1,2): u is defined
by (9),

2(t) = [FP) (1) = go()][(Fo, 00)] ", 1€ (0,T] (16)

where gy € 2'(0,T],
(g(),[l) = (”O»nu) V.Ll S @[OvTL (17)

Nu(t) is the solution of the equation

tyg/K@rmayazuaxte(QT] (18)

with the kernel (14), the function uy is defined by (15).

Proof. By (10) forany @ € 2(Q) we have Z%qo € 2°(0) c c0(Q). Therefore

T

T
[ Kieemiod = = / . (Golagu)) (=) ) n(1)ds

T

(FO /GO A(PO))(y,t—r)n(t)dt>

FOa

o (0. (Go(aevm) (0.7)

and belongs to 2(0,T] forany n € 2[0,T]. Also by (10)

T
[@Gaq)am()dar =Faqm) € CR") v € 2[0.T), j=Tom
0

So, the right-hand side of (15) exists and defines up € 2'(0,T].
For every 1 € 2[0,T| the equation (18) has the unique solution 1, € 2[0,T] and
by mapping (17) we find gg € 2'(0,T]. Then from (16) follows that g € 2'(0,T]. Note

that
T
ﬂ+/K@ﬂnmm

= (uo,m) = (H( +/1<m )dt) ¥n € 7[0.T].

Taking it and the unique solvability of the equation (18) into account we obtain

(H (u,7), (7)) = (80(7), 1(7)) Y € 2(0,T]
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and for every solution u of the Cauchy problem (1), (2). So, (13) is the same as (16).

By Theorem 1 the function (9) with any g € 2'[0, T] satisfies the problem (1), (2).
In particular, it satisfies this problem with g, which is defined by (16)—(18). Show that
the function (9) with such g thatis

_(FP 0 =), ;
(1:0) = (s R0 (o) 1 )+z( ). Yo € 2(0).
19)

with go defined by (17), (18) satisfies the condition (3).
If F¥(t) = (u(-,1),@0(:)), t € (0,T], that is

(F*,m) = (u(x,1),p0(x)n (1)) Y1 € 2[0,T],

T
(up,m) = (F*(ﬁ)(r),/K 2 / n(t)de) ¥n € 2[0,T]
0

and
(80,1) = (ug,Mu) Yu € 2(0,T],

where 1, (¢) is the solution of the equation (18), then, as before, from the equation (1)
we obtain

g(t) = [F*P (1) = g5(0)] [(Fo, )] *, 1€ (0,T]. (20)
Now from (16) and (20) we get

F*P (1) — gi(t) = FP) (1) — go(t) <= F*P) (1)~ FP)(t) = gi (1) — gol1).

Therefore
T
(F®)(z)— FB)(2), () + / K(t,1)n(1)dr)
, T
= (5(0) ~so(e) (D) + [ K@ n(0)r) = (15— wo.m)
= (FP)(r) _F<ﬁ>(r),/1<(z,r)n(t)dz) Vi € 200,T]
and we get

(F*(ﬁ)(f) _F(ﬁ)(f),n(f)) =0Vne .@[O,T].

So, F*B) = F(B) in 9'[0,T]. Therefore, F* = F in 2'[0,T], the function (19)
satisfies the condition (3) and the pair (u,g), which is defined by (9), (16)—(18), is the
solution of the inverse problem (1)—(3).
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If (u1,g1), (u2,82) are two solutions of the problem (1)—(3) then for u = u; — uy,
g = g1 — &2 we obtain the problem

Lu(x,t):Fo(x)g(t), (x7t) €0,

/!
811'—1u(

(u(-.1),@0(-)) =0, t€(0,T].

As before, we find its solution

x,0)=0, xeR", j=1,m,

T
1 ~ _
(14:9) = ~ =gy (800 (o) / (Gog) (-t —)dr)) Vo € 2(0), N
e =20 re )

where ,
(20(7),1(7) —|—/K(t,r)n(t)dt) —0 vne2)0,T1].

From the last equality by uniqueness of a solution of the equation (18) we obtain
(go,1) =0 forall u € 2(0,T], thatis go =0 in 2'|0,T]. Then, from (21), we obtain
¢=0in 2'[0,T] and u=01in 2'(Q). O
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